
[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 31 31–65

Executable specification of open
multi-agent systems

Alexander Artikis, Institute of Informatics and Telecommunications,
National Centre for Scientific Research “Demokritos”, Athens 15310,
Greece; Electrical & Electronic Engineering Department, Imperial College
London, SW7 2BT, UK
E-mail: a.artikis@acm.org

Marek Sergot, Department of Computing, Imperial College London,
SW7 2BZ, UK
E-mail: mjs@doc.ic.ac.uk

Abstract
Multi-agent systems where the agents are developed by parties with competing interests, and where there is no
access to an agent’s internal state, are often classified as ‘open’. The members of such systems may inadvertently fail
to, or even deliberately choose not to, conform to the system specification. Consequently, it is necessary to specify
the normative relations that may exist between the members, such as permission, obligation, and institutional
power. We present a framework being developed for executable specification of open multi-agent systems. We
adopt a bird’s eye view of these systems, as opposed to an agent’s perspective whereby it reasons about how it
should act. This paper is devoted to the presentation of various examples from the NetBill protocol formalised in
terms of institutional power, permission and obligation. We express the system specification in the Event Calculus
and execute the specification by means of a logic programming implementation. We also give several example
formalisations of sanctions for dealing with violations of permissions and obligations. We distinguish between an
open multi-agent system and the procedure by which an agent enters and leaves the system. We present examples
from the specification of a role-management protocol for NetBill, and demonstrate the interplay between such a
protocol and the corresponding multi-agent system.

Keywords: multi-agent system, norm, norm-governed system, event calculus, action language, executable specifica-
tion.

1 Introduction

A multi-agent system (MAS) is often classified as ‘open’ when there is no guarantee of
benevolent behaviour and there is no access to an agent’s internal state. Examples of open
MAS of this sort are electronic markets, virtual organisations and digital right management
applications. It has been argued that many practical applications in the future will be realised
in terms of open MAS. Not surprisingly, there is a growing interest in the MAS community
in these systems ([18, 55, 70, 72, 77, 85, 86] are but a few examples). Rosenschein and Zlotkin
give the following description of this type of MAS:

‘‘The agents that we are interested in looking at are heterogeneous, self-motivated
agents. [..] Agents do not necessarily have a notion of global utility. Each agent operat-
ing from your machine is interested in what your idea of utility is and in how to further
your notion of goodness. [..] Agents do not act benevolently unless it’s in their interest

Vol. 18 No. 1, © The Author 2009. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/jigpal/jzp071

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 32 31–65

32 Executable specification of open multi-agent systems

to do so. They do not necessarily share information, they do not necessarily do things
that other agents ask them to do unless they have a good reason for doing so.’’ [60,
p.354]

We here consider a MAS as open if it exhibits the following characteristics:

• The internal architectures of the members are not publicly known.
• Members do not necessarily share a notion of global utility.
• The behaviour and the interactions of the members cannot be predicted in advance.

The first of these characteristics implies that an open MAS may be composed of agents
with different internal architectures. Therefore, we will treat open MAS as heterogeneous
ones. Moreover, there is no direct access to an agent’s mental state and so we can only
make inferences about that state. The second characteristic implies that the members of
an open MAS may fail to, or even choose not to, conform to the system specifications in
order to achieve their individual goals (this is what Minsky and Ungureanu [49] referred to
as inadvertent and malicious violations respectively). And further, open MAS are always
subject to unanticipated outcomes in their interactions [35].
Often in the literature open MAS are those where agents may enter or leave the system at
any time (see, for example, [35, 59, 77, 85]). Usually, agents enter or leave a system by partic-
ipating in a role-management protocol, that prescribes the ways for applying for membership,
withdrawing from a system, and so on. The specification of a role-management protocol is
application-specific. Our definition of a MAS as open is irrespective of the protocols that
specify the ways by which agents enter or leave the system.
In this paper we are concerned with presenting executable specifications of open MAS.

We adopt a bird’s eye view of these systems, as opposed to an agent’s own perspective
whereby it reasons about how it should act. Moreover, we view open MAS as instances
of normative systems [38]. A feature of this type of system is that actuality, what is the
case, and ideality, what ought to be the case, do not necessarily coincide. Therefore, we
specify what is permitted, prohibited and obligatory. Moreover, we explicitly represent the
institutional powers [39, 62] of the agents, and maintain the standard, long established
distinction between institutional power, permission and physical capability. Institutional
power refers to the standard feature of any normative system whereby designated agents,
when acting in specified roles, are empowered by an institution to create relations or states
of affairs of special significance within the institution (such as when an agent is empowered
by an institution to award a contract and thereby create a set of normative relations between
the contracting parties).
In order to illustrate the concept of institutional power and the distinction between insti-
tutional power, permission and physical capability, this paper is devoted to the presentation
of various examples formalised in terms of these concepts. In previous publications we were
concerned with other aspects of normative systems; in [3] we presented a comparison of action
formalisms for open MAS specification while in [2] we presented a specification of a dispute
resolution protocol. In these previous papers we discussed the process of role-management
but did not formalise it. Here we present an example specification of a protocol for man-
aging applications for membership in an open MAS, withdrawal, etc, and demonstrate the
interplay between such a protocol and the corresponding MAS.
We encode specifications of open MAS in executable action languages. In this paper we
employ the Event Calculus (EC) [41], a simple and flexible formalism that is very easily

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 33 31–65

Executable specification of open multi-agent systems 33

and efficiently implemented for an important class of computational tasks. It thus provides
a practical means of implementing an executable system specification.
The remainder of this paper is organised as follows. First, we present an example that we
will use throughout the paper in order to illustrate the way we develop executable specifi-
cations of open MAS. This example is a variation of the NetBill protocol [73] that is used
for buying and selling digital information on the Internet. Second, we describe the version
of the Event Calculus that we employ to specify NetBill. Third, we present our specifica-
tion of NetBill, which is a formalisation of the social constraints (or social laws) of NetBill
expressed in terms of the institutional powers, permissions and obligations of the partici-
pants, as well as the sanctions that may be applied in order to deal with the violation of
the social constraints. Fourth, we present an example specification of a role-management
protocol for NetBill. In the penultimate section of the paper we present an execution of the
specifications of NetBill and the associated role-management protocol. Finally, we compare
our work to related approaches in the literature, and outline directions for further research.

2 Running Example: The NetBill Protocol

We employ a variation of the NetBill protocol [73] in order to demonstrate the way we con-
struct executable specifications of open MAS. Figure 1 shows the participants and a run of
the protocol. Initially, the consumer requests a quote for a set of goods and the merchant
replies with the quote. Then, the consumer accepts the quote. Following the quote accep-
tance, the merchant sends the goods to an Intermediation Server (IS), while the consumer
constructs an Electronic Payment Order (EPO) describing the transaction, and sends it to IS.

FIG. 1. A Variation of the NetBill Payment Protocol.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 34 31–65

34 Executable specification of open multi-agent systems

Finally, IS takes care of the transfer of funds and sends a receipt to the merchant and the
consumer — the consumer’s receipt is accompanied by the merchant’s goods.
IS acts as a trusted third party; it may ‘cancel’ a transaction, that is, refrain from trans-
ferring the funds to the merchant’s account and sending the goods to the consumer, if the
consumer’s EPO does not clear or the merchant’s goods are not of the agreed quality.
Clearly NetBill is an open MAS; it is composed of heterogeneous agents that have con-
flicting goals and act competitively. Actuality may not coincide with ideality: a merchant
may over-advertise its goods, a consumer’s EPO may not clear, and so on. Therefore, it is
necessary to specify the rules expressing what constitutes ideal behaviour, and what are the
consequences of deviating from such behaviour. The rules must define additional facts of
special significance to NetBill, such as when a contract is established between two parties,
when an agent is eligible to participate in NetBill, and so on. In the following sections we
will present an example specification of NetBill addressing these issues.
To simplify the presentation and to keep the example manageable, we omit detailed dis-
cussion of the procedure that is followed to transfer the funds to the merchant’s account,
and the actions of IS in general (see the dotted lines in Figure 1). In the following sections we
will focus on the consumers’ and the merchants’ actions, which are represented in Figure 1
by the continuous lines.

3 The Event Calculus

We have been using three action languages with direct routes to implementation to express
protocol specifications:

1. The Event Calculus (EC) [41], a formal, intuitive and well-studied action language (see
[3] for an EC specification of a contract-net protocol).

2. The C+ language [32], a formalism with an explicit transition systems semantics (see
[2] for a C+ specification of a dispute resolution protocol).

3. The nC+ language [14, 65], an extended form of C+ designed specifically for represent-
ing simple normative and institutional concepts (see [64] for a nC+ specification of a
simple resource sharing protocol).

Each formalism has its advantages and disadvantages for open MAS specifications. (See
[3] for a comparison of their relative strengths.) In this paper we will use EC because an
EC implementation (in terms of logic programming) has proved to be more efficient than a
C+ or nC+ implementation (employing the Causal Calculator, a software tool supporting
computational tasks regarding the C+ language) for the provision of ‘run-time services’.
(A description of such services is presented in Section 6.)
EC, introduced by Kowalski and Sergot [41], is a formalism for representing and reasoning
about actions or events and their effects in a logic programming framework. In this section
we briefly describe the version of the EC that we employ. EC is based on a many-sorted
first-order predicate calculus. For the version used here, the underlying time model is linear
and it may include real numbers or integers. Where F is a fluent (a property that can
have different values at different points in time), the term F=V denotes that fluent F has
value V . Boolean fluents are a special case in which the possible values are true and false.
Informally, F=V holds at a particular time-point if F=V has been initiated by an action
at some earlier time-point, and not terminated by another action in the meantime.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 35 31–65

Executable specification of open multi-agent systems 35

TABLE 1. Main Predicates of the Event Calculus.
Predicate Meaning

happens(Act, T ) Action Act occurs at time T
initially(F=V ) The value of fluent F is V at time 0
holdsAt(F=V , T ) The value of fluent F is V at time T
holdsFor(F=V ,Intervals) The value of fluent F is V during Intervals
initiates(Act, F=V , T ) The occurrence of action Act at time T

initiates a period of time for which
the value of fluent F is V

terminates(Act, F=V , T ) The occurrence of action Act at time T
terminates a period of time for which
the value of fluent F is V

An action description in EC includes axioms that define, among other things, the action
occurrences (with the use of happens predicates), the effects of actions (with the use of
initiates and terminates predicates), and the values of the fluents (with the use of initially,
holdsAt and holdsFor predicates). Table 1 summarises the main EC predicates. Variables
(starting with an upper-case letter) are assumed to be universally quantified unless otherwise
indicated. Predicates, function symbols and constants start with a lower-case letter.
The domain-independent definition of the holdsAt predicate is as follows:

holdsAt(F=V , T )←
initially(F=V ),
not broken(F=V , 0, T )

(1)

holdsAt(F=V , T )←
happens(Act, T ′),
T ′<T ,

initiates(Act, F=V , T ′),
not broken(F=V , T ′, T )

(2)

According to axiom (1) a fluent holds at time T if it held initially (time 0) and has not
been ‘broken’ in the meantime, that is, terminated between times 0 and T . Axiom (2)
specifies that a fluent holds at a time T if it was initiated at some earlier time T ′ and
has not been terminated between T ′ and T . not represents negation by failure [11]. The
domain-independent predicate broken is defined as follows:

broken(F=V , T1, T3)←
happens(Act, T2),
T1≤T2, T2<T3,
terminates(Act, F=V , T2)

(3)

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 36 31–65

36 Executable specification of open multi-agent systems

F=V is ‘broken’ between T1 and T3 if an event takes place in that interval that termi-
nates F=V . A fluent cannot have more than one value at any time. The following domain-
independent axiom captures this feature:

terminates(Act, F=V , T )←
initiates(Act, F=V ′, T ),
V �=V ′

(4)

Axiom (4) states that if an action Act initiates F=V ′ then Act also terminates F=V , for
all other possible values V of the fluent F . We do not insist that a fluent must have a value
at every time-point. In this version of EC, therefore, there is a difference between initiating
a Boolean fluent F=false and terminating F=true: the first implies, but is not implied by,
the second.
We make two further comments regarding this version of EC. First, axioms (1)–(4) specify
that a fluent does not hold at the time it was initiated but does hold at the time it was
terminated. This is the usual convention in EC. Second, in addition to axioms (1)–(4),
there are further domain-independent axioms defining the holdsFor predicate, which is the
predicate for computing the (maximal) intervals in which a fluent holds. To save space we
do not show any holdsFor outputs in the example runs shown later in Section 6 and for this
reason we omit the definition of holdsFor.
In the following sections we present a logic programming implementation of an Event
Calculus action description, called EClp, expressing the NetBill specification.

