Distributed Online Learning of Event Definitions

Nikos Katzouris1, Alexander Artikis2,1 and Georios Paliouras1 \\

http://cer.iit.demokritos.gr \\

1National Center for Scientific Research Demokritos, Athens, Greece \\
2University of Piraeus, Piraeus, Greece
Complex Event Recognition

Input ▶

Simple Events

Event Recognition System

Complex Event Definitions

Recognition ▶

Complex Events

Output ■
Complex Event Recognition

Input ➤

Simple Events

Recognition ➤

Event Recognition System

Output ■

Complex Events

Complex Event Definitions

initiatedAt(meeting(X, Y), T) ←
happensAt(active(X), T),
happensAt(active(Y), T),
holdsAt(close(X, Y, 25), T).

terminatedAt(meeting(X, Y), T) ←
happensAt(walking(X), T),
not holdsAt(close(X, Y, 25), T).
Simple Events

happensAt(active(id₀), 10)
holdsAt(coord(id₀, 20.88, 11.90), 10)
happensAt(active(id₁), 10)
holdsAt(coord(id₁, 22.34, 15.23), 10)

Complex Event Definitions

initiatedAt(meeting(X, Y), T) ←
happensAt(active(X), T),
happensAt(active(Y), T),
holdsAt(close(X, Y, 25), T).

terminatedAt(meeting(X, Y), T) ←
happensAt(walking(X), T),
not holdsAt(close(X, Y, 25), T).
Complex Event Recognition

Simple Events

\[
\begin{align*}
\text{happensAt}(active(id_0), 10) \\
\text{holdsAt}(coord(id_0, 20.88, 11.90), 10) \\
\text{happensAt}(active(id_1), 10) \\
\text{holdsAt}(coord(id_1, 22.34, 15.23), 10)
\end{align*}
\]

Complex Event Definitions

\[
\begin{align*}
\text{initiatedAt}(meeting(X, Y), T) & \leftarrow \\
\text{happensAt}(active(X), T), \\
\text{happensAt}(active(Y), T), \\
\text{holdsAt}(close(X, Y, 25), T).
\end{align*}
\]

\[
\begin{align*}
\text{terminatedAt}(meeting(X, Y), T) & \leftarrow \\
\text{happensAt}(walking(X), T), \\
\text{not holdAt}(close(X, Y, 25), T).
\end{align*}
\]

Output

\[
\begin{align*}
\text{holdsAt}(meeting(id_0, id_1), 11) \\
\text{holdsAt}(meeting(id_0, id_1), 12) \\
\text{holdsAt}(meeting(id_0, id_1), 13)
\end{align*}
\]
Learning for Complex Event Recognition

Simple Events

- happensAt(active(id₀), 10)
- holdsAt(coord(id₀, 20.88, 11.90), 10)
- happensAt(active(id₁), 10)
- holdsAt(coord(id₁, 22.34, 15.23), 10)

Complex Events

- holdsAt(meeting(id₀, id₁), 11)
- holdsAt(meeting(id₀, id₁), 12)
- holdsAt(meeting(id₀, id₁), 13)

Complex Event Definitions

- initiatedAt(meeting(X, Y), T) ← happensAt(active(X), T),
 happensAt(active(Y), T),
 holdsAt(close(X, Y, 25), T).
- terminatedAt(meeting(X, Y), T) ← happensAt(walking(X), T),
 not holdsAt(close(X, Y, 25), T).

Learn this From These
Complex Event Recognition using the Event Calculus

- Formal, declarative semantics.
- Representation of complex temporal phenomena.
- Representation of complex atemporal phenomena.
- Very efficient reasoning \rightarrow RTEC.
Complex Event Recognition using the Event Calculus

- Formal, declarative semantics.
- Representation of complex temporal phenomena.
- Representation of complex atemporal phenomena.
- Very efficient reasoning \rightarrow RTEC.
- Direct connections to machine learning \rightarrow Inductive Logic Programming (ILP).
The Event Calculus

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>happensAt(E, T)</td>
<td>Event E occurs at time T</td>
</tr>
<tr>
<td>initiatedAt(F, T)</td>
<td>At time T a period of time for which fluent F holds is initiated</td>
</tr>
<tr>
<td>terminatedAt(F, T)</td>
<td>At time T a period of time for which fluent F holds is terminated</td>
</tr>
<tr>
<td>holdsAt(F, T)</td>
<td>Fluent F holds at time T</td>
</tr>
</tbody>
</table>
The Event Calculus

