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ABSTRACT
We present a system for online probabilistic event forecasting. We

assume that a user is interested in detecting and forecasting event

patterns, given in the form of regular expressions. Our system

can consume streams of events and forecast when the pattern is

expected to be fully matched. As more events are consumed, the

system revises its forecasts to re�ect possible changes in the state

of the pattern. The framework of Pattern Markov Chains is used

in order to learn a probabilistic model for the pattern, with which

forecasts with guaranteed precision may be produced, in the form

of intervals within which a full match is expected. Experimental

results from real-world datasets are shown and the quality of the

produced forecasts is explored, using both precision scores and two

other metrics: spread, which refers to the “focusing resolution” of

a forecast (interval length), and distance, which captures how early

a forecast is reported.

CCS CONCEPTS
• Theory of computation → Formal languages and automata
theory; Pattern matching; Random walks and Markov chains; • In-
formation systems → Data streaming;
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1 INTRODUCTION
As analytics moves towards a model of proactive computing, the

requirement for forecasting acquires more importance [7]. Systems

with forecasting capabilities can play a signi�cant role in assisting

users to make smart decisions as soon as critical situations are

detected. As an example, consider credit card fraud management.

Automated fraud detection works with patterns consisting of long

sequences of transactions with speci�c characteristics. Being able

to forecast that part(s) of such sequences have high probability of
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leading to a full match (i.e., a fraud) can help an analyst focus on

the involved cards and possibly take a proactive action even before

the system detects the fraud.

The need for event forecasting as a means for proactive behavior

has led to proposals about how forecasting could be conceptualized

and integrated within a complex event processing system. However,

such proposals still remain largely at a conceptual level, without

providing concrete algorithms [6, 10]. On the other hand, there is a

substantial body of work on the related �eld of time-series forecast-

ing [20]. However, time-series analysis is usually applied on numer-

ical data streams, where each element of the stream corresponds

to a measurement of some variable of interest. Moreover, these

measurements are often assumed to take place at time intervals of

constant length. On the contrary, event processing systems need

to be able to additionally deal with symbolic/categorical streams,

where each element might be accompanied by arguments, either

numerical or symbolic, arriving at unspeci�ed timepoints.

We present an implementation of a system for event forecast-

ing. We assume that event patterns are de�ned through regular

expressions. As a �rst step, these patterns are converted to �nite

automata for the purpose of pattern matching. Subsequently, these

automata are converted into Markov chains, which allow for the

construction of a probabilistic model for the initial pattern. The

�nal goal is to be able to forecast, as events arrive at the system,

when the pattern will be fully matched. This is the �rst time that

Pattern Markov Chains are used for online event forecasting. We

show that our system can indeed forecast the completion of pat-

terns in real-world datasets and that, under certain assumptions,

it can do so with guaranteed precision. Moreover, we explore the

quality of the produced forecasts, using three di�erent metrics:

precision score, spread, which refers to how focused a forecast is,

and distance, which captures how early a forecast is reported.

The structure of the paper is as follows: Section 2 presents related

work. In Section 3, the necessary mathematical terminology and

framework are described. Section 4 elaborates on the implementa-

tion details of the system, while Section 5 presents experimental

results on real-world datasets. Finally, in Section 6 we conclude

with a summary and a discussion on future directions of research.

2 RELATEDWORK
Timewewaver is a genetic algorithm that tries to learn from se-

quences of events a set of predictive patterns [26]. Its focus is on

learning patterns that can forecast, as early as possible, rare events,

such as equipment failures. In [4], the forecasting problem is formu-

lated as a classi�cation problem and the goal is again to construct

predictive patterns for rare events. The proposed algorithm con-

structs a matrix of features, �nds a reduced set of features through

Singular Value Decomposition and then trains a set of Support

Vector Machines, one for each target event.



Table 1: Methods for event forecasting (in order of publication date).

Paper Prob. Learning Language Relations Focus

[11] no Syntactical pattern recognition
Chronicles (before, equal, a�er +

numerical time constraints)

Only on timestamps

Expected events

following a partial

match

[26] no Genetic

Sequences (+ OR operator and

wildcard events)

Discrete arguments. Equality and “don’t

care” operators on single events (no

relations between di�erent events).

Rare events

[4] no

Singular Value Decomposition +

Support Vector Machines
Feature matrix

Discrete arguments. Equality on single

events (no relations between di�erent

events).

Rare events

[25] no

Association (predictive) rule

mining

Sets of events (not necessarily in

sequential order)
no Rare events

[16] yes

Frequent episode discovery +

Expectation Minimization
Sequences no Immediately next event

[27] no Decision trees Sequences no Class labels of sequences

[2] no no Directed Acyclic Graphs
(In)equality on single events (no relations

between di�erent events)
Minimal occurrences

[21] yes

Learns probabilistic model. No

pattern mining.

Sequences (+ conjunction and

disjunction)

yes Completion time of pattern

[12] yes

Decision trees + Conditional

Intensity Models
Sequences no Event sequences

[8] no

Frequent episode discovery (starts

from the consequent)
Sequences no

Minimal antecedent, distant

consequent

[29] no Sequential pattern mining Sequences no Online update of patterns

Our approach yes

Learns probabilistic model. No

pattern mining.
Regular expressions no Completion time of pattern

A signi�cant number of forecasting methods comes from the

�eld of temporal pattern mining, where patterns are usually de�ned

either as association rules [1] or as frequent episodes [19]. For exam-

ple, in [25], a framework similar to that of association rule mining is

used in order to identify sets of event types that frequently precede

a rare, target event within a temporal window. In [16], a probabilis-

tic model is presented. The goal is to calculate the probability of

the immediately next event in the stream through a combination

of standard frequent episode discovery algorithms, Hidden Markov

Models and mixture models. Episode rules constitute the frame-

work of [8] as well, where the goal is to mine predictive rules whose

antecedent is minimal (in number of events) and temporally distant

from the consequent. The algorithms presented in [29] focus on

batch, online mining of sequential patterns, without maintaining

exact frequency counts. At any time, the learned patterns (up to

that time) can be used to test whether a pre�x matches the last

events seen in the stream and therefore make a forecast.