4 Social Constraints

We specify social constraints (social laws) at design-time; furthermore, we assume that their
specification does not change at run-time. There are several advantages to specifying social
constraints at design-time [51]:

• Since the system designers’ design-time resources are usually greater than the agents’
run-time resources, some problems may be better solved by the designers at design-time
than they would be solved at run-time by the agents.
• In case ‘effective’ social constraints are difficult to specify, the environment may be mod-
ified (at design-time) in a way that will simplify the task of devising social constraints
(for example, adding traffic lights in a two-dimensional grid where mobile robots move).
• A design-time specification of social constraints may keep the agents from arriving at
many of the conflicts to begin with. If the agents are aware of the social constraints
before the commencement of the execution of an open MAS, they may produce their
strategies according to the constraints and, therefore, avoid run-time conflicts.

Moreover, the existence of social constraints before the commencement of agent activities
facilitates agents to decide whether or not to enter an open MAS. Similarly, agent designers
may decide whether or not to deploy their agents in an open MAS based on the specification
of social constraints. A framework for ‘dynamic specifications’, that is, specifications devel-
oped at design-time but modifiable at run-time, is an area of current work and is discussed
in the last section of the paper.
We view open MAS from an external perspective (also referred to as meta-perspective by

Werner [81, p.7]). Our specification is based only on externally observable states of affairs and

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 37 31–65

Executable specification of open multi-agent systems 37

not on the internals of the member agents. Furthermore, the specification of social constraints
refers to the externally observable behaviour of the agents and not to the way agents reason
about their behaviour. Apart from these externally specified constraints, agents (usually)
have to comply with a different set of constraints, that is, a set of internal constraints
imposed on them by their designers (say). These are part of the agents’ architectures and
may be in conflict with the social (external) constraints. In the NetBill protocol, for instance,
a merchant may be permitted to present a quote that is associated with any possible price.
Such a permission is externally specified, as part of the NetBill protocol. According to its own
strategy, however, as determined by its designers, a merchant agent may not be ‘permitted’
to present a quote with a price that is less than the cost of the associated goods.
Note that agents may not be aware of all externally specified constraints of a MAS. The
issue of making available the constraints of a MAS to the members is discussed in Section 6.
We maintain the standard, in the study of social and legal systems, long established
distinction between permission, physical capability and institutional power. Jones and Sergot
[39] cite Makinson [44] to illustrate the distinction between these concepts:

‘‘[C]onsider the case of a priest of a certain religion who does not have permission,
according to instructions issued by the ecclesiastical authorities, to marry two people,
only one of whom is of that religion, unless they both promise to bring up the children
in that religion. He may nevertheless have the [institutional ] power to marry the couple
even in the absence of such a promise, in the sense that if he goes ahead and performs
the ceremony, it still counts as a valid act of marriage under the rules of the same church
even though the priest may be subject to reprimand or more severe penalty for having
performed it.’’ [44, p.409]

Jones and Sergot further point out that ‘‘one may imagine circumstances in which it is not
practically possible for the priest to marry the couple (because, say, he is sick or otherwise
incapacitated), although he is still empowered to do so’’ [39, p.431].
Accordingly, we present a four-level specification of the social constraints of an open MAS,
that expresses:

• the physical capabilities (what is practically possible),
• institutional powers,
• permissions, prohibitions and obligations of the agents,
• the sanctions and enforcement strategies that deal with the performance of forbidden
actions and non-compliance with obligations.

These levels of specification are presented in the following sections.
Recall that we express MAS specifications by means of EC action descriptions. The main
actions and fluents of the EC action description expressing the NetBill specification are
displayed in Tables 2 and 3 respectively. Note that we have simplified slightly. In general it
could be that consumer C has several concurrent requests/contracts pending at any time
to purchase goods GD at price P from merchant M , and we should add another parameter
(a transaction ID) to each action and fluent in order to identify uniquely which specific
request/purchase is being referred to in acceptance/payment actions. For simplicity we will
ignore this minor complication. It is easily fixed (by adding a transaction ID), and is not
important for the purposes of this paper.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 38 31–65

38 Executable specification of open multi-agent systems

TABLE 2. Main Actions of the NetBill Specification.
Action Textual Description

request_quote(C ,M ,GD) consumer C requests a quote from merchant M
concerning goods described as GD

present_quote(M ,C ,GD,P) merchant M presents a quote to consumer C
concerning goods described as GD at price P

accept_quote(C ,M ,GD,P) consumer C accepts a quote from merchant M
concerning goods described as GD at price P

send_EPO(C ,IS ,GD,P) consumer C sends to the Intermediation Server IS
an electronic payment order of amount P concerning
the contract on goods described as GD

send_goods(M ,IS ,GD,G) merchant M sends to the Intermediation Server IS
the goods G concerning the contract on GD

TABLE 3. Main Fluents of the NetBill Specification.
Boolean Fluent Textual Description

can(Ag,Act) agent Ag is capable of performing Act
pow(Ag,Act) agent Ag is empowered to perform Act
per(Ag,Act) agent Ag is permitted to perform Act
obl(Ag,Act) agent Ag is obliged to perform Act
request(M ,C ,GD) consumer C requested a quote from merchant M

regarding goods described as GD
contract(M ,C ,GD,P) a contract has been established between merchant M and

consumer C regarding goods described as GD at price P
suspended(Role,Ag) agent Ag is suspended from acting as a Role
violation(Role,Ag) agent Ag acting in Role violated

a particular social constraint

Non-Boolean Fluent Domain Textual Description

bank_account(Ag) Z×N agent Ag’s current and available balance
role_of (Ag) P({consumer,

merchant,
iServer}) the roles that agent Ag occupies

quote(M ,C ,GD,P) N the expiry time of merchant M ’s valid
quote to consumer C regarding goods
described as GD at price P

ad_count(M ,C ) Z the number of unsolicited quotes
presented to consumer C by merchant M

suspendedUntil(Role,Ag) N agent Ag is suspended from acting as
a Role until some future time

4.1 Physical Capability
We begin by specifying all the possible events that can occur in the system being modelled
and thus all of its possible behaviours/evolutions (‘runs’ or ‘traces’ in other terminology),

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 39 31–65

Executable specification of open multi-agent systems 39

including in particular the possible actions that can be performed by each agent. We refer to
these as the ‘physical capabilities’ of the agents. We specify separately (later sections) which
of these possible actions are permitted, obligatory, or prohibited, and which have special
significance or meaning when we specify ‘powers’.
The NetBill example, or rather the fragment we are presenting in detail, has comparatively
few ‘physical capability’ constraints. However, for the sake of a concrete example, consider
the following possibility.
Suppose that in the system being modelled there is some kind of mechanism in the interface
used by the consumer which constrains the Electronic Payment Orders (EPO)s it is able to
compose and transmit. This interface, let us suppose, enables a consumer to send an EPO
if it has the available funds, but otherwise not (say).

Example 1 (Physical Capability) A consumer can send an EPO if it has the available funds:

holdsAt(can(C ,send_EPO(C ,IS ,GD,P))=true, T )←
holdsAt(bank_account(C )=(Bal,Av), T ),
Av≥P

(5)

Physical capability is expressed with the can fluent (see Table 3). bank_account(C )=
(Bal,Av) records consumer C ’s current balance Bal (the total amount currently in the
account) and available balance Av (the current balance plus overdraft protection funds).
Clearly such information need not be available to the other NetBill participants. Axiom (5)
expresses that an agent C can send an EPO of amount P if its available balance Av is
greater or equal to P.
The representation of physical capability in the EC specification includes further
(application-specific) axioms of the following form:

incons(physical_capability(send_EPO(C ,IS ,GD,P)))←
happens(send_EPO(C ,IS ,GD,P), T ),
holdsAt(can(C ,send_EPO(C ,IS ,GD,P))= false, T )

(6)

Here incons is a predicate expressing a type of ‘narrative inconsistency’. Every narrative,
that is, every record of events that have occurred and their times of occurrence, is first
checked for consistency by evaluating the query incons(Type). Here Type is a variable that
will return a term representing the type of inconsistency if one is present. A narrative of
events is ‘inconsistent’ if it includes actions that are not physically possible (at a particular
time).
As another example, suppose that a consumer C is always able to compose and transmit a
send_EPO message (there is no mechanism constraining these actions in the system being
modelled), but there is a mechanism in the Intermediation Server’s implementation that
enables it to transfer the amount P only when C ’s available balance is greater or equal
to P. Or again, to take a different example, suppose there is no such mechanism in the
Intermediation Server’s implementation: the Intermediation Server is able to transfer any
amount P (or any amount P within specified bounds) but is permitted to do so only when
C ’s available balance is greater or equal to P. We discuss the specification of permissions
in a later section.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 40 31–65

40 Executable specification of open multi-agent systems

The specification of what we are calling ‘physical capability’ abstracts away some detail.
We are not modelling here the details of how messages are actually transmitted, the relia-
bility of the communication channels, the precise mechanisms by which messages are con-
structed are sent, and so on. The specification of ‘physical capability’ is intended to abstract
away implementation and other details that we do not wish to model. �

For the NetBill example used as the running example in this paper we impose no further
constraints on the capability to perform the remaining protocol actions.
In order to express the effects of a protocol action we need to distinguish between the
act of bringing about a state of affairs (such as accepting an offer) and the act by means
of which that state of affairs is brought about (such as sending a message with a particular
form of words). Accepting a quote, by means of (say) sending a TCP/IP message, does not
necessarily create a ‘contractual obligation’ (in a sense that will be made clear later) on the
recipient to deliver the goods. It is only if the acceptance of the quote is signalled by an
agent with the institutional power to accept the quote that the recipient will be obliged to
deliver the goods. The same act performed by an agent without this power has no effect
on the recipient’s obligations, though it may have other effects. An account of institutional
power is presented next.