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>happensAt((E, T))</td>
<td>Event (E) occurs at time (T)</td>
</tr>
<tr>
<td>initiatedAt((F, T))</td>
<td>At time (T) a period of time for which fluent (F) holds is initiated</td>
</tr>
<tr>
<td>terminatedAt((F, T))</td>
<td>At time (T) a period of time for which fluent (F) holds is terminated</td>
</tr>
<tr>
<td>holdsAt((F, T))</td>
<td>Fluent (F) holds at time (T)</td>
</tr>
</tbody>
</table>

Domain-Independent Axioms

\[
\text{holdsAt}(F, T+1) \leftarrow \text{initiatedAt}(F, T).
\]

\[
\text{holdsAt}(F, T+1) \leftarrow \text{holdsAt}(F, T),
\text{not terminatedAt}(F, T).
\]
The Event Calculus

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>happensAt(E, T)</td>
<td>Event E occurs at time T</td>
</tr>
<tr>
<td>initiatedAt(F, T)</td>
<td>At time T a period of time for which fluent F holds is initiated</td>
</tr>
<tr>
<td>terminatedAt(F, T)</td>
<td>At time T a period of time for which fluent F holds is terminated</td>
</tr>
<tr>
<td>holdsAt(F, T)</td>
<td>Fluent F holds at time T</td>
</tr>
</tbody>
</table>

Domain-Independent Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
</tr>
</thead>
<tbody>
<tr>
<td>holdsAt(F, $T+1$) ← initiatedAt(F, T).</td>
</tr>
<tr>
<td>holdsAt(F, $T+1$) ← holdsAt(F, T), not terminatedAt(F, T).</td>
</tr>
</tbody>
</table>

Domain-Specific Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiatedAt($meeting(X, Y)$, T) ← happensAt($active(X)$, T),</td>
</tr>
<tr>
<td>happensAt($active(Y)$, T), holdsAt($close(X, Y, 25)$, T).</td>
</tr>
<tr>
<td>terminatedAt($meeting(X, Y)$, T) ← happensAt($walking(X)$, T),</td>
</tr>
<tr>
<td>not holdsAt($close(X, Y, 25)$, T).</td>
</tr>
</tbody>
</table>
Online Inductive Logic Programming

Challenge:

- Inductive Logic Programming algorithms are batch learners.
 - Each candidate in the search space is evaluated on the entire dataset.

Goal:

- Online learning:
 - Examples arrive in a stream.
 - Each example is “seen” once.

Approach:

- Make decisions from subsets of the stream:
 - Decisions are optimal “locally”.
 - Decisions are optimal “globally”...
 - within an error margin ϵ,
 - with probability $1-\delta$.
The Hoeffding Bound

- X is a random variable.
- X_1, \ldots, X_N are N independent observations of X's values.
- Let \bar{X} be the known, observed mean of X.
- Let \hat{X} be the unknown, true mean of X.

Then:
\[\bar{X} - \epsilon \leq \hat{X} \leq \bar{X} + \epsilon, \text{ with probability } 1 - \delta, \]
where
\[\epsilon = \sqrt{\frac{\ln(1/\delta)}{2N}} \]
The Hoeffding Bound

- X is a random variable.
- X_1, \ldots, X_N are N independent observations of X’s values.
- Let \bar{X} be the known, observed mean of X.
- Let \hat{X} be the unknown, true mean of X.
- Then:

$$\bar{X} - \epsilon \leq \hat{X} \leq \bar{X} + \epsilon, \text{ with probability } 1 - \delta,$$

where

$$\epsilon = \sqrt{\frac{\ln(1/\delta)}{2N}}$$
Online Rule Learning

Candidate Rules

\[R_1: 0.345 \]
\[R_2: 0.232 \]
\[R_3: 0.145 \]
\[R_4: 0.612 \]
\[R_5: 0.325 \]

Find the best candidate across the stream

\[\bar{X} - \epsilon \leq \hat{X} \leq \bar{X} + \epsilon, \text{ where} \]
\[\epsilon = \sqrt{\ln \left(\frac{1}{\delta} \right)} \]
\[2 \cdot N \]

Training stream

\[\cdots \cdots \]

Find the best candidate across the stream

\[\bar{X} - \epsilon > 0 \Rightarrow \hat{X} > 0 \Rightarrow \text{Best Rule is indeed the best rule, with probability } 1 - \delta. \]
Online Rule Learning

Candidate Rules

\[R_1: 0.345 \]
\[R_2: 0.232 \]
\[R_3: 0.145 \]
\[R_4: 0.612 \]
\[R_5: 0.325 \]

Find the best candidate across the stream

Training stream

As examples stream in...