In [27], a variant of decision trees is used in order to learn se-

quence pre�xes that are as short as possible and that can forecast

the class label of the whole sequence. The method proposed in [2]

starts with a given episode rule (as a Directed Acyclic Graph) and

the goal is to build appropriate data structures that can e�ciently

detect the minimal occurrences of the antecedent of a rule de�ning

a complex event, i.e., those “clusters” of antecedent events that are

closer together in time. In [12], Piecewise-Constant Conditional

Intensity Models and decision trees are employed in order to learn

a very �ne-grained model of the temporal dependencies among

events in sequences. The learned models can then be used to calcu-

late whether a sequence of target events will occur in a given order

and in given time intervals. One of the earliest methods for fore-

casting is the Chronicle Recognition System, proposed in [5, 11],

where events may be associated with both temporal operators and

with numerical constraints on their timestamps. The system uses

partial matches in order to report when the remaining events are

expected for the pattern to complete. However, such forecasts are

not based on a con�dence or probability metric.

The work most closely related to ours is the one presented in

[21], where Markov chains are also used in order to estimate when

a pattern is expected to be fully matched. This work can also han-

dle some relational constraints. On the other hand, the framework

of Pattern Markov Chains that we use o�ers three main advan-

tages: �rst, it can handle arbitrary regular expressions (and not

only sequential patterns); second, it can handle streams generated

by higher-order processes; third, it automatically calculates the

expected time interval of pattern completion.

Table 1 summarizes the methods presented in this section. Its

second column (Prob.) indicates whether a method employs a prob-

abilistic framework. The third column (Learning) shows whether

(and how) a method can automatically extract such patterns by

reading (part of) the input event stream. The next two columns

(Language and Relations) refer to the expressivity of the (learned

or given) patterns. The entries in the Language column show how

the di�erent events in a pattern may be temporally related. The

Relations column mentions if (and how) arguments of the involved

events may be constrained and related. Finally, the goal of the last

column is to show on what kind of forecasts each method focuses.

The last row shows how our approach compares to other meth-

ods. The advantage of our approach is that it moves beyond simple

sequential patterns and combines the expressive power of regular



expressions with a rigorous probabilistic framework. The focus

in this paper is on estimating when a full match of a given pat-

tern will be detected. Note, however, that this does not exclude

the possibility of incorporating (some of) the extra functionality

of other methods. For example, frequent pattern mining could be a

possible future extension by using the theory of Markov chains in

order to estimate the expected number of occurrences of a pattern.

One of the most important challenges for all methods (including

ours) is relationality, i.e., the ability to handle patterns in which

the arguments of di�erent events in the pattern are related through

some constraints.

3 THEORETICAL BACKGROUND
The problem we address could be stated as follows. Given a stream

of events S and a pattern R, the goal is two-fold. First: �nd the full

matches of R in S . Second: as the stream is consumed by the engine,

forecast the full matches before they are detected by the recognition

engine. For the recognition task, we use �nite automata, whereas

for forecasting, we convert these automata into Markov chains.

We make the following assumptions:

• Patterns are de�ned in the form of regular expressions.

• The selection strategy is either that of contiguity (i.e., events

in a match must be contiguous, without irrelevant events

intervening) or partition-contiguity (i.e., same as contiguity
but stream may be partitioned by a speci�c event attribute).

The counting policy is that of non-overlap (i.e., after a full

match, the automaton returns to its start state). See [28] for

the various selection strategies and [17] for the counting

policies.

• The stream is generated by am-order Markov process.

• The stream is stationary, i.e., its statistical properties re-

main the same. Hence the constructed Markov chain is

homogeneous and its transition matrix remains the same at

all time-points.

• A forecast reports for how many “points” we will have to

wait until a full match. By the term “point”, we refer to

number of transitions of the Markov chain (or equivalently

to number of future events) and not to time-points. Points

are indeed time-points only in cases where a new event

arrives at each time-point.

The theoretical tools presented in this section are based mostly

on the work described in [9, 22, 23] and are grounded in the �eld

of string pattern matching. For a review of this �eld, the reader

may consult [17]. Comprehensive treatments of this subject may

be found in [3, 13, 18].

3.1 Event Recognition
In this section, we brie�y review some of the necessary terminology

[14]. Regular expressions de�ne the so-called regular languages.

Within the context of the theory of regular languages, an alphabet
Σ = {e1, ...,er } is a �nite, non-empty set of symbols. The alphabet

essentially refers to the set of the di�erent event types that may

appear in the stream. A string over Σ is a �nite sequence of symbols

from the alphabet. A language L over Σ is a set of strings over

Σ. One common way to denote languages over Σ is through the

use of regular expressions. If R denotes a regular expression, then

L(R) denotes the language de�ned by R. There are three operators

that are used in regular expressions: union, which is binary and is

denoted by the symbol +, concatenation, again binary, denoted by ·,

and star closure, which is unary, denoted by
∗
. Regular expressions

are inductively de�ned as follows:

• The union of two languages L and M , L ∪M is the set of

strings that belong either to L or M . If R1 and R2 are regular

expressions, then R1 + R2 is also a regular expression and

L(R1 + R2) = L(R1) ∪ L(R2). Union corresponds to the OR
operator in event recognition.

• The concatenation of two languages L and M , L ·M is the

set of strings formed by concatenating strings from L with

strings from M , i.e., L ·M = {s1 · s2,s1 ∈ L,s2 ∈ M }. If R1
and R2 are regular expressions, then R1 ·R2 is also a regular

expression and L(R1 · R2) = L(R1) · L(R2). Concatenation

corresponds to the sequence operator in event recognition.

• The star closure of a language L is L∗ =
⋃
i≥0

Li , where Li

is concatenation of L with itself i times. If R is a regular

expression, thenR∗ is also a regular expression and L(R∗) =
(L(R))∗. Star closure corresponds to the iteration operator

in event recognition.

Finally, the inductive basis for a regular expression is that it may

also be the empty string or a symbol from Σ.

