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Complex Event Recognition (Event Pattern Matching)
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Human Activity Recognition
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Human Activity Recognition
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https://www.youtube.com/watch?v=H-5dXRX-cbU
https://www.youtube.com/watch?time_continue=2&v=sOHy9yOdJtU&feature=emb_logo

Human Activity Recognition

Input Output

340 inactive(idp)

340 p(idy) =(20.88, —11.90)
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340 walking(id3)

340 p(ids) =(24.78, —18.77)
380 walking(ids)

380 p(ids) =(27.88, —9.90)
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380 p(id») =(28.27,—9.66)
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Human Activity Recognition

Input Output

340 inactive(idp) 340 left_object(id, idy)
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Credit Card Fraud Recognition

SDE:
» Credit card transactions from all over the world.
CE:

» Cloned card — a credit card is being used simultaneously in
different countries.

» New high use — the card is being frequently used in
merchants or countries never used before.

» Potential batch fraud — many transactions from multiple
cards in the same point-of-sale terminal in high amounts.
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Credit Card Fraud Recognition

» Fraud must be detected within 25 milliseconds.
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Credit Card Fraud Recognition

» Fraud must be detected within 25 milliseconds.

» Fraudulent transactions: 0.1% of the total number of
transactions.

» Fraud is constantly evolving.

» Erroneous transactions, missing fields.
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Maritime Situational Awareness

I™ MarineTraffic

Source: http://www.marinetraffic.com
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http://www.marinetraffic.com

Maritime Situational Awareness
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Maritime Situational Awareness
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https://www.youtube.com/watch?v=8WaMzzFtGXE&feature=emb_logo
https://www.youtube.com/watch?v=wxmGfpqX9cg&feature=emb_logo
https://www.youtube.com/watch?v=QwVsPZy-0lY&feature=emb_logo
https://www.youtube.com/watch?v=xsATVZWcnaU&feature=emb_logo

Big Data Problem

» Velocity, Volume: 19,000,000 position signals/day at
European scale.
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Big Data Problem

» Velocity, Volume: 19,000,000 position signals/day at
European scale.

» Variety: Position signals need to be combined with other data
streams

» Weather forecasts, sea currents, etc.
» ... and static information
» NATURA areas, shallow waters areas, coastlines, etc.
» Lack of Veracity: GPS manipulation, vessels reporting false
identity, communication gaps.

P Distribution: Vessels operating across the globe.
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Many Other (Big Data) Applications

v

Cardiac arrhythmia recognition.

Identification of opportunities for refueling in fleet
management.

Identification of shipment irregularities inventory management.

Intrusion detection in computer networks.

Traffic congestion recognition and forecasting in smart cities.
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Requirements

P> Expressive representation

P to capture complex relationships between the events that
stream into the system.
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Requirements

P> Expressive representation

P to capture complex relationships between the events that
stream into the system.

» Efficient reasoning

» to support real-time decision-making in large-scale,
(geographically) distributed applications.

» Automated knowledge construction

» to avoid the time-consuming, error-prone manual CE definition
development.

» Reasoning under uncertainty

» to deal with various types of noise.
» Complex event forecasting

P to support proactive decision-making.
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Tutorial Structure

Part |: Introduction

Part Il: Logic-based complex event recognition

>
>
» Part Ill: Automata-based complex event recognition
> Part IV: Complex event forecasting

>

Part V: Topics not covered
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CER vs DBMSs

Traditional Database Management Systems (DBMS)s:
» Store data before processing.
» Data updates are relatively infrequent.
> Typically sort data.

P> Process data only when explicitly asked by the user.
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CER vs DBMSs

Complex event recognition (CER) systems:
» Process data without storing them.

» Data are continuously updated.

» Data stream into the system in high velocity.
» Data streams are large (usually unbounded).

» No assumption can be made on data arrival order.
» Users install standing/continuous queries:

» Queries deployed once and execute continuously until removed.

» Online reasoning.

P Latency requirements are very strict.
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Models of CER Systems

Data model.

Time model.

>
>
> Pattern language model.
» Processing model.

>

Deployment model.
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Pattern Language Model

» CER refers to matching patterns among the incoming streams
of Simple, Derived Events (SDE)s.

» Thus, we need a language for expressing such patterns.
> We present a simple event algebra with common operators.

» Some systems extend this algebra with additional operators.
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A Simple Unifying Event Algebra

ce ::= sde |

cei : ce | Sequence

ce1 V cey | Disjunction

ce* | Iteration

- ce | Negation

og(ce) | Selection

Tm(ce) | Projection

[ce] % Windowing (from Ty to T3)

» Sequence: Two events following each other in time.
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A Simple Unifying Event Algebra

ce ::= sde |

ce; ce | Sequence

ce1 V cey | Disjunction

ce* | Iteration

- ce | Negation

og(ce) | Selection

Tm(ce) | Projection

[ce] % Windowing (from Ty to T3)

» Sequence: Two events following each other in time.

» Disjunction: Either of two events occurring, regardless of
temporal relations.

