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https://www.youtube.com/watch?v=H-5dXRX-cbU
https://www.youtube.com/watch?time_continue=2&v=sOHy9yOdJtU&feature=emb_logo


Human Activity Recognition

Input Output

340 inactive(id0)

340 p(id0) =(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)
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Credit Card Fraud Recognition

SDE:

I Credit card transactions from all over the world.

CE:

I Cloned card — a credit card is being used simultaneously in
different countries.

I New high use — the card is being frequently used in
merchants or countries never used before.

I Potential batch fraud — many transactions from multiple
cards in the same point-of-sale terminal in high amounts.
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Credit Card Fraud Recognition

I Fraud must be detected within 25 milliseconds.

I Fraudulent transactions: 0.1% of the total number of
transactions.

I Fraud is constantly evolving.

I Erroneous transactions, missing fields.
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Maritime Situational Awareness

Source: http://www.marinetraffic.com
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http://www.marinetraffic.com


Maritime Situational Awareness
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Maritime Situational Awareness
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https://www.youtube.com/watch?v=8WaMzzFtGXE&feature=emb_logo
https://www.youtube.com/watch?v=wxmGfpqX9cg&feature=emb_logo
https://www.youtube.com/watch?v=QwVsPZy-0lY&feature=emb_logo
https://www.youtube.com/watch?v=xsATVZWcnaU&feature=emb_logo


Big Data Problem

I Velocity, Volume: 19,000,000 position signals/day at
European scale.

I Variety: Position signals need to be combined with other data
streams
I Weather forecasts, sea currents, etc.

I ... and static information
I NATURA areas, shallow waters areas, coastlines, etc.

I Lack of Veracity: GPS manipulation, vessels reporting false
identity, communication gaps.

I Distribution: Vessels operating across the globe.
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Many Other (Big Data) Applications

I Cardiac arrhythmia recognition.

I Identification of opportunities for refueling in fleet
management.

I Identification of shipment irregularities inventory management.

I Intrusion detection in computer networks.

I Traffic congestion recognition and forecasting in smart cities.
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Requirements

I Expressive representation
I to capture complex relationships between the events that

stream into the system.

I Efficient reasoning
I to support real-time decision-making in large-scale,

(geographically) distributed applications.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

I Reasoning under uncertainty
I to deal with various types of noise.

I Complex event forecasting
I to support proactive decision-making.
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Tutorial Structure

I Part I: Introduction

I Part II: Logic-based complex event recognition

I Part III: Automata-based complex event recognition

I Part IV: Complex event forecasting

I Part V: Topics not covered
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CER vs DBMSs

Traditional Database Management Systems (DBMS)s:

I Store data before processing.

I Data updates are relatively infrequent.

I Typically sort data.

I Process data only when explicitly asked by the user.
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CER vs DBMSs

Complex event recognition (CER) systems:

I Process data without storing them.
I Data are continuously updated.

I Data stream into the system in high velocity.
I Data streams are large (usually unbounded).

I No assumption can be made on data arrival order.
I Users install standing/continuous queries:

I Queries deployed once and execute continuously until removed.
I Online reasoning.

I Latency requirements are very strict.

15 / 24



Models of CER Systems

I Data model.

I Time model.

I Pattern language model.

I Processing model.

I Deployment model.
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Pattern Language Model

I CER refers to matching patterns among the incoming streams
of Simple, Derived Events (SDE)s.

I Thus, we need a language for expressing such patterns.

I We present a simple event algebra with common operators.

I Some systems extend this algebra with additional operators.
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A Simple Unifying Event Algebra

ce ::= sde |
ce1 ; ce2 | Sequence
ce1 ∨ ce2 | Disjunction
ce∗ | Iteration
¬ ce | Negation
σθ(ce) | Selection
πm(ce) | Projection
[ce]T2

T1
Windowing (from T1 to T2)

I Sequence: Two events following each other in time.

I Disjunction: Either of two events occurring, regardless of
temporal relations.

I The combination of Sequence and Disjunction expresses
Conjunction (both events occurring).
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A Simple Unifying Event Algebra

ce ::= sde |
ce1 ; ce2 | Sequence
ce1 ∨ ce2 | Disjunction
ce∗ | Iteration
¬ ce | Negation
σθ(ce) | Selection
πm(ce) | Projection
[ce]T2

T1
Windowing (from T1 to T2)

I Iteration: An event occurring N times in sequence, where
N ≥ 0. This operation is similar to the Kleene star operation
in regular expressions, the difference being that Kleene star is
unbounded.

18 / 24



A Simple Unifying Event Algebra

ce ::= sde |
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I Negation: Absence of event occurrence.

I Selection: Select those events whose attributes satisfy a set of
predicates/relations θ, temporal or otherwise.
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sub-events.
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Types of Window

I Logical (time-based) windows: bounds are defined as a
function of time.
I Example: Match a pattern only on the events received in the

last 10 minutes.

I Physical (count-based) windows: bounds depend on the
number of items included in the window.
I Example: Match a pattern only on the last 10 received events.
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Types of Window

Orthogonal classification based on the way bounds move:
I Fixed windows do not move!

I Process the events received between 7/11/2012 and
12/6/2015.

I Landmark windows have a fixed lower bound, while the upper
bound advances every time a new event enters the system.
I Process the events received since 12/6/2015.

I Sliding windows have a fixed size, i.e. both bounds advance
with a pre-defined logical or physical step.
I Process the last 10 received events.
I Process the events received in the last 10’.

I Pane windows: overlapping sliding windows.

I Tumble windows: non-overlapping sliding windows.
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Processing Model

Selection strategies filter the set of matched patterns.

I Assume the pattern α;β and the stream (α, 1), (α, 2), (β, 3).

I The multiple selection strategy produces (α, 1), (β, 3) and
(α, 2), (β, 3).

I The single selection strategy produces either (α, 1), (β, 3) or
(α, 2), (β, 3).

I The single selection strategy represents a family of strategies,
depending on the matches actually chosen among all possible
ones.
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Processing Model

Consumption policies place constraints on the use of events.

I Assume the pattern α;β and the stream (α, 1), (β, 2), (β, 3).

I The zero consumption policy produces (α, 1), (β, 2) and
(α, 1), (β, 3).
I ... assuming a multiple selection strategy.

I The selected consumption policy produces (α, 1), (β, 2).
I (α, 1) is consumed when the pattern is matched (at the arrival

of (β, 2)), and thus no longer available when (β, 3) arrives.
I Once (α, 1) is consumed, it is not considered in ANY other

pattern!
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http://2020.debs.org
http://2019.debs.org


Literature/Sources

Foundations:

I A. Grez et al: A Formal Framework for Complex Event Processing. ICDT 2019:
5:1-5:18.

I A. Grez et al: On the Expressiveness of Languages for Complex Event
Recognition. ICDT 2020: 15:1-15:17.

I A. Artikis et al: Dagstuhl Seminar on the Foundations of Composite Event
Recognition. SIGMOD Rec. 49(4): 24-27, 2020.

Applications:

I N. P. Schultz-Møller et al: Distributed complex event processing with query
rewriting. DEBS 2009.

I A. Artikis et al: Heterogeneous Stream Processing and Crowdsourcing for Urban
Traffic Management. EDBT 2014: 712-723.

I M. Pitsikalis et al: Composite Event Recognition for Maritime Monitoring.
DEBS 2019, pp. 163–174, 2019.

Public datasets:

I DEBS challenges.

I Maritime situational awareness.

I Human activity recognition.
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https://debs.org/grand-challenges/
https://zenodo.org/record/1167595
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