Regular expressions may be encoded by deterministic and non-

deterministic �nite automata (DFA and NFA respectively). A DFA

is 5-tuple A = (Q ,Σ,δ ,q0,F ) where Q is a �nite set of states, Σ a

�nite set of symbols, δ : Q × Σ → Q a transition function from

a state reading a single symbol to another state, q0 ∈ Q a start

state and F ⊂ Q a set of �nal states. A string s = e1e2...ed ∈ Σ
∗

is

accepted by the DFA if δ (q0,s ) ∈ F , where the transition function

for a string is de�ned as δ (q,e1e2...ed ) = δ (δ (q,e1e2...ed−1),ed ).
The de�nition for a NFA is similar with the modi�cation that the

transition function is now δ : Q × Σ→ SQ , where SQ is the power

set of Q .

There exist well-known algorithms for converting a regular ex-

pression R to an equivalent NFA, NFAR , and subsequently to an

equivalent DFA, DFAR [14]. For event recognition, a slight modi�-

cation is required so that the DFA can detect all the full matches in

the stream. The regular expression and DFA that should be used are

Σ∗ · R and DFAΣ∗ ·R respectively so that the DFA may recognize all

the strings ending with R [3, 13, 22]. Figure 1a shows an example

of a DFA, constructed for R = a · c · c (one event of type a followed

by two events of type c) and Σ = {a,b,c} (three event types may be

encountered, a,b and c).

3.2 Event Forecasting
We use Pattern Markov Chains, i.e., convert DFAΣ∗ ·R to an “appro-

priate” Markov chain. The Markov chain should be “appropriate”

in the sense that it could be used in order to make probabilistic

inferences about the run-time behavior of DFAΣ∗ ·R . In the case

where the stream consumed by DFAΣ∗ ·R is assumed to be com-

posed of a sequence of independent, identically distributed (i.i.d.)

events from Σ, then constructing the corresponding Markov chain is

straightforward. As shown in [23], ifX = X1,X2, ...,Xi , ... is the i.i.d.

sequence of input events, then the sequence Y = Y0,Y1, ...,Yi , ...,
where Y0 = q0 and Yi = δ (Yi−1,Xi ) (i.e., the sequence of the states
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Figure 1: DFA and PMCs for R = a · c · c, Σ = {a,b,c} and for
m = 0 andm = 1.

that DFAΣ∗ ·R visits) is a 1-order Markov chain. Such a Markov

chain, associated with a pattern R, is called a Pattern Markov Chain

(PMC). Moreover, the transition probabilities between two states

are simply given by the occurrence probabilities of the event types.

If p,q ∈ Q and Π is the |Q | × |Q | matrix holding these probabili-

ties, then Π(p,q)=P (Xi=e ), if δ (p,e ) = q (otherwise, it is 0). This

means that we can directly map the states of DFAΣ∗ ·R to the states

of a PMC and for each edge of DFAΣ∗ ·R labeled with e ∈ Σ, we

can insert a transition in the PMC with probability P (e ) (assuming

here stationarity, i.e., P (Xi = e ) = P (X j = e ),∀i, j). As an example,

Figure 1b shows the PMC constructed for R = a · c · c , based on the

DFAΣ∗ ·R of Figure 1a (the reason why state 3 has only a self-loop

with probability 1.0 will be explained later).

For the more general case where the process generating the

stream is of a higher orderm ≥ 1, the states of the PMC should be

able to remember the pastm symbols so that the correct conditional

probabilities may be assigned to its transitions. However, the states

of DFAΣ∗ ·R do not hold this information. As shown in [22, 23] we

can overcome this problem by iteratively duplicating those states of

DFAΣ∗ ·R for which we cannot unambiguously determine the lastm
symbols that can lead to them and then convert it to a PMC. From

now on, we will use the notation PMCm
R to refer to the Pattern

Markov Chain of a pattern R and order m. Please, note that, from a

mathematical point of view, the resulting Markov chain is always

of order 1, regardless of the value ofm [23].

As an example, see Figure 1c which shows the resulting PMC1
R

for R = a · c · c . Note that the DFA for the same pattern withm=0,

shown in Figure 1a, has a state which is ambiguous. When in state

0, the last symbol read may be either b or c . For all the other states,

we know the symbol that led to them. Therefore, state 0 must be

duplicated and state 0c is added. Now, when in state 0b , we know

that the last symbol was b, whereas in state 0c , it was c .

Once we have PMCm
R for a user-de�ned pattern R, we may

use the whole arsenal of Markov chain theory to make certain

probabilistic inferences about R. For the task of forecasting, a useful

distribution that can be calculated is the so-called waiting-time

distribution. The waiting-time for a pattern R when its DFAΣ∗ ·R
is in state q is a random variable, denoted byWR (q). It is de�ned

as the number of transitions until its �rst full match, i.e., until the

DFA visits for the �rst time one of its �nal states.

WR (q) = in f {n : Y0,Y1, ...,Yn ,Y0 = q,q ∈ Q\F ,Yn ∈ F }

The DFA is in a non-�nal state q and we are interested in the

smallest time index n > 0 (i.e., �rst time) at which it will visit a �nal

state. Informally, what we want to achieve throughWR (q) is the

following: each time the DFA is in some non-�nal state q (regardless

of whether it is the start state), we want to estimate how many

transitions we will have to wait until it reaches one of its �nal states,

i.e., until a full match is detected. This number of future transitions

may be given to the user as a forecast and it is constantly revised

as more symbols are consumed and the DFA moves to other states.

As a random variable,WR (q) follows a probability distribution and

our aim is to compute this distribution for every non-�nal state q.