» The combination of Sequence and Disjunction expresses

Conjunction (both events occurring).
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A Simple Unifying Event Algebra

ce ::= sde |

cer ; ceo | Sequence

ce1 V cey | Disjunction

ce* | Iteration

- ce | Negation

og(ce) | Selection

7Tm(ce) | Projection

[ce] % Windowing (from Ty to T>)

» [teration: An event occurring N times in sequence, where
N > 0. This operation is similar to the Kleene star operation
in regular expressions, the difference being that Kleene star is
unbounded.
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A Simple Unifying Event Algebra

ce .= sde |

cel ; ce | Sequence

ce1 V cey | Disjunction

ce* | Iteration

- ce | Negation

ag(ce) | Selection

Tm(ce) | Projection

[ce] % Windowing (from T; to T3)

» Negation: Absence of event occurrence.
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A Simple Unifying Event Algebra

ce .= sde |

cel ; ce | Sequence

ce1 V cey | Disjunction

ce* | Iteration

- ce | Negation

ag(ce) | Selection

Tm(ce) | Projection

[ce] % Windowing (from T; to T3)

» Negation: Absence of event occurrence.

» Selection: Select those events whose attributes satisfy a set of
predicates/relations 6, temporal or otherwise.
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A Simple Unifying Event Algebra
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A Simple Unifying Event Algebra

ce ::= sde |

cer ; ceo | Sequence

ce1 V cey | Disjunction

ce* | Iteration

- ce | Negation

og(ce) | Selection

7m(ce) | Projection

[ce] % Windowing (from Ty to Tp)

» Projection: Return an event whose attribute values are a
possibly transformed subset of the attribute values of its
sub-events.

» Windowing: Evaluate the conditions of an event pattern

within a specified time window.
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Types of Window

» Logical (time-based) windows: bounds are defined as a
function of time.

» Example: Match a pattern only on the events received in the
last 10 minutes.

» Physical (count-based) windows: bounds depend on the
number of items included in the window.

» Example: Match a pattern only on the last 10 received events.
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Types of Window

Orthogonal classification based on the way bounds move:
» Fixed windows do not move!

> Process the events received between 7/11/2012 and
12/6/2015.
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Types of Window

Orthogonal classification based on the way bounds move:
» Fixed windows do not move!

> Process the events received between 7/11/2012 and
12/6/2015.

» Landmark windows have a fixed lower bound, while the upper
bound advances every time a new event enters the system.

> Process the events received since 12/6/2015.

» Sliding windows have a fixed size, i.e. both bounds advance
with a pre-defined logical or physical step.

» Process the last 10 received events.
» Process the events received in the last 10'.

» Pane windows: overlapping sliding windows.

» Tumble windows: non-overlapping sliding windows.
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Processing Model

Selection strategies filter the set of matched patterns.
» Assume the pattern «; 8 and the stream («, 1), («,2), (8,3).
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Processing Model

Selection strategies filter the set of matched patterns.
» Assume the pattern «; 8 and the stream («, 1), («,2), (8,3).
» The multiple selection strategy produces («, 1), (5,3) and
(a,2), (8,3).
» The single selection strategy produces either (o, 1), (5,3) or
(a,2), (8,3).

» The single selection strategy represents a family of strategies,
depending on the matches actually chosen among all possible
ones.
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Processing Model

Consumption policies place constraints on the use of events.
» Assume the pattern «; 5 and the stream (o, 1), (5,2), (8,3).
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Processing Model

Consumption policies place constraints on the use of events.

» Assume the pattern «; 5 and the stream (o, 1), (5,2), (8,3).
» The zero consumption policy produces («, 1), (5,2) and

(a, 1), (8,3).

P ... assuming a multiple selection strategy.
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Processing Model

Consumption policies place constraints on the use of events.

» Assume the pattern «; 5 and the stream (o, 1), (5,2), (8,3).

» The zero consumption policy produces («, 1), (5,2) and
(a, 1), (B,3).
P ... assuming a multiple selection strategy.
» The selected consumption policy produces («, 1), (8,2).
» (a,1) is consumed when the pattern is matched (at the arrival
of (58,2)), and thus no longer available when (3, 3) arrives.
»> Once (o, 1) is consumed, it is not considered in ANY other
pattern!

22/24



Literature/Sources

Surveys:
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http://2021.debs.org
http://2020.debs.org
http://2019.debs.org

Literature/Sources

Foundations:

» A. Grez et al: A Formal Framework for Complex Event Processing. ICDT 2019:
5:1-5:18.

> A. Grez et al: On the Expressiveness of Languages for Complex Event
Recognition. ICDT 2020: 15:1-15:17.

> A. Artikis et al: Dagstuhl Seminar on the Foundations of Composite Event
Recognition. SIGMOD Rec. 49(4): 24-27, 2020.

Applications:

» N. P. Schultz-Mgller et al: Distributed complex event processing with query
rewriting. DEBS 2009.

> A. Artikis et al: Heterogeneous Stream Processing and Crowdsourcing for Urban
Traffic Management. EDBT 2014: 712-723.

» M. Pitsikalis et al: Composite Event Recognition for Maritime Monitoring.
DEBS 2019, pp. 163-174, 2019.
Public datasets:
»> DEBS challenges.
» Maritime situational awareness.

» Human activity recognition.
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https://debs.org/grand-challenges/
https://zenodo.org/record/1167595
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