4.2 Institutional Power and Valid Actions
The term institutional (or ‘institutionalised’) power refers to the characteristic feature of
an institution, legal system, formal organisation, or informal grouping, whereby designated
agents, often when acting in specific roles, are empowered to create or modify facts of special
significance in that institution, institutional facts [62, 63], usually by performing a specified
kind of act (such as when a priest performs a marriage, or an agent signs a contract, or the
chairperson of a formal meeting declares the meeting closed).
According to the account given by Jones and Sergot [39], institutional power can be seen
as a special case of a more general phenomenon whereby an action, or a state of affairs
A, because of the rules and conventions of an institution, counts, in that institution, as an
action or state of affairs B (such as when sending a letter with a particular form of words
counts as making an offer, or raising a hand counts as making a bid at an auction).
In some circumstances it is unnecessary to isolate and name all instances of the acts
by means of which agents exercise their institutional powers. In the NetBill protocol, for
example, it is convenient to say that ‘the consumer c accepted a quote q (issued by merchant
m)’ and let the context disambiguate whether we mean by this that the consumer performed
an action, such as sending a message of a particular form via a TCP/IP socket connection,
by means of which the acceptance of the quote is signalled, or whether the consumer actually
issued an acceptance, in the sense that a contract is established between the consumer and
the merchant. We disambiguate in these circumstances by attaching the label ‘valid’ to act
descriptions. We say that an action is valid at a point in time if and only if the agent that
performed that action had the institutional power to perform it at that point in time.
When we say that ‘the consumer c accepted a quote q (issued by merchant m)’ we mean,
by convention, merely that c signalled its intention to accept q; this act was not necessarily
effective in establishing a contract between c and m. In order to say that a contract has
been established, we say that the action ‘consumer c accepted a quote q’ was valid: not only
did c signal its intention to accept q, but also c was empowered to accept q at that time.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 41 31–65

Executable specification of open multi-agent systems 41

Similarly, invalid is used to indicate lack of institutional power: when we say that the action
‘consumer c accepted a quote q’ is invalid we mean that c signalled its intention to accept
q but did not have the institutional power to accept that quote at that time (and so the
attempt to establish a contract was not successful).
We are aware that this use of the term ‘valid’ is not ideal and may be inappropriate in some
contexts. Terms such as ‘valid’, ‘in order’, ‘proper’ (and ‘invalid’, ‘out of order’, ‘improper’)
have specific meanings in particular contexts. However, these contexts are relatively few,
and the same meaning is not always given in each. It is difficult to find a suitably neutral
term; in this paper we will keep the term ‘valid’.
The specification of institutional power is application-specific. Here, we present a few
examples for the sake of a concrete NetBill illustration.

Example 2 (Institutional Power) A merchant is empowered to present a quote to any con-
sumer about any type of good at any price:

holdsAt(pow(M ,present_quote(M ,C ,GD,P))=true, T )←
holdsAt(role_of (M )=M_Roles, T ), merchant∈M_Roles,
holdsAt(role_of (C )=C_Roles, T ), consumer ∈C_Roles

(7)

According to the above axiom, an agent M is empowered to present a quote to an agent C
about goods described as GD at price P if M occupies the role of merchant and C occupies
the role of consumer. The Boolean fluent pow expresses the institutional power to perform
an action. (Recall that Tables 3 and 2 present the intended informal readings of the fluents
and actions, respectively, employed in the example EC specification.) The role_of fluent,
whose value is a set of role names, records the set of roles each agent occupies at any time.
The ways in which agents may acquire or lose roles are presented in later sections. �
Alternatively, we may choose to employ a stricter specification of the power to present a
quote, as in the following example.

Example 3 (Institutional Power) Amerchant is empowered to present a quote to a consumer
about a type of good, provided that the consumer has requested a quote about that type of
good:

holdsAt(pow(M ,present_quote(M ,C ,GD,P))=true, T )←
holdsAt(role_of (M )=M_Roles, T ), merchant∈M_Roles,
holdsAt(role_of (C )=C_Roles, T ), consumer ∈C_Roles,
holdsAt(request(C ,M ,GD)=true, T )

(8)

The request fluent records the pending requests of each consumer at any given time.
Suppose that C no longer occupies the consumer role after requesting a quote from mer-

chant M . Then M is no longer empowered to present a quote to C since, according to the
conditions (line 3) of axiom (8), a merchant is empowered to present quotes to consumers
only. Similarly, if M ceases to occupy the merchant role then it loses all powers associated
with that role, including the power to present quotes. �
Example 4 (Institutional Power) A consumer is empowered to accept a quote if that quote
was issued in a valid manner by a merchant, and the quote has not expired.

initiates(present_quote(M ,C ,GD,P), quote(M ,C ,GD,P)=T+10, T )←
holdsAt(pow(M ,present_quote(M ,C ,GD,P))=true, T ) (9)

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 42 31–65

42 Executable specification of open multi-agent systems

The fluent quote represents that a quote (with the specified parameters) is pending. It
is initiated by a valid present_quote action, that is, by a present_quote performed by a
merchant who currently has the power to issue such quotes. The value of a quote fluent
records the time that the quote expires (say 10 time-points after the issue of the quote).
The power to accept a quote is expressed as follows:

holdsAt(pow(C ,accept_quote(C ,M ,GD,P))=true, T )←
holdsAt(role_of (C )=C_Roles, T ), consumer ∈C_Roles,
holdsAt(role_of (M )=M_Roles, T ), merchant∈M_Roles,
holdsAt(quote(M ,C ,GD,P)=QuoteT , T ),
QuoteT ≥T

(10)

The last two conditions of the above axiom (lines 4–5) require that a quote has not expired.
Note, again, that if M ceases to occupy the merchant role after issuing a valid quote then
C loses its power to accept M ’s quote, even if the quote has not expired. Furthermore, C
will be empowered to accept quotes as long as it occupies the consumer role. �
Accepting a quote when having the power to do so, establishes a contract between the
two parties in question:

initiates(accept_quote(C ,M ,GD,P), contract(M ,C ,GD,P)=true, T )←
holdsAt(pow(C ,accept_quote(C ,M ,GD,P))=true, T ) (11)

A contract creates a set of further powers of the contracting parties; these are expressed
similarly to the ones presented above. Additionally, a contract creates a bundle of permissions
and obligations, one of which is presented in the following section (Example 8).

4.3 Permission and Obligation
We now specify what actions, valid or invalid, are to be classified as permitted or obligatory.
Such a specification is application-specific. In some cases, permissions are associated with
institutional powers.

Example 5 (Permission) An agent is permitted to perform an action if it is empowered to
perform that action:

holdsAt(per(Ag,Act)=true, T )←
holdsAt(pow(Ag,Act)=true, T )

(12)

The fluent per expresses permission. �
In the example above an agent is always permitted to exercise its institutional powers. In
other examples the relationship between power and permission could be even stronger: in a
given example it may be that an agent is permitted to perform an action if and only if it
is empowered to perform that action. Axiom (12) would then be strengthened accordingly.
In general, however, there is no standard, fixed relationship between power and permission.
It is commonplace in many organisations and institutions that an agent Ag is permitted
to perform an action Act even if Ag is not empowered to perform Act, or that Ag is not
permitted to perform Act even if Ag is empowered to do so. Consider the following examples.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 43 31–65

Executable specification of open multi-agent systems 43

Example 6 (Permission) A merchant is permitted to present a quote to a consumer if the
consumer has requested a quote, or the merchant has not already issued ‘too many’ unso-
licited quotes.

holdsAt(per(M ,present_quote(M ,C ,GD,P))=true, T )←
holdsAt(role_of (M )=M_Roles, T ), merchant∈M_Roles,
holdsAt(role_of (C )=C_Roles, T ), consumer ∈C_Roles,
holdsAt(request(C ,M ,GD)=true, T )

(13)

holdsAt(per(M ,present_quote(M ,C ,GD,P))=true, T )←
holdsAt(role_of (M )=M_Roles, T ), merchant∈M_Roles,
holdsAt(role_of (C )=C_Roles, T ), consumer ∈C_Roles,
holdsAt(ad_count(M ,C )=Count, T ),
Count<10

(14)

Axiom (13) states that it is permitted to present a quote to a consumer that has requested
one. (Recall that the request fluent records pending consumer requests.) Axiom (14) states
that a merchant M is permitted to present a quote, provided that M has not already issued
‘too many’ unsolicited quotes. The ad_count(M ,C ) fluent records the number of unsolicited
quotes merchant M has currently issued to consumer C . It is incremented whenever an
unsolicited quote is presented, expressed as follows:

initiates(present_quote(M ,C ,GD,P), ad_count(M ,C )=AC+1, T )←
holdsAt(request(C ,M ,GD)=false, T )
holdsAt(ad_count(M ,C )=AC , T )

(15)

The value might also be decremented, say after a specified time has elapsed. The details will
be application-specific. (The full source of this example specification, available on request,
includes rules for determining ad_count(M ,C ) for the sake of a concrete illustration.)
This type of permission may be specified in order to protect consumers from the mer-
chants’ over-advertising their goods.
Suppose that the power to present a quote is expressed as in Example 2. In this case,
a merchant M may be empowered to present a quote to a consumer C but forbidden to
exercise this power — if, for example, C has not requested a quote and M has issued ‘too
many’ unsolicited quotes in the past. Exercising this power will empower C to accept the
quote (see Example 4) butM may be subject to penalty for performing this forbidden action
(sanctions and enforcement strategies are discussed in the following section). This is similar
to Makinson’s Catholic marriage example cited earlier.
In the above example, certain valid actions are not permitted. We might also want to

specify whether invalid actions are permitted or not. In some cases, we might wish to say
that all invalid actions are forbidden: for instance, that a merchant M is not permitted to
send a quote message unless currently empowered to make valid quotes. In other cases, we
might want to permit certain invalid actions. Suppose for example that the power to present
a quote is expressed as in Example 3. Here M may be permitted to present a quote even
though the quote is invalid; for instance,M may be permitted to issue a quote to C although
C has not requested one, provided that ad_count(M ,C )<10 . In this case presenting a quote
will not empower C to accept it, but M will not be subject to penalty for sending quote
messages as a means, for instance, of advertising its goods. �

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 44 31–65

44 Executable specification of open multi-agent systems

Example 7 (Permission) A consumer is permitted to accept a quote if it is empowered to
do so, and it can afford the associated price.

holdsAt(per(C ,accept_quote(C ,M ,GD,P))=true, T )←
holdsAt(pow(C ,accept_quote(C ,M ,GD,P))=true, T ),
holdsAt(bank_account(C )=(Bal,Av), T ),
Av≥P

(16)

Recall that the bank_account fluent expresses an agent’s current and available balance.
This information may be seen as a certificate that a consumer C must provide to the entity
computing permissions, powers, etc, so that it can be determined whether C is permitted
or not to accept a quote. (A discussion about the run-time computation of a protocol state,
including the agents’ permissions current at each time, is presented in Section 6.) As already
mentioned, the details of an agent’s bank account need not be available to the other NetBill
participants.
According to this example, a consumer may be empowered to accept a quote (see
Example 4) but forbidden to exercise this power if it cannot afford the associated price.
Exercising this power will create a contract (see axiom (11)) but the consumer may be
subject to penalty for violating this prohibition.
This type of permission could be specified in order to deter agents from establishing a
contract when there is a high probability that they will not be able to comply with its
terms, in this case to pay the merchant when the goods are delivered. A stricter specifi-
cation would require that a consumer’s current balance, rather than its available balance,
should be greater or equal to the quoted price (that is, the last line of axiom (16) being
Bal≥P). �

Note that, like institutional power, permission does not imply (and is not implied by)
physical capability.
Other example specifications of permission in NetBill may include that a merchant is
permitted to sell a type of good up to a specified price (for example, songs in 128kbps mp3
format should not be priced more than E0.99), a merchant is forbidden to advertise the
same type of good at different prices to different consumers, and so on. A contract creates a
set of further permissions/prohibitions to the contracting parties; for example, the consumer
is forbidden to send a payment order that does not cover the agreed amount, the merchant
is forbidden to deliver goods that do not meet the agreed quality, and so on.
In the NetBill example, a contract creates a set of obligations on the contracting parties:

Example 8 (Obligation) A consumer is obliged to pay the agreed price to the contracting
merchant by a specified deadline.
Accepting a quote, while having the power to do so (that is, establishing a contract),
obliges the consumer to pay the agreed price:

initiates(accept_quote(C ,M ,GD,P), obl(C ,send_EPO(C ,IS ,GD,P))=true, T )←
holdsAt(pow(C ,accept_quote(C ,M ,GD,P))=true, T ),
holdsAt(role_of (IS)=IS_Roles, T ), iServer ∈IS_Roles

(17)

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 45 31–65

Executable specification of open multi-agent systems 45

The obl fluent expresses obligation. The above obligation is discharged by sending an Elec-
tronic Payment Order (EPO) of (at least) the agreed amount:

initiates(send_EPO(C ,IS ,GD,P), obl(C ,send_EPO(C ,IS ,GD,P ′))=false, T )←
holdsAt(obl(C ,send_EPO(C ,IS ,GD,P ′))=true, T ),
P≥P ′