We can compute the distribution ofWR (q) through the following

technique. First, we convert each state of PMCm
R that corresponds

to a �nal state f of DFAΣ∗ ·R (f ∈ F , with |F |=k) into an absorbing

state, i.e., a “sink” state with probability of staying in the same

state equal to 1.0 (state 3 in Figure 1). We can then re-organize the

transition matrix as follows:

Π =

(
N C
0 I

)
(1)

where I is the identity matrix of size k × k , corresponding to the

absorbing states. If PMCm
R has a total of l states (k of which are

�nal), then N would be of size (l−k )× (l−k ) and would correspond

to the non-�nal states, holding the probabilities for all the possible

transitions between (and only between) the non-�nal states. Finally,

C is a (l − k ) × k matrix holding the transition probabilities from

non-�nal to �nal states and 0 is a zero matrix of size k × (l −k ). For

example, for the PMC of Figure 1b, the transition matrix would be

the following:

Π =




0

1

2

3




*....
,

P (b) + P (c ) P (a) 0 0

P (b) P (a) P (c ) 0

P (b) P (a) 0 P (c )
0 0 0 1.0

+////
-

where, to the left of the matrix, for each of its rows, we show the

corresponding states (in curly brackets). In this case, l=4, k=1 and

N is of size 3 × 3. Through this re-arrangement, we can use the

following theorem [9]:



Theorem 3.1. Given a transition probability matrix Π of a ho-
mogeneous Markov chain Yt in the form of Eq. (1), the probability
for the time index n when the system �rst enters the set of absorbing
states can be obtained from

P (Yn ∈ A,Yn−1 < A, ...,Y1 < A | ξinit ) = ξTNn−1 (I − N )1 (2)

A denotes the set of absorbing states. 1 is simply a (l−k )×1 vector

with all its elements equal to 1.0. ξinit is the initial distribution on

the states, i.e., it is a vector whose element i holds the probability

that the PMC is in state i at the start. ξ consists of the l −k elements

of ξinit corresponding to non-absorbing states.

In the theory of Markov chains, the current state of the chain is

not always known and must be encoded in such a vector. For exam-

ple, for the PMC of Figure 1b, we could have ξT
init
= (0.2 0.3 0.4 0.1),

meaning that we are in state 0 with probability 20%, in state 1 with

probability 30%, etc. However, in our case, at each point, the current

state of DFAΣ∗ ·R (and therefore of PMCm
R ) is known and therefore

this vector would have 1.0 as the value for the element correspond-

ing to the current state (and 0 elsewhere). ξ changes dynamically

as the DFA/PMC moves among its various states and every state

has its own ξ , denoted by ξq :

ξq (i ) =



1.0 if row i of N corresponds to state q

0 otherwise

A slight variation of Equation 2 then gives the probability of the

waiting-time variable:

P (WR (q) = n) = ξq
TNn−1 (I − N )1

4 IMPLEMENTATION
We implemented a forecasting system, Wayeb, based on Pattern

Markov Chains. Algorithm 1 presents in pseudo-code the steps

taken for recognition and forecasting. Wayeb reads a given pattern

R in the form of a regular expression, transforms this expression

into a NFA and subsequently, through standard determinization

algorithms, the NFA is transformed into a m-unambiguous DFA

(line 1 in Algorithm 1). For the task of event recognition, only this

DFA is involved. At the arrival of each new event (line 7), the engine

consults the transition function of the DFA and updates the current

state of the DFA (line 8). Note that this function is simply a look-up-

table, providing the next state, given the current state and the type

of the new event. Hence, only a memory operation is required.

4.1 Learning the matrix of the PMC
To perform event forecasting, we need to create PMCm

R and esti-

mate its transition matrix. This is achieved by using the maximum-

likelihood estimators for the transition probabilities of the matrix

[18]. Let Π denote the transition matrix of a 1-order Markov chain,

πi,j the transition probability from state i to state j and ni,j the

number of transitions from state i to state j. Then, the maximum

likelihood estimator for πi,j is given by:

π̂i,j =
ni,j∑

k ∈Q ni,k
=

ni,j

ni
(3)

where ni denotes the number of visits to state i . Note also that we

slightly abuse notation in the above formula, by using the symbol

ALGORITHM 1: Wayeb

Input: Stream S , pattern R, orderm, maximum spreadms ,
forecasting threshold Pfc

Output: For each event e ∈ S , a forecast I = (start ,end )
1 DFAΣ∗ ·R = BuildDFA(R,m);

2 PMCm
R = WarmUp(S , DFAΣ∗ ·R);

3 Ftable = BuildForecastsTable(PMCm
R , Pfc ,ms);

4 CurrentState = 0;

5 RunningForecasts = ∅;

6 repeat
7 e = RetrieveNextEvent(S);

8 CurrentState = UpdateDFA(DFAΣ∗ ·R , e);

9 if CurrenState not �nal then
10 I = Ftable (CurrentState);
11 RunningForecasts = I ∪ RunningForecasts
12 else
13 UpdateStats(RunningForecasts);
14 RunningForecasts = ∅;

15 end
16 until true;

Q , which usually refers to the set of states of the DFA, to also denote

the set of states of the PMC.

In order to obtain a realization of the sequence Y of the states

that DFAΣ∗ ·R visits and the observed values π̂obsi,j as estimates for

the transition probabilities, we can use an initial warm-up period

during which a part of the stream is fed into the engine, the number

of visits and transitions are counted and the transition probabilities

are calculated, as per Equation (3) (line 2 in Algorithm 1).

4.2 Building forecasts
After estimating the transition matrix, PMCm

R is used in order to

compute the waiting-time distributions for each non-�nal state.

Based on these waiting-time distributions, we build the forecasts

associated with each state (line 3). A forecast produced by Wayeb

is in the form of an interval I = (start ,end ). The meaning of this

interval is the following: at each point, the DFA is in a certain state.

Given this state, we forecast that the DFA will have reached its �nal

state (and therefore the pattern fully matched) at some future point

between start and end , with probability at least Pfc . The calculation

of this interval is done by using the waiting-time distribution that

corresponds to each state and the threshold Pfc is set beforehand

by the user.

Each interval I that may be de�ned on the waiting-time distri-

bution has an associated probability, given by:

P (I ) =
∑
n∈I

P (WR (q) = n)

where we sum the probabilities of all points n that fall within I
(start ≤ n ≤ end , where n is discrete). We de�ne the set of intervals

Ifc as:

Ifc = {I : P (I ) ≥ Pfc }

i.e., out of all possible intervals, Ifc contains those that have a proba-

bility above the user-de�ned threshold Pfc . Any one of the intervals
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Figure 2: Example of how forecasts are produced. The pattern R is a sequential pattern R = a · b · b · b (one event of type a
followed by three events of type b). Σ = {a,b} (only two event types may be encountered, a and b) and m = 1. No maximum
threshold for spread is set. Pfc = 0.5. For illustration purposes, the x axes stop at 12 future events.

in Ifc may be provided as a forecast. However, a lengthy interval

(e.g., the whole domain of the distribution has probability 100% and

therefore always belongs to Ifc) is less informative than a small one.