Monitor \(\bar{X} = \text{score}_{\text{BestRule}} - \text{score}_{\text{SecondBestRule}} \)
Online Rule Learning

Candidate Rules

\[R_1: 0.345 \]
\[R_2: 0.232 \]
\[R_3: 0.145 \]
\[R_4: 0.612 \]
\[R_5: 0.325 \]

Training stream

Find the best candidate across the stream

As examples stream in...

\[\bar{X} = \text{score}_{\text{Best Rule}} - \text{score}_{\text{Second Best Rule}} \]

Continue until the number \(N \) of examples

\[\bar{X} > \epsilon = \sqrt{\frac{\ln(1/\delta)}{2N}} \]
Online Rule Learning

Candidate Rules

$R_1: 0.345$

$R_2: 0.232$

$R_3: 0.145$

$R_4: 0.612$

$R_5: 0.325$

Find the best candidate across the stream

Training stream

$\bar{X} - \epsilon \leq \hat{X} \leq \bar{X} + \epsilon$, where $\epsilon = \sqrt{\frac{\ln(1/\delta)}{2N}}$

As examples stream in...

Monitor $\bar{X} = \text{score}_{\text{BestRule}} - \text{score}_{\text{SecondBestRule}}$

Then

$\bar{X} - \epsilon > 0 \Rightarrow$
$\hat{X} > 0 \Rightarrow$

BestRule is indeed the best rule, with probability $1 - \delta$.

Continue until the number N of examples makes $\bar{X} > \epsilon = \sqrt{\frac{\ln(1/\delta)}{2N}}$
Online Rule Learning

Bottom Clause \(\bot\):

\[
\text{initiatedAt}(\text{meet}(X, Y), T) \leftarrow
\text{happensAt}(\text{active}(X), T), \text{happensAt}(\text{inactive}(Y), T), \text{holdsAt}(\text{close}(X, Y, 25), T).
\]

Training stream

Used \(\mathcal{O}\left(\frac{1}{\varepsilon^2 \ln \frac{1}{\delta}}\right)\) examples

\[
\text{initiatedAt}(\text{meet}(X, Y), T) \leftarrow
\text{happensAt}(\text{active}(X), T), \text{happensAt}(\text{inactive}(Y), T).
\]

\[
\text{initiatedAt}(\text{meet}(X, Y), T) \leftarrow
\text{happensAt}(\text{active}(X), T), \text{happensAt}(\text{inactive}(Y), T), \text{holdsAt}(\text{close}(X, Y, 25), T).
\]

\[
\text{initiatedAt}(\text{meet}(X, Y), T) \leftarrow
\text{happensAt}(\text{active}(X), T), \text{happensAt}(\text{inactive}(Y), T), \text{not happensAt}(\text{abrupt}(X), T), \text{not happensAt}(\text{running}(X), T), \text{holdsAt}(\text{orientation}(X, Y, 45), T).
\]
Learning a Theory

- As training examples stream-in...
 - If a positive example is “missed”
 - Add new rule (cover new positives)
 - Gradually expand existing rules. (eliminate negatives)
 - If a rule turns out to be “bad”
 - Remove rule (prune bad rules)
Distributed Learning I: Synchronous Strategy
Distributed Learning I: Synchronous Strategy
Distributed Learning I: Synchronous Strategy

- Generated rule R
- Broadcast R
- Local Stream
- Node 1
- Node 2
- Node 3
- Node N
- Node 4
Distributed Learning I: Synchronous Strategy

Node 2

Hoeffding test succeeds for rule R

Node 1

Node 3

Node N

Local Stream

Local Stream

Local Stream

Local Stream

...
Distributed Learning I: Synchronous Strategy

Node 2

Hoeffding test succeeds for rule R

Request evaluation stats for R

Node 1

Node 3

Node N

Node 4

Local Stream

Local Stream

Local Stream

Local Stream

Local Stream
Distributed Learning I: Synchronous Strategy

Hoeffding test succeeds for rule R

Send replies

Local Stream

Node 2

Node 1

Node 3

Node N

Node 4
Distributed Learning I: Synchronous Strategy

Add received stats to local ones and re-assess specialization

Node 1 → Node 2 → Node 3 → Node N → Local Stream → Node 4 → Local Stream
Distributed Learning I: Synchronous Strategy

If R is specialized to R', broadcast R'.
Distributed Learning II: Asynchronous Strategy

Each node learns independently from its own training stream.
Distributed Learning II: Asynchronous Strategy

Each node learns independently from its own training stream.

Each node runs the monolithic OLED algorithm.

- Generate new rules.
- Specialize rules.
- Prune rules
Distributed Learning II: Asynchronous Strategy

Each node learns independently from its own training stream.