(18)

The obligation should be discharged by a specified deadline. This is represented in our
specification by a timeout event that takes place at a specified time (the time by which the
obligation should be discharged) after the valid acceptance of a quote. The timeout, which
has as parameter the goods description of the accepted quote, terminates the aforementioned
obligation, if the obligation holds at the time of the timeout:

initiates(timeout(GD), obl(C ,send_EPO(C ,IS ,GD,P))=false, T )←
holdsAt(obl(C ,send_EPO(C ,IS ,GD,P))=true, T ) (19)

If the obligation does hold at the time of the timeout, that is, if the obligation has not been
discharged, then the timeout will have additional effects: the application of sanctions to the
consumer (see the following section). �
In a similar way we may specify the merchant’s obligation to deliver the goods.
In general, like powers and permissions, the specification of obligations is application-
specific. It is important, however, to maintain consistency of the specification of permissions
and obligations on the same MAS. For instance, an agent should not be forbidden and obliged
to perform the same action at the same time. In the NetBill example, a consumer should
not be obliged to send an EPO of amount P and permitted to send an EPO of amount less
than P, and so on.
Determining what actions are permitted, prohibited or obligatory enables the classification
of the behaviour of individual agents and the MAS as a whole into categories such as ‘social’
or ‘anti-social’, ‘acceptable’ or ‘unacceptable’, ‘desirable’ or ‘undesirable’, and so on. Usually,
the behaviour of an agent is considered ‘anti-social’ or ‘unacceptable’ if that agent performs
(certain) forbidden actions or does not comply with (some of) its obligations. Furthermore,
based on the behaviour of the individual agents, it is possible to classify the behaviour of
the MAS. For instance, the state of a MAS may be considered ‘unacceptable’ at a point in
time if the majority of its members have violated their obligations at that point in time.

4.4 Sanction
The fourth level of specification expresses the sanctions and enforcement strategies that deal
with ‘anti-social’ or ‘undesirable’ behaviour. We are concerned with the following issues:

1. when is an agent sanctioned, and
2. what is the penalty that an agent has to face (in the case that it does get sanctioned).

The specification of both of these issues is application-dependent.
In the presented NetBill example we want to reduce or eliminate, and therefore penalise,
the following types of ‘undesirable’ behaviour:

• where the merchant presents a quote, or the consumer accepts a quote, when forbidden
to do so, and

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 46 31–65

46 Executable specification of open multi-agent systems

• non-compliance with a contract’s obligations (the consumer fails to pay the merchant
the agreed price, or the merchant fails to deliver goods exactly as described in the
contract).

The penalties for such ‘sanctionable’ behaviour may come in many different forms. The
following examples illustrate some of the possibilities. We consider the aforementioned types
of behaviour in turn.

Example 9 (Sanction) A merchant presents a quote when forbidden to do so.
The following axiom expresses a possible penalty for this type of ‘sanctionable’ behaviour:

initiates(present_quote(M ,C ,GD,P), bank_account(M )=(Bal−f ,Av−f ), T )←
holdsAt(per(M ,present_quote(M ,C ,GD,P))=false, T ),
holdsAt(bank_account(M )=(Bal,Av), T ),
Bal≥ f

(20)

Here a fine f is deducted from the merchant M ’s bank account whenever M presents a quote
while being forbidden to do so. If the fine f is greater than the merchantM ’s current balance
then the amount deducted from M ’s account is f+f×i, that is, an interest i on f is also
deducted:

initiates(present_quote(M ,C ,GD,P),
bank_account(M )=(Bal−(f+f×i),Av−(f+f×i)), T )←

holdsAt(per(M ,present_quote(M ,C ,GD,P))=false, T ),
holdsAt(bank_account(M )=(Bal,Av), T ),
Bal< f , Av≥(f+f×i)

(21)

Notice that axioms (20) and (21) do not cover the case where the merchant has insufficient
funds to pay the fine, that is, the case where Av< f . We will comment on that presently.
First we want to point out that axioms (20) and (21) are just an approximation of what we
want to specify. They do not refer to the actions of paying a fine or transferring funds. They
say merely that a merchant’s bank balance decreases by a certain amount in the specified
circumstances. They do not say how the balance is decreased, how the funds are transferred,
or to whom. This is because we have simplified the example in order to keep it manageable.
In a more complete formalisation the Intermediation Server (IS) and the banks shown in
Figure 1 would also be included as roles in the NetBill protocol, and we would specify
the possible actions (practical capabilities), powers, permissions, and obligations for agents
occupying those roles in similar style to those shown for the consumer and merchant. We
omit these details since they require more space than we have available here. There are many
possibilities depending on how bank accounts are administered and managed. For example,
one possible specification for NetBill is that (i) IS is empowered (in specified circumstances)
to request (or demand, or simply effect) the transfer of funds from the merchant’s and
consumer’s bank accounts, and (ii) IS has an obligation to exercise this power in certain
circumstances (such as when a merchant is required to pay a fine). The specification can be
formalised in exactly the same manner as that shown for the merchant and consumer roles.
For the simplified version of the example presented in this paper, we assume that the IS
always fulfills its obligations, and we represent the effects of its actions on the merchant’s
bank account without referring to its actions explicitly.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 47 31–65

Executable specification of open multi-agent systems 47

Consider now the remaining case Av< f in which merchant M does not have sufficient
funds available to pay the fine f . According to axioms (20) and (21), M could present quotes
when forbidden to do so without facing any penalty. There are several ways of dealing with
this case. Recall that a merchant is forbidden to issue ‘too many’ unsolicited quotes (in the
example, more than 10 to any one customer). Suppose, for the sake of a concrete example,
that if the number of unsolicited quotes made by a merchant M to a customer C exceeds a
specified limit (say when ad_count(M ,C )≥100) then the merchant M becomes suspended,
that is, loses its power to present a quote. The conditions for this form of suspension can be
expressed as follows:

holdsAt(suspended(merchant,M )=true, T )←
holdsAt(role_of (M )=M_Roles, T ), merchant∈M_Roles,
holdsAt(ad_count(M ,C )=Count, T ),
Count≥100

(22)

suspended(merchant,M )=true expresses that agentM is a suspended merchant. (Suspended
consumers can be treated likewise.)
The effects of suspension on the merchant’s power to present a quote are expressed (assum-
ing the specification in Example 2) by adjusting axiom (7) as follows:

holdsAt(pow(M ,present_quote(M ,C ,GD,P))=true, T )←
holdsAt(role_of (M )=M_Roles, T ), merchant∈M_Roles,
holdsAt(role_of (C )=C_Roles, T ), consumer ∈C_Roles,
holdsAt(suspended(merchant,M )=false, T )

(7′)

The alternative specification of power to present a quote expressed by axiom (8) in Example 3
can be adjusted similarly.
A suspended merchant, that is, a merchant without the institutional power to present
quotes, has no means of empowering consumers to accept its quotes and thus no means of
establishing contracts. The penalty, however, is not permanent. The value of the ad_count
(M ,C ) fluent may decrease over time. M would thereby cease to be suspended and would
re-acquire its powers.
Naturally becoming a suspended merchant has implications on the powers and permissions
that are due to the agent’s role as a merchant; the powers and permissions that an agent
may have due to other roles it occupies are not affected. �

Example 10 (Sanction) A consumer accepts a quote when forbidden to do so.
We record violations of this prohibition as follows:

initiates(accept_quote(C ,M ,GD,P), violation(consumer,C )=true, T )←
holdsAt(pow(C ,accept_quote(C ,M ,GD,P))=true, T ),
holdsAt(per(C ,accept_quote(C ,M ,GD,P))=false, T )

(23)

(In this example we are not concerned with the case in which a consumer is forbidden but
not empowered to accept a quote.) The fluent violation(R,Ag) records Ag’s violation of a
social constraint when acting in role R. Exercising the power to accept a quote while being
forbidden to do so is not necessarily penalised. In particular, for this example specification
we chose to say that if the consumer C pays the contracting merchant M the agreed price

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 48 31–65

48 Executable specification of open multi-agent systems

then C ’s violation of the prohibition will be ignored. On the other hand, if C fails to pay
the agreed price then it will face a more severe penalty (for failing to pay the price) than
it would have had it not violated the aforementioned prohibition. The following example
presents this type of penalty. �

Example 11 (Sanction) A consumer does not comply with its obligation to pay the
merchant.
We could specify various penalties for the failure to pay the agreed price by the specified
deadline. For instance, we could apply a monetary penalty when the consumer violates its
obligation to pay, that is, a fine could be deducted from the consumer’s account whenever
this occurs. The formalisation of such a penalty would be similar to the one expressed by
axioms (20) and (21) in Example 9. Alternatively (or additionally), depending on whether
or not the consumer C had earlier violated the prohibition to accept a quote, C could be
suspended, disqualified or even banned from NetBill for failing to comply with the obligation
to pay the agreed price. Consider the following formalisation:

initiates(timeout(GD), suspendedUntil(consumer,C )=T+10, T )←
holdsAt(obl(C ,send_EPO(C ,IS ,GD,P))=true, T ),
holdsAt(violation(consumer,C )=false, T )

(24)

suspendedUntil(consumer,C )=T ′ expresses that C is a suspended consumer until time T ′.
The above axiom states that C ’s violation of its obligation to send an Electronic Payment
Order (EPO) at T suspends C until T+10 (say). A suspended consumer loses temporarily
the power to accept a quote (and thus establish a contract):

holdsAt(pow(C ,accept_quote(C ,M ,GD,P))=true, T )←
holdsAt(role_of (C )=C_Roles, T ), consumer ∈C_Roles,
holdsAt(role_of (M )=M_Roles, T ), merchant∈M_Roles,
holdsAt(quote(M ,C ,GD,P)=QuoteT , T ),
QuoteT ≥T ,

holdsAt(suspendedUntil(consumer,Consumer)=SusT , T ),
SusT<T

(10′)

Axiom (10′) is a modification of axiom (10), expressing the power to accept a quote, cap-
turing the possibility that a consumer may be suspended.
The penalty expressed by axioms (24) and (10′) concerns the case in which the agent
occupying the consumer role violated the obligation to send an EPO but had not earlier
violated the prohibition to accept the quote (see the last condition of axiom (24)). If the
agent had additionally violated this prohibition then it would have lost the consumer role:

initiates(timeout(GD), role_of (C )=C_Roles \ {consumer}, T )←
holdsAt(obl(C ,send_EPO(C ,IS ,GD,P))=true, T ),
holdsAt(violation(consumer,C )=true, T ),
holdsAt(role_of (C )=C_Roles, T )

(25)

Losing the consumer role means that all powers, permissions and obligations associated
with that role are lost. (This is in contrast to becoming a suspended consumer whereby one
(temporarily) loses some or all powers and permissions associated with the consumer role,

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 49 31–65

Executable specification of open multi-agent systems 49

but retains the non-discharged obligations of that role.) A more severe penalty would have
been the disqualification of the agent from NetBill, that is, the agent would lose all the roles
it occupied. Disqualification may or may not be accompanied by a ban. A disqualified agent
may re-apply to enter NetBill; a banned agent may not. This issue is discussed in Section 5.
Note that the violation of the obligation to send an EPO may or may not cancel the
transaction between the contracting parties. (For instance, the merchant may be in favour
of the completion of the transaction although the consumer has paid a smaller amount than
the agreed one, in order to cash the consumer’s payment.) The formalisation of this issue is
not presented here. �

Similarly we may specify penalties for the remaining types of ‘sanctionable’ behaviour,
including a merchant’s non-compliance with its obligation to deliver the goods.
An additional or alternative type of penalty could be expressed in terms of bad reputation
— for instance, a consumer not fulfilling its obligation to pay the merchant may receive
‘negative feedback’. Reputation mechanisms are frequently used in open MAS (see [16, 61, 84]
for a few examples). We will not discuss any examples of such mechanisms in this paper.
Sanctions are one means by which an open MAS may discourage ‘undesirable’ or ‘anti-
social’ behaviour. Another possible enforcement strategy is to try to devise additional con-
trols that will force agents to comply with their obligations or prevent them from performing
forbidden actions. In the NetBill example, the forbidden presentation of a quote may be
physically blocked. The general strategy of designing mechanisms to force compliance and
eliminate non-permitted behaviour is what Jones and Sergot [38] referred to as regimenta-
tion. Regimentation devices have often been employed in order to eliminate ‘undesirable’
behaviour in computational systems. Interagents [57], for example, enforce the rules of the
FishMarket auction house to the buyer and seller agents. Sentinels [40] monitor and, when
necessary, modify some aspects of the agent interactions in order to provide ‘exception han-
dling’ services. Controllers [49] enforce the ‘law-governed interaction’ regulatory mechanism
in open MAS. It has been argued [38], however, that regimentation is rarely desirable (it
results in a rigid system that may discourage agents from entering it [56]), and not always
practical. In any case, violations may still occur even when regimenting a computational
system (consider, for instance, a faulty regimentation device). For all of these reasons, we
have to allow for non-compliance and sanctioning and not rely exclusively on regimentation
mechanisms.