Therefore, out of all the intervals in Ifc , we wish to provide the one

that has the smallest length. We de�ne the spread of an interval as:

spread (I ) = end − start

The forecast is therefore given as:

Ibest = argmin

I ∈Ifc
spread (I ) (4)

If more than one interval with the same smallest spread exist,

then we choose the one with the highest probability. From each

waiting-time distribution, we extract the best interval, as de�ned

by Equation (4), using a single-pass algorithm that scans the distri-

bution of each state only once. We may additionally require that

the spread of the forecast interval is no greater than a speci�ed

maximum threshold ms (see relevant input argument in line 3 of

Algorithm 1). In this case, however, it might not be possible to �nd

an interval that satis�es both constraints

P (I ) ≥ Pfc ∧ spread (I ) ≤ ms

and the algorithm will return an empty interval.

An example of how forecasts are produced is shown in Figure 2.

The pattern R is a simple sequential pattern R = a ·b ·b ·b (one event

of type a followed by three events of type b). Also Σ = {a,b} (only

two event types may be encountered, a and b) andm = 1. Therefore,

the distributions are calculated based on the conditional probabili-

ties P (a |a), P (a |b), P (b |a) and P (b |b). No maximum threshold for

the spread has been set in this example. As shown in Figure 2a,

the DFA has 5 states (0-4) and state 4 is the �nal state. When no

event has arrived (or only b events have arrived), the DFA is in its

start state. The waiting-time distribution for this state is shown in

Figure 2b as the red curve. The other distributions are shown as

well, but they are greyed out, indicating that only the red curve

is “activated” in this state. If the user has set Pf c = 0.5, then the

best interval that Wayeb can produce is the one shown above the

distributions (red, dashed line), and this is I = (5,12). Notice that,

as expected, according to the red distribution, it is impossible that

the pattern is fully matched within the next three events (it is in the

start state and needs to see at least 4 events). If an a event arrives,

the DFA moves to its next state, state 1 (Figure 2c), and now another

distribution is “activated” (green curve, Figure 2d). The best interval

is now I = (3,8) and has a smaller spread. The arrival of a b event

activates the blue distribution (Figure 2f) and this time an even

smaller interval is produced, I = (2,4). If a second b event arrives,

the magenta distribution is activated. This distribution has a peak

above 0.5 which is the value of the threshold Pfc and this allows

the engine to produce an interval with a single point I = (1,1).
Essentially, Wayeb informs us that, with probability at least 50%,

we will see a full match of the pattern in exactly 1 event from now.

Note that the calculation of the forecast intervals for each state

needs to be performed only once, since for the same state it results

always in the same interval being computed (assuming stationarity,

as stated in Section 3). Therefore, the online forecasting system

is again composed of a simple look-up-table (Ftable in line 3 of

Algorithm 1) and only memory operations are required.



4.3 Performance and quality metrics
There are three metrics that we report in order to assess Wayeb’s

performance and the quality of its forecasts:

• Precision = # of correct forecasts
# of forecasts . At every new event arrival,

the new state of the DFA is estimated (line 8 of Algorithm

1). If the new state is not a �nal state, a new forecast is re-

trieved from the look-up-table of forecasts (line 10). These

forecasts are maintained in memory (line 11) until a full

match is detected. Once a full match is detected, we can

estimate which of the previously produced forecasts are

satis�ed, in the sense that the full match happened within

the interval of a forecast (line 13). These are the correct

forecasts. All forecasts are cleared from memory after a

full match (line 14).

• Spread = end − start, as described in Section 4.2.

• Distance = start − now. This metric captures the distance

between the time the forecast is made (now) and the earliest

expected completion time of the pattern. Note that two

intervals might have the same spread (e.g., (2,2) and (5,5)
both have Spread equal to 0) but di�erent distances (2 and

5, assuming now = 0).

Precision should be as high as possible. With respect to Spread,

the intuition is that, the smaller it is, the more informative the

interval. For example, in the extreme case where the interval is a

single point, the engine can pinpoint the exact number of events

that it will have to wait until a full match. On the other hand, the

greater the Distance, the earlier a forecast is produced and therefore

a wider margin for action is provided. Thus, “good” forecasts are

those with high precision (ideally 1.0), low spread (ideally 0) and

a distance that is as high as possible (ideal values depend on the

pattern). These metrics may be calculated either as aggregates,

gathering results from all states (in which case average values for

Spread and Distance over all states are reported), or on a per-state

basis, i.e., we can estimate the Precision, Spread and Distance of the

forecasts produced only by a speci�c state of the DFA. We omit

results for Recall (de�ned as percentage of detected events correctly

predicted by at least one forecast), because Recall values are usually

very high and not informative.

4.4 Validation tests with synthetic data
A set of tests was conducted with synthetically generated data for

validation purposes. Streams were generated by a known Markov

process and subsequently the engine was tested on these streams,

for various patterns, forecast thresholds and orders. Figure 3 shows

the aggregate (from all states) precision scores for two patterns,

tested against a stream produced by a 1-order Markov process. The

�rst pattern is the simple sequence R = a ·b · c . The second pattern,

R = a · (a + b)∗ · c , is more complex and involves a star closure
operation on the union of a and b, right after an a event and before

a c event. For each pattern, three di�erent values of the order m of

the PMC were used (0, 1 and 2). The �gures show how the engine

behaves when the forecast threshold is increased and the orderm
of the PMC changes.

Note that the line f (x ) = x is also included in the �gures, which

acts as the baseline performance of the engine. If the Markov chain
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Figure 3: Precision scores for synthetic data, produced by a
1-order Markov process, with Σ = {a,b,c}.

constructed for the pattern under test is indeed correct, then the pre-

cision score should lie above this line (or very close). As described

in Section 4.2, each interval has a probability on the waiting-time

distribution of at least Pf c = x . Therefore, if these waiting-time

distributions are indeed correct, a percentage of at least Pfc of the

intervals will be satis�ed. This also means that the actual preci-

sion score might be signi�cantly higher than the threshold in cases

where the waiting-time distributions have high peaks. For example,

in Figure 2h the single-point interval produced has a probability

of ≈ 70%, hence ≈ 70% of forecasts from that state will be satis�ed,

which is signi�cantly higher than the 50% forecasting threshold.

For both of the tested patterns, when m = 0 (blue curves) the

precision scores are below the baseline performance, indicating that

a PMC without memory is unable to produce satisfactory forecasts

for a 1-order stream. When m is increased to match the order of

the generating process (m = 1, red curves), the precision score does

indeed lie above the baseline. A further increase in the value ofm
does not seem to a�ect the precision score (in Figure 3b, the red and

green curves form = 1 andm = 2 respectively coincide completely

and only the latter is visible).

In some cases, even if we use an incorrect orderm, the precision

score may be above the baseline or even above the line of the correct

orderm. This may happen because incorrect models may produce

“pessimistic” intervals, with high spread and therefore implicitly

take a bigger “chunk” out of the correct distributions. In practice,



however, the spread is constrained for informative forecasts, and

thus models with incorrect order are insu�cient.

5 EXPERIMENTAL RESULTS
We present results from experiments on real-world datasets from

credit card fraud management and maritime monitoring.

5.1 Credit card fraud management
Unlike most academic and industrial work on fraud management,

we performed an evaluation on a real dataset of credit card trans-

actions, made available by Feedzai
1
, our partner in the SPEEDD

project
2
. Each event is a transaction accompanied by several argu-

ments, such as the time of the transaction, the card ID, the amount

of money spent, etc. There is also one boolean argument, indicating

whether the transaction was labeled by a (human) analyst as being

fraudulent or not. The original dataset is highly imbalanced. Only

≈ 0.2% of the transactions are fraudulent. We created a summary of

this original dataset, in which all fraudulent transactions were kept,

but only some of the normal ones, so that the percentage of fraudu-

lent transactions rises to ≈ 30%. The total number of transactions

in this summary dataset was ≈ 1.5 million.

In order to be able to detect fraudulent transactions, companies

use domain expert knowledge and machine learning techniques, so

that they can extract a set of patterns, indicative of fraud. For our

experiments, we used a set of fraud patterns provided by Feedzai,

our partner in the SPEEDD project. We also employed the parition-
contiguity selection strategy, where the ID of a card is used as the

partition attribute. Upon the arrival of a new transaction event, the

ID is checked and the event is pushed to the PMC run that is re-

sponsible for this ID or a new run is created, in case this transaction

is the �rst one for this card.

In Figure 4, the results for the pattern IncreasingAmounts are

presented, for three di�erent values of the order m (1, 2 and 3),

where we have set the maximum allowed spread at the value of 10.

This pattern detects 8 consecutive transactions of a card in which

the amount of money in a transaction is higher than the amount

in the immediately previous transaction (for the same card ID),

i.e., it attempts to detect sequences of transactions with increasing

trends in their amounts. Since such direct relational constraints are

not currently supported by our engine, a pre-processing step was

necessary. During this step, each transaction is �agged as either

being Normal or as one having an IncreasingAmount with respect to

the immediately previous. Therefore, the pattern provided to Wayeb

starts with one Normal transaction, followed by 7 transactions

�agged as IncreasingAmount.
Since, in this dataset, there is ground truth available by fraud

analysts, indicating whether a transaction was fraudulent or not,

besides measuring precision with respect to the events detected

by the PMC, we can also measure precision with respect to those

fraud instances that were both detected and were actually marked

as fraudulent. The red curves in the precision �gures correspond

to precision scores as measured when ground truth is taken into

account. Note, however, that the dataset annotation does not con-

tain information about the fraud type. This means that, when we

1
https://feedzai.com/

2
http://speedd-project.eu/

detect a match of the IncreasingAmounts pattern and the ground

truth informs us that the involved transactions are indeed fraudu-

lent, there is no way to determine whether they are considered as

fraudulent due to a trend of increasing amounts or to some other

pattern. As a result, the red curves could be “optimistic”.

For all three values of the order m, Wayeb can maintain a preci-

sion score that lies above the f (x )=x line (Figures 4a and 4b) or is

very close to it (Figure 4c), i.e., the produced forecasts, compared

against the recognized matches (blue curves), satisfy the thresh-

old constraint. However, whenm=1 orm=2 and Pf c=0.9, Wayeb

cannot �nd intervals whose probability is at the same time above

this threshold and whose spread is below 10, and fails to produce

any forecasts (the sudden drop in the curves indicates forecast un-

availability). By increasing the order to m=3 and taking more past

events into account (Figure 4c), Wayeb can handle this high forecast

threshold (we will come back to this issue at the end of this section).

As compared against the ground truth (red curves), the precision

scores are lower. This precision discrepancy between scores esti-

mated against recognized matches and scores estimated against

ground truth is due to the fact that the fraud pattern is imperfect,

i.e., there are cases with 8 consecutive transactions with Increasing-
Amount which do not actually constitute fraud. It is interesting to

note, though, that the shape of the red curves closely follows that

of the blue ones, indicating that, by using a more accurate pattern,

we would indeed be able to achieve ground truth precision closer

to that of the blue curves for all values of Pfc .
The precision scores of Figures 4a, 4b and 4c are calculated by

combining the forecasts produced by all states of the PMC. In order

to better understand Wayeb’s behavior, a look at the behavior of

individual states could be more useful. Figures 4d – 4l depict image

plots for various metrics against both the forecast threshold and

the state of the PMC. The metrics shown are those of precision (on

the recognized matches), spread and distance. We omit the plots for

ground truth precision because they have the same shape as those

for precision on recognized matches, but with lower values. In each

such image plot the y axis corresponds to the various values of Pfc .
The x axis corresponds to the states of the PMC. Each state has a

unique integer identi�er, starting from 0 (the start state). We group

together states that are duplicates of each other, in cases where

some states are ambiguous. For example, in Figure 4f, states 1
1
, 1

2

and 1
3

are all duplicates of state 1. In this way, the x axis shows how

advanced we are in the recognition process, when moving from one

cluster of duplicates to the next. The black areas in these plots are

“dead zones”, meaning that, for the corresponding combinations

of Pfc and state, Wayeb fails to produce forecasts (i.e., it cannot

guarantee, according to the learned transition probabilities, that the

forecast intervals will have at least Pfc probability of being satis�ed).