5 Social Roles

A social role r is associated with a set of social constraints prescribing the behaviour of
the agents occupying r . These constraints express the powers, permissions and obligations
associated with r . Axioms (10) and (16)–(19), for instance, express a few powers, permissions
and obligations associated with the consumer role.
A role r is also associated with a set of ‘conditions’ that an agent must satisfy in order to

be eligible to occupy r . It should be possible to determine whether or not an agent satisfies
the conditions of a role without having to access its internals. In NetBill, for example, we
may specify that an agent satisfies the conditions of the consumer role if its current bank
balance is over a specified limit.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 50 31–65

50 Executable specification of open multi-agent systems

TABLE 4. Actions and Fluents of a Role-Management Protocol in the Context of NetBill.
Action Textual Description

apply(Ag,RAA,Role) agent Ag applies for Role
to role assigning authority RAA

assign(RAA,Ag,Role) role assigning authority RAA assigns Role to agent Ag
withdraw(Ag,RAA,Role) agent Ag submits its resignation from Role

to role assigning authority RAA
Fluent Domain Textual Description

role_cond(Role,Ag) Boolean agent Ag satisfies the conditions of Role
applied(Role,Ag) Boolean agent Ag has a pending valid application for Role
merchants N the number of agents occupying

the merchant role in NetBill
consumers N the number of agents occupying

the consumer role in NetBill

To occupy a role in an open MAS, agents usually participate in a role-management pro-
tocol. Protocols of this form are typical in distributed systems — in resource sharing appli-
cations in the fields of Collaborative Multimedia Computing and Computer-Supported Co-
operative Work, for example, session control protocols [19, 20] prescribe, among other things,
ways for joining, withdrawing from, inviting to join, and excluding from, a session (in which
resources are shared/accessed). Accordingly, we present a simple example role-management
protocol that specifies the ways in which an agent may join, or withdraw from NetBill,
and the conditions in which an agent is (temporarily or permanently) removed from Net-
Bill. Table (4) presents the actions and a number of fluents of the EC action description
expressing the role-management protocol specification. (As will be shown later, there are a
number of fluents in common between the EC action descriptions expressing NetBill and its
role-management protocol.)
According to a typical procedure for joining an open MAS, that is, acquiring a role in that
MAS, agents apply for roles and a role assigning authority accepts or rejects applications.
The decision-making of the role assigning authority is informed by, among other things:

• whether or not an applicant satisfies the conditions of a role,
• whether or not an applicant has been banned from a MAS (see Example 11), and
• whether or not the assignment of a role to an agent is consistent with the ‘structure’ of
a MAS. In NetBill, for example, we may require (say) that the number of consumers is
at most twice the number of merchants.

A role assigning authority may additionally consider the issue of ‘role conflict’ [37] or ‘flow
down’ [71], that is, the case in which an agent occupies roles with conflicting permissions
and obligations. One way to avoid a role conflict is to set the role conditions in such a way
that it is impossible for an agent to satisfy at the same time the conditions of roles with
conflicting permissions and obligations. Consequently, a role assigning authority would not
proceed to role assignments that create role conflicts. This solution requires, however, that
an agent satisfies the conditions of a role as long as it occupies the role (as opposed to
satisfying the role conditions only when role assignment is considered).

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 51 31–65

Executable specification of open multi-agent systems 51

Example procedures for deciding to award or deny a role are:

• chair-designated: an elected agent assigns roles,
• election: the members of a role assigning committee (comprised of existing MAS mem-
bers or other elected agents) vote on role assignment,
• argumentation: the members of a role assigning committee debate on role assignment,
• lottery scheduling: role assignment operates on a probabilistic basis.

Formalisations of voting and argumentation procedures may be found in [2, 54] respec-
tively.
A simple example of role assignment, in the context of NetBill, is presented next.

Example 12 (Role Assignment) An agent satisfies the conditions of the consumer role if its
current balance is greater or equal to 1000:

holdsAt(role_cond(consumer,C )=true, T )←
holdsAt(bank_account(C )=(Bal,Av), T ),
Bal≥1000

(26)

role_cond(R,Ag)=true expresses that agent Ag satisfies the conditions of role R (see
Table 4).
Only valid applications for roles are considered; the power to apply for the consumer role
is expressed as follows:

holdsAt(pow(C ,apply(C ,RAA,consumer))=true, T )←
holdsAt(role_of (C )=C_Roles, T ), consumer /∈C_Roles,
holdsAt(role_of (RAA)=RAA_Roles, T ), authority∈RAA_Roles,
holdsAt(applied(consumer,C )=false, T ),
holdsAt(role_cond(consumer,C )=true, T ),
holdsAt(banned(C )=false, T )

(27)

An agent C is empowered to apply for the consumer role to a role assigning authority
RAA if C :

• does not already occupy that role (line 2 of the above axiom),
• does not have a pending application for that role (line 4) — the applied fluent records
pending valid role applications,
• satisfies the conditions of that role (line 5), and
• has not been banned from NetBill — denoted by banned(C )=false (line 6).

We have specified the power of a role assigning authority RAA to assign the consumer
role to an agent as follows:

holdsAt(pow(RAA,assign(RAA,C ,consumer))=true, T )←
holdsAt(role_of (RAA)=RAA_Roles, T ), authority∈RAA_Roles,
holdsAt(applied(consumer,C )=true, T ),
holdsAt(merchants=M , T ),
holdsAt(consumers=C , T ),
M ≥((C+1)/2)

(28)

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 52 31–65

52 Executable specification of open multi-agent systems

According to the above axiom, the conditions for being empowered to assign the consumer
role to an agent C include that C has a pending application for that role, and a role
assignment is in accordance with the ‘structure’ of the MAS; in this example, the number of
consumers is at most twice the number of merchants. The fluents merchants and consumers
indicate the number of existing merchants and consumers respectively.
For simplicity, in this example we do not consider the issue of role conflict.
Assume that a role assigning authority is indeed empowered to assign the consumer role
to an agent. The decision to proceed to, or refrain from, the assignment may be based on
one of the aforementioned procedures (voting, argumentation, etc). The reader is referred
to the cited papers for example formalisations of such procedures.
The direct effects of a valid role assignment are expressed in terms of the role_of fluent.

In this example, the applicant occupies the consumer role:

initiates(assign(RAA,C ,consumer), role_of (C )={consumer}∪C_Roles, T )←
holdsAt(pow(RAA,assign(RAA,C ,consumer))=true, T ),
holdsAt(role_of (C )=C_Roles, T )

(29)

A valid role assignment also has indirect effects on the pow, per and obl fluents: the successful
applicant now holds the powers, permissions and obligations of a consumer. �
In addition to expressing the process of role assignment, a role-management protocol pre-
scribes the ways in which an agent may successfully withdraw from a role, and describes the
conditions in which an agent gets disqualified or banned from a MAS. Withdrawing from
a role, or losing a role (due to, say, disqualification or ban), implies losing the powers, per-
missions and obligations of that role. An example procedure of role withdrawal is presented
next.

Example 13 (Role Withdrawal) An agent is empowered to withdraw from the merchant role
if it: (i) occupies that role, (ii) has no pending quotes, and (iii) has no pending obligations:

holdsAt(pow(M ,withdraw(M ,RAA,merchant))=true, T )←
holdsAt(role_of (M )=M_Roles, T ), merchant∈M_Roles,
holdsAt(role_of (RAA)=RAA_Roles, T ), authority∈RAA_Roles,
not (holdsAt(quote(M ,C ,GD,P)=QT , T ), QT ≥T ),
not holdsAt(obl(M ,send_goods(M ,C ′,GD′,P ′))=true, T )

(30)

The penultimate condition of the above axiom (line 4) requires that all quotes of the mer-
chant agent (if any) have expired. If there is a quote that has not expired then an agent may
not successfully withdraw from the merchant role because a consumer may accept the quote
and thus create a contract between them. Clearly this condition to withdrawal can be lifted
in other examples. According to the last condition of the above axiom (line 5), an agent
that has pending obligations to deliver goods may not withdraw from the merchant role and
thus avoid discharging these obligations. In general, an agent that has pending obligations
due to a role that it occupies may not withdraw from that role as long as these obligations
are not terminated (that is, discharged, or violated and sanction applied). �
Considering the issue of (temporarily or permanently) losing a role, in Section 4.4 we
showed ways in which an agent may be disqualified or even banned from a MAS, due to its
‘anti-social’ behaviour. An additional reason for role revocation, or role suspension, could

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 53 31–65

Executable specification of open multi-agent systems 53

be the failure to satisfy the conditions of the role one occupies. In other words, it may be
required, for a particular MAS, that an agent satisfies the conditions of a role as long as
it occupies that role. A formalisation of role suspension due to failure to satisfy the role
conditions is the following:

holdsAt(suspended(Role,Ag)=true, T )←
holdsAt(role_of (Ag)=Ag_Roles, T ), Role∈Ag_Roles,
holdsAt(role_cond(Role,Ag)=false, T )

(31)

For instance, a consumer will be suspended as long as its current balance is less than 1000
(see axiom (26) for the conditions of the consumer role). Similarly, we may express role
revocation due to failure to satisfy the role conditions.
Note that ‘anti-social’ behaviour and the failure to satisfy the role conditions are not the
only ways of losing a role. For example, a role-management protocol may allow for time-
bound memberships, that is, roles are assigned for a specified time period, after which the
agent loses the associated powers, permissions and obligations.
In general, a specification of a more complex role-management protocol would express,
among other things:

• additional procedures for role-management such as inviting to join a MAS;
• the conditions in which an agent is said to be permitted, or obliged, to apply for, assign,
or withdraw from, a role (or perform any other action of a role-management protocol),
and
• the sanctions that are applied in the case of non-conformance with the aforementioned
permissions and obligations.

Such a specification would be similar to that of NetBill presented in the previous sections
or to other protocol specifications presented elsewhere [2, 3]. We omit the details here to
save space.