On the contrary, areas with light colors are “optimal”, in the sense

that they have high precision, low spread (the colorbar is inverted

in the spread plots) and high distance in their respective plots.

The precision plots (4d, 4e, 4f) show that the more advanced

states of the PMC enter into such dead zones at higher forecast

thresholds. Figures 4g, 4h and 4i show the spread of the forecast

intervals. Two clearly demarcated zones emerge. One is the usual

dead zone (black, top left). The other one (white, bottom right) cor-

responds to forecasts whose spread is 0, i.e., single point forecasts.

https://feedzai.com/
http://speedd-project.eu/


0 0.2 0.4 0.6 0.8 1

Prediction threshold

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

 s
c
o

re

Precision (on recognized)
Precision (on ground truth)
f(x)=x
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(b) Precision (all states),m = 2.
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(c) Precision (all states),m = 3.
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(d) Precision (per state),m = 1.
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(e) Precision (per state),m = 2.
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(f) Precision (per state),m = 3.
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(g) Spread (per state),m = 1.
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(h) Spread (per state),m = 2.
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(i) Spread (per state),m = 3.
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(j) Distance (per state),m = 1.
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(k) Distance (per state),m = 2.
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(l) Distance (per state),m = 3.

Figure 4: Results for the IncreasingAmounts pattern, form = 1,m = 2 andm = 3, and for maximum spreadms = 10.
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(c) Spread (per state).
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(d) Distance (per state).

Figure 5: Results for the pattern Turn · GapStart · GapEnd · Turn withm = 1.

A common behavior for all states is that, as higher values of Pfc are

set to the engine, the spread increases, i.e., each state attempts to

satisfy the constraint of the forecast threshold by taking a longer in-

terval from the waiting-time distribution. On the other hand, those

states that are more advanced can maintain small spread values

for a wider margin of Pfc values. For example, in Figure 4g, state

2 maintains a spread of 0 until Pf c=0.2 whereas state 5 hits this

limit at around Pf c=0.5. Figures 4j, 4k and 4l show image plots for

the distance metric. As can be seen, those regions that have high

precision scores and low spread, also tend to have low distance.

Therefore, there is a trade-o� between these three metrics. For the

case of m=1, good forecasts might be considered those of state 5,

which can maintain a small spread until Pf c=0.5 and whose tem-

poral distance is ≈ 3. By increasingm, one can get good forecasts

that are more “satisfactory”, at the cost of an increased size for the

PMC (a discussion about this cost will be presented shortly). For

example, when m=2, as in Figure 4h, state 5 can produce single

point forecasts for higher values of Pfc (for 0.6 too).

As a �nal comment, we note that increasing the value ofm does

not necessarily imply higher precision scores. In fact, as shown in

Figures 4a, 4b, 4c, the precision score might even decrease. This

behavior is due to the fact that, in general, smaller values ofm tend

to produce more “pessimistic” intervals, with higher spread. For

example, for Pf c=0.8, the precision score for m=1 (Figure 4a) is

in fact higher than when m=2 (Figure 4b). In Figure 4g, we can

see that, form=1, the intervals of state 7 when Pf c=0.8 (the only

state producing forecasts for this value of Pfc) have a high spread

whereas the same state, when m=2, produces intervals with low

spread (Figure 4h). Since “pessimistic”, high-spread intervals take

a bigger “chunk” out of a distribution, their precision scores end

up being also higher. By increasing m, Wayeb can approximate the

real waiting-time distributions more closely and therefore produce

forecasts with lower spread that are closer to the speci�ed threshold.

Therefore, the accuracy curve (blue, dashed curve) starts to coincide

with the f (x )=x line.

5.2 Maritime monitoring
Another real-world dataset against which Wayeb was tested came

from the �eld of maritime monitoring. When sailing at sea, (most)

vessels emit messages relaying information about their position,

heading, speed, etc.: the so-called AIS (automatic identi�cation

system) messages. AIS messages may be processed in order to

produce a compressed trajectory, consisting of critical points, i.e.,

important points that are only a summary of the initial trajectory,

but allow for an accurate reconstruction [24]. The critical points of

interest for our experiments are the following:



• Turn: when a vessel executes a turn.

• GapStart: when a vessel turns o� its AIS equipment and

stops transmitting its position.

• GapEnd: when a vessel turns on its AIS equipment back

again (a GapStart must have preceded).

We used a dataset consisting of a stream of such critical points

from ≈ 6.500 vessels, covering a 3 month period and spanning

the Greek seas. Each critical point was enriched with information

about whether it is headed towards the northern, eastern, southern

or western direction. For example, each Turn event was converted

to one of TurnNorth, TurnEast, TurnSouth or TurnWest events. We

show results from a single vessel, with ≈ 50.000 events.

Figure 5 shows results for the pattern

Turn · GapStart · GapEnd · Turn (5)

where Turn is shorthand notation for

(TurnNorth + TurnEast + TurnSouth + TurnWest)

with+ denoting theOR operator. Similarly forGapStart andGapEnd.

With this pattern, we would like to detect a sequence of movements

in which a vessel �rst turns (regardless of heading), then turns o�

its AIS equipment and subsequently re-appears by turning again.

Communication gaps are important for maritime analysts because

they often indicate an intention of hiding (e.g., in cases of illegal

�shing in a protected area). The aggregate precision score (Figure

5a) is very close to the baseline performance. A look at the per-state

plots reveals something interesting (Figures 5b, 5c, 5d). Note that,

in order to avoid cluttering, we have removed duplicate states from

the per-state plots. In addition, the superscript of each state in the

x axis shows the last event seen when in that state. For example,

the superscript te corresponds to TurnEast, tw to TurnWest, tn to

TurnNorth and ts to TurnSouth (states 3, 7, 9 and 11 respectively).