6 Executing the Specification

6.1 Protocol Animation
In order to illustrate our framework for executable specifications, in this section we animate
an example run of NetBill and the associated role-management protocol. A part of the
narrative of events of this run is displayed in the first two columns of Table 5; the messages
concerning the role-management protocol are indented whereas the messages concerning
NetBill are not. The third column of Table 5 shows the roles of each NetBill participant;
for brevity the merchant role is denoted by m and the consumer role by c. For illustration
purposes we chose a specification including all axioms presented in this paper apart from
(7′) (axiom (7) is used instead), (8), (10) (axiom (10′) is used instead), (22) and (31). Other
choices could of course have been made and the animation repeated for those.
Given a set of temporally-ordered events (a narrative), we may query our Event Calculus
logic programming (EClp) implementation to determine the system state current at each
time. For example, to find out whether ag1 is empowered to present a quote at time-point
15, we compute the following query:

? – holdsAt(pow(ag1,present_quote(ag1,C ,GD,P))=true, 15)

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 54 31–65

54 Executable specification of open multi-agent systems

TABLE 5. A Sample Run of NetBill and its Role-Management Protocol.
Time Action Roles

15 present_quote(ag1,ag3 ,bookA,23) ag1:m, ag2:c, ag3:mc
20 apply(ag4,raa,c) ag1:m, ag2:c, ag3:mc
21 apply(ag5 ,raa,c) ag1:m, ag2:c, ag3:mc
22 accept_quote(ag3 ,ag1,bookA,23) ag1:m, ag2:c, ag3:mc
23 assign(raa,ag4,c) ag1:m, ag2:c, ag3:mc
24 send_goods(ag1,iServer,bookA,‘1100101′) ag1:m, ag2:c, ag3:mc, ag4:c
25 withdraw(ag3 ,raa,c) ag1:m, ag2:c, ag3:mc, ag4:c
28 send_EPO(ag3 ,iServer,bookA,13) ag1:m, ag2:c, ag3:mc, ag4:c
32 timeout(bookA) ag1:m, ag2:c, ag3:mc, ag4:c
33 withdraw(ag1,raa,m) ag1:m, ag2:c, ag3:m, ag4:c
34 present_quote(ag3 ,ag2,musicA,40) ag2:c, ag3:m, ag4:c
43 present_quote(ag3 ,ag4,musicB,40) ag2:c, ag3:m, ag4:c
44 withdraw(ag3 ,raa,m) ag2:c, ag3:m, ag4:c
45 accept_quote(ag4,ag3 ,musicB,40) ag2:c, ag3:m, ag4:c
46 apply(ag4,raa,m) ag2:c, ag3:m, ag4:c
47 assign(raa,ag4,m) ag2:c, ag3:m, ag4:c
48 accept_quote(ag2,ag3 ,musicA,40) ag2:c, ag3:m, ag4:mc
49 send_EPO(ag4,iServer,musicB,40) ag2:c, ag3:m, ag4:mc
50 request_quote(ag2,ag3 ,musicA) ag2:c, ag3:m, ag4:mc
52 present_quote(ag3 ,ag2,musicA,44) ag2:c, ag3:m, ag4:mc
55 timeout(musicB) ag2:c, ag3:m, ag4:mc

ag2:c, ag3:sm, ag4:mc

We discuss next the system states of the run displayed in Table 5.
Initially, agent ag1 occupied the role of merchant, ag2 occupied the role of consumer, and
ag3 occupied both roles (see the third column of Table 5). At time-point 15 ag1 presented
a quote to ag3 concerning bookA at price 23 . According to axiom (7), ag1 was empow-
ered to perform the aforementioned action because it occupied the role of merchant and
ag3 occupied the role of consumer. Consequently, according to axioms (9) and (10′), ag3
become empowered at time-point 16 to accept the quote of ag1. Indeed, ag3 accepted the
quote of ag1 at time-point 22, thus establishing a contract between them (see axiom (11)),
creating a bundle of powers, permissions and obligations for them. At time-point 24 ag1
sent the goods to the Intermediation Server (iServer) while at the next time-point ag3
attempted to withdraw from the consumer role: ag3 sent a withdraw message to the role
assigning authority raa. This attempt was not successful because ag3 was not empowered
to withdraw from the consumer role at the time, since ag3 had a pending obligation to
send an Electronic Payment Order (EPO) concerning the contract on bookA (see Exam-
ple 13).
At time-point 28 ag3 attempted to discharge its obligation by sending an EPO; the

amount, however, was less than the agreed one (13 instead of 23) and thus the obliga-
tion was not discharged — see axiom (18). ag3 made no further attempts to discharge its
obligation by the time the transaction over bookA ended. Consequently, the timeout that

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 55 31–65

Executable specification of open multi-agent systems 55

took place at time-point 32, signalling the end of the transaction over bookA, initiated a
sanction for ag3 . More precisely, ag3 lost the role of consumer (see axiom (25)) because it
did not comply with its obligation to send an EPO, and it violated earlier the prohibition
to accept ag1’s quote — at time-point 22 ag3 was forbidden to accept the quote, although
empowered to accept it, because ag3 could not afford the associated price (see axiom (16)).
During the negotiation over bookA between ag1 and ag3 , two agents, ag4 and ag5 , attempted
to enter NetBill by applying for the consumer role — see time-points 20 and 21 respectively.
Both applications were valid (see axiom (27)) because ag4 and ag5 did not occupy the
consumer role, did not have pending applications for that role, satisfied the conditions of
that role, expressed in this example by axiom (26), and were not banned from NetBill.
Moreover, due to axiom (28), the role assigning authority raa became empowered to assign
them the consumer role because the constraint that the number of consumers is at most twice
the number of merchants would not be violated if ag4 and ag5 were assigned the consumer
role. At time-point 23 raa chose to assign the consumer role to ag4, although it did not assign
that role to ag5 . (Recall that we have not specified permissions and obligations concerning
role-management. Consequently, in this example there is no obligation on raa to award a
role to an agent.)
After the end of the transaction over bookA, ag1 successfully withdrew from the merchant
role and, effectively, withdrew from NetBill, since ag1 did not occupy any other role. ag1’s
withdrawal was successful because ag1 had no pending quotes or obligations (see axiom (30)).
At time-points 34 and 43 ag3 initiated respectively two negotiation threads: one concern-

ing musicA and ag2 , and one concerning musicB and ag4. At time-point 44 ag3 attempted to
withdraw from the merchant role. This attempt was unsuccessful because ag3 had two pend-
ing quotes — the ones mentioned above — at the time. Both quotes were eventually accepted
(see time-points 45 and 48); however, only one contract was established, that between ag3
and ag4 regarding musicB . The quote concerning musicA had expired by time-point 48 and,
therefore, the acceptance of ag2 did not establish a contract. At time-point 49 ag4 sent an
EPO to iServer concerning the transaction over musicB , thus discharging its obligation to
pay (see axiom (18)). ag3 , however, did not discharge its obligation to send the goods. Con-
sequently, the timeout that took place at time-point 55, signalling the end of the transaction
over musicB , initiated a time period for which ag3 was suspended from the merchant role
(indicated in Table 5 by sm).
The example narrative displayed in Table 5 includes two types of activity that took place

during the transaction between ag3 and ag4 over musicB : first, at time-point 46 ag4 applied
for the merchant role, and at time-point 47 it was assigned that role. Second, at time-point
50 a negotiation thread was initiated by ag2 concerning musicA and ag3 .

6.2 Run-time Configurations
A protocol state, including the powers, permissions, obligations, sanctions and roles that are
associated with each agent at each time, computed by the EClp implementation, may be
publicised at run-time to (a subset of) the participants of a protocol, or their designers. Such
run-time services may be provided by a central server or in various distributed configurations.
Each protocol participant, for example, may have available an EClp module in order to
compute its powers, permissions, obligations, and so on — see Figure 2(a). In another setting,
some protocol participants may have direct access to the protocol state by means of a

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 56 31–65

56 Executable specification of open multi-agent systems

FIG. 2. Run-Time Configurations: Solid arrows indicate agent communication and dotted
arrows indicate request for information concerning the protocol state.

local EClp module, whereas other agents may rely on trusted third parties (TTP)s for such
information — see Figure 2(b). A further discussion of the possible run-time configurations,
including the issues that arise in each configuration (such as the policy followed by a TTP
for the disclosure of the protocol state), will be presented elsewhere.

7 Discussion

Several approaches have been proposed in the literature for the specification of open MAS
— see, for example, [4–7, 12, 15, 33, 36, 42, 43, 65, 75, 76, 78]. An influential approach
has been the work of Moses, Shoham, Tennenholtz and colleagues [26, 50, 51, 68, 69, 74].

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 57 31–65

Executable specification of open multi-agent systems 57

These researchers focus on the specification of ‘social laws’ that govern the behaviour of the
members of ‘artificial social systems’. In brief, a social law is a set of prohibitions that, if
respected, enable agents to co-exist in a shared environment and pursue their goals. Social
laws do not express any other normative relations apart from permissions/prohibitions.
This is probably due to the fact that the applications that have been studied in the context
of the artificial social systems approach (for example, mobile robots moving along a two-
dimensional grid [69, Section 2] or a circular automated assembly line [26, Section 3.1]) can
be mainly described in terms of physical actions rather than communicative actions, and
brute facts rather than institutional facts [62, 63]; being in physical possession of an object,
for example, is a brute fact (it can be observed), whereas being the owner of that object
is an institutional fact. It is assumed, moreover, that agents will be implemented in such a
way that all social laws are respected. The question of what happens when a social law is
not respected has received little attention.
The artificial social systems approach is not supported by a software implementation for
automated reasoning regarding the social laws of a system. In what follows we focus on
approaches for the specification of open MAS that have direct routes to implementation and
offer computational support.
An approach supported by automated reasoning tools is the well-known work of Minsky
and colleagues on ‘Law-Governed Interaction’ (LGI) [45, 47, 49, 86]. LGI is an abstract
regulatory mechanism that satisfies the following principles: statefulness, that is, the regula-
tory mechanism is sensitive to the history of interaction between the regulated components,
decentralisation, for scalability, and generality, that is, LGI is not biased to a particular
type of law. LGI is an abstraction of a software mechanism called Moses [46, 48] which can
be used to regulate distributed systems. Moses employs regimentation devices — controllers
(see Section 4.4) — that monitor the behaviour of agents, block the performance of forbidden
actions and enforce compliance with obligations. Laws in Moses are written in pure Prolog
or Java.
Esteva and colleagues [21–25, 31, 58] have devised a specification language to specify open
MAS as electronic institutions (e-institutions). The basic components of an e-institution
include those of role (standardised pattern of behaviour), dialogic framework (prescribing
the agent interactions), scene (expressing sub-groupings created in the context of a wider sys-
tem), and normative rule (the ‘rules of the game’). Normative rules specify the permissions
and obligations of the members of an e-institution.
Software tools for computational support of the e-institution specification language have
been developed. Islander [21], for instance, is an integrated development environment for
specifying e-institutions. A verification module is implemented which checks for, among other
things, ‘norm consistency’. A rule-based system [31] has also been developed for executing a
set of normative rules with the aim of providing run-time services, such as the computation
of the permissions and obligations of the agents current at each state. A precise equivalence,
however, between (fragments of) the formalism used for verification of ‘norm consistency’
with that used for supporting run-time activities, has not been established. Consequently, it
is not possible to, say, verify a system specification for ‘norm consistency’ and then translate
that specification to an equivalent one for the provision of run-time services.
Another closely related line of research is the work of Singh and colleagues on commitment
protocols [70–72, 79]. In this context ‘commitment’ can be seen as an obligation directed
from one agent to another. Commitment protocols have been formalised in various ways,
giving different types of semantics to the concept of commitment. Yolum and Singh [82, 83],

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 58 31–65

58 Executable specification of open multi-agent systems

for instance, have specified commitment protocols with the use of a subset of Shanahan’s
‘full version’ of Event Calculus (EC) [66] — in this case NetBill was the running example.
All ‘operations’ on commitments — creating, discharging, cancelling, releasing, delegating,
assigning commitments — were formalised with the use of EC axioms. Moreover, an abduc-
tive EC planner [67] was employed in order to compute planning queries regarding the EC
specifications of commitment protocols.
Singh and colleagues have also used the C+ language [32], an action formalism with
explicit transition systems semantics, to express commitment protocols — see [9, 17, 18] for
a few recent papers. (As mentioned earlier in the paper, in [3] we presented a comparison of
C+ and EC with respect to open MAS specification.) Like EC, C+ was employed to express
all operations on commitments as well as the effects of the agents’ actions. The Causal
Calculator [32], a software implementation using satisfiability (SAT) solvers to compute
planning and narrative assimilation queries regarding C+ formalisations, was employed to
execute commitment protocol specifications.
It is difficult to see how an interaction protocol for open MAS (such as a proto-
col for e-commerce, negotiation, dispute resolution or voting) can be specified simply in
terms of commitments. The concept of institutional power is at least as important when
specifying a protocol and the meaning of protocol actions. In NetBill, for example, it
is necessary to identify the circumstances in which a consumer has the ‘legal capaci-
ty’ or institutional power to accept a quote and, therefore, establish a contract. Simi-
larly, it is important to specify the conditions in which an agent is empowered to initi-
ate proceedings against the other contracting party, the circumstances in which an agent
is empowered to apply for participation in NetBill, and so on. It is not difficult to see
that there are other protocols in which a specification simply in terms of commitments is
inappropriate.
Commitment protocols have also been studied by Colombetti and colleagues — see
[27–29, 80] for a few recent publications. In this line of work, unlike the approaches reviewed
so far, the concept of institutional power is represented. The formalisation of this concept,
however, is unclear. Although being empowered is a necessary condition for performing
operations on commitments in some cases, there are examples in which an agent may suc-
cessfully modify a set of commitments — create a commitment in which the agent is the
creditor, cancel a commitment, etc — without having the institutional power to modify
these commitments. Moreover, exercising the institutional power to perform an action is
not always effective in creating or modifying a set of institutional facts (even if the action
is not blocked, say by a regimentation device). In the formalisation presented in [27], for
example, an agent Ag is empowered to assign any role to some other agent. Exercising the
power to assign role R, however, has no effects if R is not an existing role of the protocol in
question.
In the commitment protocol specifications there are examples in which an agent is empow-
ered to decrease the ‘trust’ in an agent [27]. Unless ‘trust’ is somehow seen as an institutional
fact, this is not a meaningful instance of institutional power.
Colombetti and colleagues have very recently [27] employed a dialect of EC to express
commitment protocols and a SAT-based implementation [52] to execute these protocols.
However, the computation of the supported tasks — narrative assimilation and planning
— is inefficient because the complete protocol history is recorded in the protocol states.
Another implementation route has been the use of a model checker for proving properties of
a commitment protocol specification [80]. No comparison between the two implementation

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 59 31–65

Executable specification of open multi-agent systems 59

routes, in terms of representation language expressiveness or computational efficiency, has
been presented.
Related work from the field of computational organisation theory includes the work of Fox
and colleagues on enterprise modelling [30, 34]. In this approach a multi-agent organisation
is viewed as a set of agents playing roles in which they are acting to achieve specific goals,
according to various constraints defining the ‘rules of the game’. The rules are formalised
with the use of a dialect of the Situation Calculus [53], an implementation of which supports
the tasks of planning and narrative assimilation. (A comparison of the Situation Calculus
and the action formalisms EC and C+may be found in [52], for example.) Fox and colleagues
identify and represent several normative relations of the members of an organisation, such
as obligation, authority and empowerment. The representation of ‘empowerment’, however,
is not clear. In some cases ‘empowerment’ seems to coincide with the concept of institutional
power presented in our paper, in the sense that an empowered agent may create a set of
institutional facts, such as the establishment of a contract with a third party, while in other
cases ‘empowerment’ seems to coincide with permission, in the sense that performing an
action will not be penalised.
The main contribution of this paper then, and a key difference between our work and
related research, is that we provide an explicit, unambiguous specification of institutional
powers, and distinguish between institutional power, permission/obligation and physical
capability. To illustrate this distinction we presented in this paper various example formal-
isations of physical capability, institutional power, permission and obligation. Moreover, we
presented example formalisations of sanctions that deal with the performance of forbidden
actions and violation of obligations. Consequently we do not have to rely exclusively on
regimentation mechanisms.
Another difference of our work from related MAS research is that we distinguish between
an open MAS and the corresponding role-management process — applying for membership,
withdrawing from a MAS, and so on. To illustrate this distinction, we presented an example
formalisation of a role-management protocol for NetBill.
Our protocol specifications are executable. In Section 6 we presented an execution of Net-

Bill and the associated role-management protocol. A protocol specification may be executed
at run-time, for example, in order to compute the agents’ powers, permissions, obligations,
and so on, with the aim of informing the agents’ decision-making. The software implemen-
tations discussed in this section — with the exception of Moses — operate essentially by
generating a complete (finite) model in one way or another. They thus require that the
domain of each variable is finite and known from the outset. For example, we would have to
know from the outset all possible participants of NetBill, all possible items for which a mer-
chant may present quotes, and so on. A run-time modification of the domain of a variable
requires a re-compilation of the specification. The procedure of re-compiling a specification
can be very time-consuming, making the associated software implementation unsuitable for
the provision of run-time services. EClp, in common with other rule-based, goal-directed
(deductive) implementations, does not require that the domain of a variable is finite or
known from the outset. Consequently it is not required to re-compile a specification at
run-time.
Our EC implementation has proven to be faster than other action language implementa-
tions we have tried (see [3] for comparisons), and can be further optimised by incorporating
various techniques proposed in the literature for narrative assimilation in EC (see [8] for
example). Our EC implementation, however, does not offer facilities for proving properties

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 60 31–65

60 Executable specification of open multi-agent systems

of a specification or planning. A direction for further work is to employ a single formalism
for narrative assimilation and proving properties. Some first steps are reported in [13] which
investigates methods for efficient EC-like query evaluation for (a subset of) the C+ and
nC+ languages, and for integrating action descriptions in these languages with standard
model checking systems (specifically NuSMV [10]). Normative system properties expressed
in temporal logics such as Computation Tree Logic can then be verified by means of standard
model checking techniques on a transition system defined using the nC+ language.
Our executable specifications may be classified as ‘static’, in the sense that there is no
support for their run-time modification. In some open systems, however, environmental,
social or other conditions may favour, or even require, specifications modifiable during the
system execution. Consider, for instance, the case in which the participants of NetBill require
to change the conditions of the consumer role, or the allowed ratio between consumers and
merchants. We are currently working towards an infrastructure for ‘dynamic specifications’
[1], that is, specifications that are developed at design-time but may be modified at run-
time by the members of a system. According to this infrastructure, at any time during the
protocol execution an agent may attempt to modify the protocol specification by initiating a
‘meta-protocol’ for deciding about — arguing, negotiating, voting for/against — a proposed
modification.

Acknowledgements

We would like to thank Jeremy Pitt for his comments on various drafts of this paper.

References
[1] A. Artikis. Dynamic protocols for open agent systems. In Proceedings of International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 97–104.
ACM, 2009.

[2] A. Artikis, M. Sergot, and J. Pitt. An executable specification of a formal argumentation
protocol. Artificial Intelligence, 171(10–15):776–804, 2007.

[3] A. Artikis, M. Sergot, and J. Pitt. Specifying norm-governed computational societies.
ACM Transactions on Computational Logic, 10(1), 2009.

[4] A. Bandara. A Formal Approach to Analysis and Refinement of Policies. PhD thesis,
Imperial College London, 2005.

[5] G. Boella and L. van der Torre. Security policies for sharing knowledge in virtual
communities. IEEE Transactions on Systems, Man and Cybernetics, 36(3):439–450,
2006.

[6] G. Boella and L. W. N. van der Torre. The ontological properties of social roles in
multi-agent systems: Definitional dependence, powers and roles playing roles. Artificial
Intelligence and Law, 15(3):201–221, 2007.

[7] J. Bradshaw, A. Uszok, R. Jeffers, N. Suri, P. Hayes, M. Burstein, A. Acquisti, B. Benyo,
M. Breedy, M. Carvalho, D. Diller, M. Johnson, S. Kulkarni, J. Lott, M. Sierhuis, and
R. Van Hoof. Representation and reasoning about DAML-based policy and domain
services in KAoS. In J. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo,
editors, Proceedings of Conference on Autonomous Agents and Multi Agent Systems
(AAMAS), pages 835–842. ACM Press, 2003.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 61 31–65

Executable specification of open multi-agent systems 61

[8] L. Chittaro and A. Montanari. Efficient temporal reasoning in the cached event calculus.
Computational Intelligence, 12(3):359–382, 1996.

[9] A. Chopra and M. Singh. Contextualizing commitment protocols. In Proceedings of
Conference on Autonous Agents and Multi-Agent Systems (AAMAS), pages 1345–1352.
ACM, 2006.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Sym-
bolic Model Checking. In Proceedings of International Conference on Computer-Aided
Verification (CAV 2002), Copenhagen, July 2002, LNCS 2404. Springer, 2002. See
http://nusmv.irst.itc.it.

[11] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,
pages 293–322. Plenum Press, 1978.

[12] O. Cliffe, M. De Vos, and J. Padget. Answer set programming for representing and
reasoning about virtual institutions. In Proceedings of Workshop on Computational
Logic in Multi-Agent Systems (CLIMA), LNCS 4371. Springer, 2007.

[13] R. Craven. Execution Mechanisms for the Action Language C+. PhD thesis, University
of London, September 2006.

[14] R. Craven and M. Sergot. Agent strands in the action language nC+. Journal of Applied
Logic, 6(2):172–191, 2008.

[15] M. Dastani, V. Dignum, and F. Dignum. Role-assignment in open agent soci-
eties. In Proceedings of Conference on Autonomous Agents and Multi-Agent Systems,
pages 489–496. ACM, 2003.

[16] C. Dellarocas. Reputation mechanisms. In T. Hendershott, editor, Handbook on Eco-
nomics and Information Systems. Elsevier Publishing, 2006.

[17] N. Desai and M. Singh. A modular action description language for protocol composition.
In Proceedings of Conference on Artificial Intelligence (AAAI), 2007.

[18] N. Desai and M. Singh. Checking correctness of business contracts via commitments.
In Proccedings of International Conference on Autonomous Agents and Multi-Agent
Systems, 2008.

[19] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Design issues for floor control protocols. In
Proceedings of Symposium on Electronic Imaging: Multimedia and Networking, vol. 2417,
pages 305–316. IS&T/SPIE, 1995.

[20] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Floor control for multimedia conferencing
and collaboration. Multimedia Systems, 5(1):23–38, 1997.

[21] M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions
editor. In C. Castelfranchi and L. Johnson, editors, Proceedings of Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1045–1052. ACM Press,
2002.

[22] M. Esteva, J. Padget, and C. Sierra. Formalizing a language for institutions and norms.
In J.-J. Meyer and M. Tambe, editors, Intelligent Agents VIII: Agent Theories, Archi-
tectures, and Languages, LNAI 2333, pages 348–366. Springer, 2002.

[23] M. Esteva, J. Rodriguez-Aguilar, J. Arcos, C. Sierra, and P. Garcia. Institutionalis-
ing open multi-agent systems. In E. Durfee, editor, Proceedings of the International
Conference on Multi-agent Systems (ICMAS), pages 381–382. IEEE Press, 2000.

[24] M. Esteva, J. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. Arcos. On the formal
specifications of electronic institutions. In F. Dignum and C. Sierra, editors, Agent
Mediated Electronic Commerce, LNAI 1991, pages 126–147. Springer, 2001.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 62 31–65

62 Executable specification of open multi-agent systems

[25] M. Esteva, J. Rodríguez-Aguilar, C. Sierra, and W. Vasconcelos. Verifying norm con-
sistency in electronic institutions. In Proceedings of the AAAI-04 Workshop on Agent
Organizations: Theory and Practice, pages 8–14, 2004.

[26] D. Fitoussi and M. Tennenholtz. Choosing social laws for multi-agent systems: mini-
mality and simplicity. Artificial Intelligence, 119(1-2):61–101, 2000.