Similarly for GapStart for which superscripts start with дs (states

13–16) and for GapEnd (дe and states 17–20). These per-state plots

show that there is a distinct “cluster” of states (13–17) which ex-

hibit high precision scores for all values of Pfc (Figure 5b) and small

spread for most values of Pfc (Figure 5c). Therefore, these states

constitute what might be called “milestones” and a PMC can help

in uncovering them. By closer inspection, it is revealed that states

13–16 are visited after the PMC has seen one of the GapStart events

(we remind that GapStart is a disjunction of the four directional sub-

cases). Moreover, GapEnd events are very likely to appear in the

input stream right after a GapStart event, as expected, since during

a communication gap (delimited by a GapStart and a GapEnd), a

vessel does not emit any messages. State 17, which also has a similar

behavior, is visited after a GapEndNorth event. Its high precision

scores are due to the fact that, after a GapEnd event, a Turn event

is very likely to appear. It di�ers from states 13–16 in its distance,

as shown in Figure 5d, which is 1, whereas, for states 13–16, the

distance is 2. On the other hand, states 18–20, which correspond

to the other 3 GapEnd events, fail to produce any forecasts. The

reason is that there are no such GapEnd events in the stream, i.e.,

whenever this vessel starts transmitting again after a Gap, it is

always headed towards the northern direction.

Figure 6 shows results for the pattern

TurnNorth · (TurnNorth + TurnEast)∗ · TurnSouth

This pattern is more complex since it involves a star closure opera-

tion on a nested union operation. It attempts to detect a rightward

reverse of heading, in which a vessel is initially heading towards

the north and subsequently starts a right turn until it ends up head-

ing towards the south. Such patterns can be useful in detecting

maneuvers of �shing vessels.

Figure 6 shows that a model withm=1 is unable to approximate

well-enough the correct waiting-time distribution. Increasing the

order tom=2 improves the precision score, but it still remains under

the baseline performance. One could attempt to further increase the

value ofm, but this would substantially increase the cost of building

the PMC. Form = 1, the generated PMC has ≈ 30 states. Form = 2,

this number rises to ≈ 600 and the cost of creating an unambiguous

DFA and then its corresponding PMC rises exponentially. When

stationarity is assumed (as in our case) and the model does not need

to be updated online, an expensive model can be tolerated.
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Figure 6: Results for the pattern
TurnNorth · (TurnNorth + TurnEast)∗ · TurnSouth.

5.3 Commentary on throughput
So far, we have focused on precision and quality metrics. For online

event forecasting, throughput (de�ned as
# of events consumed
total execution time ,

where execution time refers to the repeat loop in Algorithm 1)

is another important metric. We omit presenting detailed results

about throughput, since Wayeb exhibits a steady behavior. For the

maritime use case and the more complex heading reversal pattern,

throughput is ≈ 1.2 × 106 events/sec and remains steady for both

m=1 andm=2, whereas the event rate of the input stream is much

lower. The experiments for the maritime use case were run on

a 64-bit Debian machine, with Intel(R) Core(TM) i7-4770 CPU @

3.40GHz processors, and 16GB of memory. This high throughput

number is due to the fact that the online operations of Wayeb

consist mostly of memory operations (see Section 4). Even when

the size of the PMC grows from ≈ 30 to ≈ 600, there is minimal

overhead in accessing and maintaining the larger look-up-tables

of the latter PMC. This independence from m also holds when

multiple runs are employed, as in the credit card fraud use case (for

the partition − contiguity selection strategy). Even in this case, only

a single PMC is created (therefore, only one table for the DFA and

one for the forecasts) and the di�erent runs simply consult this PMC



through a reference to it. Throughput for the IncreasingAmounts
fraud pattern is ≈ 1.2 × 105 events/sec (in total, 3 di�erent patterns

were tested), whereas the event rate at peak times reaches up to

≈ 1000 events/sec. Due to privacy reasons, experiments on the

fraud dataset were run in Feedzai’s premises and thus on di�erent

hardware: a 64-bit Ubuntu machine, with Intel(R) Core(TM) i7-3770

CPU @ 3.40GHz processors and 32GB of memory. The multiple

runs that need to be created, accessed and maintained with this

dataset (on the contrary, for the maritime use case, only a single

run is created) incur a signi�cant increase in the execution time.

6 SUMMARY & FUTUREWORK
We presented Wayeb, a system that can produce online forecasts

of event patterns. This system is not restricted to sequential pat-

terns, but can handle patterns de�ned as regular expressions. It

is also probabilistic and its forecasts can have guaranteed preci-

sion scores, if the input stream is generated by a Markov process.

We have shown that it can provide useful forecasts even in real-

world scenarios in which we do not know beforehand the statistical

properties of the input stream. Moreover, the trade-o� between

precision score and the quality of the produced forecasts has been

explored. Wayeb can also be used to uncover interesting probabilis-

tic dependencies among the events involved in a pattern (pattern

“milestones”), which can be informative in themselves or could pos-

sibly be used for optimization purposes in algorithms based on

frequency statistics [15].

There are several directions for future research. One of them con-

cerns relationality, i.e., our system should be able to handle directly

constraints between the arguments of di�erent events within a pat-

tern. In this paper we focused on the non-overlap counting policy

and the contiguity selection strategy. We have also implemented

the overlap policy, but did not discuss it due to space limitations.

With respect to the more �exible selection strategies (like skip-till-
any-match), the usual way to deal with them is to clone runs of

the automaton online, when appropriate. We could have followed

a similar cloning approach as well and produce forecasts for each

run. However, it is doubtful whether individual forecasts made

by a multitude (possibly hundreds) of concurrently existing runs

would be useful to a user. Some form of aggregate forecasting (e.g.,

number of full matches expected within the next N events) could

be more informative. We intend to pursue this line of research.

Another useful functionality would be that of assessing whether

the model should be updated online, once we drop the stationarity

assumption, and how this could be done e�ciently.
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