[27] N. Fornara and M. Colombetti.Multi-Agent Systems: Semantics and Dynamics of Orga-
nizational Models, chapter Formal specification of artificial institutions using the event
calculus. IGI Global, to appear in 2009.

[28] N. Fornara, F. Viganò, and M. Colombetti. Agent communication and artificial insti-
tutions. Autonomous Agents and Multi-Agent Systems, 14:121–142, 2007.

[29] N. Fornara, F. Viganò, M. Verdicchio, and M. Colombetti. Artificial institutions: A
model of institutional reality for open multiagent systems. Artificial Intelligence and
Law, 16:89–105, 2008.

[30] M. Fox, M. Barbuceanu, M. Grüninger, and J. Lin. An organizational ontology for
enterprise modeling. In M. Prietula, K. Carley, and L. Gasser, editors, Simulating Orga-
nizations: Computational Models for Institutions and Groups, pages 131–152. AAAI
Press/The MIT Press, 1998.

[31] A. García-Camino, P. Noriega, and J. Rodríguez-Aguilar. Implementing norms in elec-
tronic institutions. In Proceedings of the Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pages 667–673. ACM Press, 2005.

[32] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal
theories. Artificial Intelligence, 153(1–2):49–104, 2004.

[33] D. Grossi, F. Dignum, and J.-J. Ch. Meyer. A formal road from institutional norms
to organizational structures. In E. Durfee, M. Yokoo, M. Huhns, and O. Shehory,
editors, Proceedings of Conference on Autonomous Agents and Multi-Agent Systems,
pages 616–623, 2007.

[34] M. Grüninger and M. Fox. The role of competency questions in enterprise engineering.
In Proceedings of the IFIP WG5.7 Workshop on Benchmarking-Theory and Practice,
1994.

[35] C. Hewitt. Open information systems semantics for distributed artificial intelligence.
Artificial Intelligence, 47:79–106, 1991.

[36] J. Hubner, J. Sichman, and O. Boissier. Developing organised multiagent systems using
the MOISE+ model: programming issues at the system and agent levels. International
Journal of Agent-Oriented Software Engineering, 1(3–4):370–395, 2007.

[37] A. Jones. Roles. In A. Jones and C. Krogh, editors, Deliverable D2 of ALFEBIITE
EU-Project (IST-1999-10298), pages 52–55, 2001.

[38] A. Jones and M. Sergot. On the characterisation of law and computer systems: the nor-
mative systems perspective. In Deontic Logic in Computer Science: Normative System
Specification, pages 275–307. J. Wiley and Sons, 1993.

[39] A. Jones and M. Sergot. A formal characterisation of institutionalised power. Journal
of the IGPL, 4(3):429–445, 1996.

[40] M. Klein, J. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent excep-
tion handling services to enable robust open multi-agent systems: the case of agent
death. Journal of Autonomous Agents and Multi-Agent Systems, 7(1–2):179–189,
2003.

[41] R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Comput-
ing, 4(1):67–96, 1986.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 63 31–65

Executable specification of open multi-agent systems 63

[42] L. Kagal and T. Finin. Modeling communicative behavior using permissions and obli-
gations. Journal of Autonomous Agents and Multi-Agent Systems, 14(2):187–206, 2006.

[43] A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–92,
2003.

[44] D. Makinson. On the formal representation of rights relations. Journal of Philosophical
Logic, 15:403–425, 1986.

[45] N. Minsky. The imposition of protocols over open distributed systems. IEEE Transac-
tions on Software Engineering, 17(2):183–195, 1991.

[46] N. Minsky. Law-Governed Interaction (LGI): A Distributed Coordination and Control
Mechanism (An Introduction and a Reference Manual), 2005. Retrieved October 24,
2008, from http://www.moses.rutgers.edu/documentation/manual.pdf.

[47] N. Minsky. Decentralised regulation of distributed systems: Beyond access
control. Submitted for publication. Retrieved October 24, 2008, from
http://www.cs.rutgers.edu/ minsky/papers/IC.pdf, 2008.

[48] N. Minsky and T. Murata. On manageability and robustness of open multi-agent sys-
tems. In Software Engineering for Multi-Agent Systems II, Research Issues and Practical
Applications, LNCS 2940, pages 189–206. Springer, 2004.

[49] N. Minsky and V. Ungureanu. Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 9(3):273–305, 2000.

[50] Y. Moses and M. Tennenholtz. On computational aspects of artificial social systems.
In Proceedings of Workshop on Distributed Artificial Intelligence (DAI), pages 267–284,
1992.

[51] Y. Moses and M. Tennenholtz. Artificial social systems. Computers and Artificial Intel-
ligence, 14(6):533–562, 1995.

[52] E. Mueller. Commonsense Reasoning. Morgan Kaufmann, 2006.
[53] J. Pinto and R. Reiter. Temporal reasoning in logic programming: a case for the situa-

tion calculus. In D. Warren, editor, Proceedings of Conference on Logic Programming,
pages 203–221. MIT Press, 1993.

[54] J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Voting in multi-agent systems. Computer
Journal, 49(2):156–170, 2006.

[55] J. Pitt, A. Mamdani, and P. Charlton. The open agent society and its enemies: a position
statement and research programme. Telematics and Informatics, 18(1):67–87, 2001.

[56] H. Prakken. Formalising Robert’s rules of order. Technical Report 12, GMD – German
National Research Center for Information Technology, 1998.

[57] J. Rodriguez-Aguilar, F. Martin, P. Noriega, P. Garcia, and C. Sierra. Towards a test-
bed for trading agents in electronic auction markets. AI Communications, 11(1):5–19,
1998.

[58] J. Rodriguez-Aguilar and C. Sierra. Enabling open agent institutions. In K. Dauten-
hahn, A. Bond, L. Canamero, and B. Edmonds, editors, Socially Intelligent Agents:
Creating relationships with computers and robots, pages 259–266. Kluwer Academic
Publishers, 2002.

[59] J. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for Auto-
mated Negotiation among Computers. The MIT Press, 1994.

[60] J. Rosenschein and G. Zlotkin. Designing conventions for automated negotiation. In
N. Huhns and M. Singh, editors, Readings in Agents, pages 353–370. Morgan Kaufmann,
1998.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 64 31–65

64 Executable specification of open multi-agent systems

[61] J. Sabater and C. Sierra. Review on computational trust and reputation models. Arti-
ficial Intelligence Review, 24(1):33–60, 2005.

[62] J. Searle. Speech Acts. Cambridge University Press, 1969.
[63] J. Searle. What is a speech act? In A. Martinich, editor, Philosophy of Language, pages

130–140. Oxford University Press, third edition, 1996.
[64] M. Sergot. Modelling unreliable and untrustworthy agent behaviour. In B. Dunin-

Keplicz, A. Jankowski, A. Skowron, and M. Szczuka, editors, Proceedings of Work-
shop on Monitoring, Security, and Rescue Techniques in Multiagent Systems (MSRAS),
Advances in Soft Computing, pages 161–178. Springer-Verlag, 2004.

[65] M. Sergot and R. Craven. The deontic component of action language nC+. In L. Goble
and J-J. Ch. Meyer, editors, Deontic Logic in Computer Science (DEON), LNAI 4048,
pages 222–237. Springer, 2006.

[66] M. Shanahan. The event calculus explained. In M. Wooldridge and M. Veloso, editors,
Artificial Intelligence Today, LNAI 1600, pages 409–430. Springer, 1999.

[67] M. Shanahan. An abductive event calculus planner. Journal of Logic Programming,
44:207–239, 2000.

[68] Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for artificial agent
societies. In W. Swartout, editor, Proceedings of Conference on Artificial Intelligence
(AAAI), pages 276–281. The AAAI Press/ The MIT Press, 1992.

[69] Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: off-line
design. Artificial Intelligence, 73(1-2):231–252, 1995.

[70] M. Singh. Agent communication languages: rethinking the principles. IEEE Computer,
31(12):40–47, 1998.

[71] M. Singh. An ontology for commitments in multiagent systems: towards a unification
of normative concepts. Artificial Intelligence and Law, 7(1):97–113, 1999.

[72] M. Singh. A social semantics for agent communication languages. In F. Dignum
and M. Greaves, editors, Issues in Agent Communication, LNCS 1916, pages 31–45.
Springer, 2000.

[73] M. Sirbu. Credits and debits on the Internet. IEEE Spectrum, 34(2):23–29, 1997.
[74] M. Tennenholtz. On computational social laws for dynamic non-homogeneous social

structures. Journal of Experimental and Theoretical Artificial Intelligence, 7:379–390,
1995.

[75] A. Uszok, J. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton, and S. Aitken.
Policy and contract management for semantic web services. In Proceedings of the AAAI
Spring Symposium on Semantic Web Services, 2004.

[76] A. Uszok, J. Bradshaw, J. Lott, M. Breedy, L. Bunch, P. Feltovich, M. Johnson, and
H. Jung. New developments in ontology-based policy management: Increasing the prac-
ticality and comprehensiveness of KAoS. In Proceedings of Workshop on Policies for
Distributed Systems and Networks, pages 145–152. IEEE Computer Society, 2008.

[77] R. van Eijk, F. de Boer, W. van der Hoek, and J.-J. Meyer. Open multi-agent sys-
tems: agent communication and integration. In N. Jennings and Y. Lesperance, editors,
Intelligent Agents VI: Agent Theories, Architectures, and Languages, LNCS 1757, pages
218–232. Springer, 2000.

[78] J. Vazquez-Salceda, V. Dignum, and F. Dignum. Organizing multiagent systems.
Autonomous Agents and Multi-Agent Systems, 11(3):307–360, 2005.

[79] M. Venkatraman and M. Singh. Verifying compliance with commitment protocols. Jour-
nal of Autonomous Agents and Multi-Agent Systems, 2(3):217–236, 1999.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[17:35 19/2/2010 jzp071.tex] Paper Size: a4 paper Job: JIGPAL Page: 65 31–65

Executable specification of open multi-agent systems 65

[80] F. Viganò and M. Colombetti. Symbolic model checking of institutions. In Proceedings
of Conference on Electronic commerce, pages 35–44. ACM, 2007.

[81] E. Werner. The design of multi-agent systems. In E. Werner and Y. Demazeau, editors,
Decentralized A.I., volume 3, pages 3–30. Elsevier Science Publishers, 1992.

[82] P. Yolum and M. Singh. Flexible protocol specification and execution: applying event
calculus planning using commitments. In C. Castelfranchi and L. Johnson, editors,
Proceedings of Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 527–535. ACM Press, 2002.

[83] P. Yolum and M. Singh. Reasoning about commitments in the event calculus: An
approach for specifying and executing protocols. Annals of Mathematics and Artificial
Intelligence, 42(1–3):227–253, 2004.

[84] B. Yu. Distributed reputation management for electronic commerce. Computational
Intelligence, 18(4):535–549, 2002.

[85] F. Zambonelli, N. Jennings, and M. Wooldridge. Organisational rules as an abstraction
for the analysis and design of multi-agent systems. International Journal of Software
Engineering and Knowledge Engineering, 11(3):303–328, 2001.

[86] W. Zhang, C. Serban, and N. Minsky. Establishing global properties of multi-agent
systems via local laws. In D. Weyns, editor, Environments for Multiagent Systems III,
LNAI 4389. Springer, 2007.

 at K
arolinska Institutet on M

ay 27, 2015
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/

	Executable specification of open multi-agent systems
	1 Introduction
	2 Running Example: The NetBill Protocol
	3 The Event Calculus
	4 Social Constraints
	4.1 Physical Capability
	4.2 Institutional Power and Valid Actions
	4.3 Permission and Obligation
	4.4 Sanction

	5 Social Roles
	6 Executing the Specification
	6.1 Protocol Animation
	6.2 Run-time Configurations

	7 Discussion