If some rule R is good-enough locally...

Broadcast R
Distributed Learning II: Asynchronous Strategy

Return the rules common to the majority of the nodes.

Node 1
Node 2
Node 3
Node 4
Node N
Local Stream
Local Stream
Local Stream
Local Stream
Local Stream

...
Empirical Evaluation I: Activity Recognition

- Activity recognition using a benchmark dataset (CAVIAR).
 - 28 surveillance videos.
- Input: short-term activities per video frame + contextual information:
 - walking, active, inactive, running.
 - coordinates, orientation, occlusion.
- Learn concepts for Move and Meet.
- 10-fold cross-validation.
Empirical Evaluation: Activity Recognition

<table>
<thead>
<tr>
<th>#Cores</th>
<th>Time (sec)</th>
<th>Speed-up</th>
<th>F_1-score</th>
<th>Theory size</th>
<th># Msgs</th>
</tr>
</thead>
</table>

(A) meeting

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sync</td>
<td>async</td>
<td>sync</td>
<td>async</td>
<td>sync</td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>–</td>
<td>0.798</td>
<td>28</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>32</td>
<td>2.5</td>
<td>1.4</td>
<td>0.818</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>23</td>
<td>3</td>
<td>2</td>
<td>0.805</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>21</td>
<td>3</td>
<td>2.1</td>
<td>0.802</td>
</tr>
</tbody>
</table>

(B) meeting

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sync</td>
<td>async</td>
<td>sync</td>
<td>async</td>
<td>sync</td>
</tr>
<tr>
<td>1</td>
<td>7588</td>
<td>–</td>
<td>0.834</td>
<td>36</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>2144</td>
<td>2132</td>
<td>3.5</td>
<td>3.5</td>
<td>0.834</td>
</tr>
<tr>
<td>4</td>
<td>1682</td>
<td>1672</td>
<td>4.5</td>
<td>4.5</td>
<td>0.834</td>
</tr>
<tr>
<td>8</td>
<td>912</td>
<td>883</td>
<td>8.3</td>
<td>8.5</td>
<td>0.832</td>
</tr>
</tbody>
</table>

(A) moving

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sync</td>
<td>async</td>
<td>sync</td>
<td>async</td>
<td>sync</td>
</tr>
<tr>
<td>1</td>
<td>68</td>
<td>–</td>
<td>0.744</td>
<td>21</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>51</td>
<td>2.1</td>
<td>1.3</td>
<td>0.740</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>42</td>
<td>2.5</td>
<td>1.6</td>
<td>0.739</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>40</td>
<td>2.6</td>
<td>1.7</td>
<td>0.743</td>
</tr>
</tbody>
</table>

(B) moving

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sync</td>
<td>async</td>
<td>sync</td>
<td>async</td>
<td>sync</td>
</tr>
<tr>
<td>1</td>
<td>7898</td>
<td>–</td>
<td>0.758</td>
<td>34</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>2312</td>
<td>2276</td>
<td>3.4</td>
<td>3.4</td>
<td>0.753</td>
</tr>
<tr>
<td>4</td>
<td>1788</td>
<td>1761</td>
<td>4.4</td>
<td>4.4</td>
<td>0.756</td>
</tr>
<tr>
<td>8</td>
<td>966</td>
<td>932</td>
<td>8.1</td>
<td>8.4</td>
<td>0.753</td>
</tr>
</tbody>
</table>
Implementation & Future Work

▶ Future Work
 ▶ Evaluate on larger and more demanding datasets.
 ▶ More robust distribution strategies.

▶ Code
 ▶ Scala + akka Actors library.
 ▶ Clingo answer set solver for reasoning.
 ▶ GitHub: http://github.com/nkatzz/OLED

▶ Part of the presented work was developed after the submission to ILP 2017.
Appendix I: Learning Sets of Clauses

<table>
<thead>
<tr>
<th>TP</th>
<th>Annotation</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>holds</td>
<td>holds</td>
</tr>
<tr>
<td></td>
<td>All ok!</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FP</th>
<th>Annotation</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>not holds</td>
<td>holds</td>
</tr>
<tr>
<td></td>
<td>Incorrectly initiated by clause R_{init}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialize R_{init}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No termination clause “fires”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generate new termination clause</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FN</th>
<th>Annotation</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>holds</td>
<td>not holds</td>
</tr>
<tr>
<td></td>
<td>Incorrectly terminated by clause R_{term}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialize R_{term}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No initiation clause “fires”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generate new initiation clause</td>
<td></td>
</tr>
</tbody>
</table>

OR

Initiation Learner
Reward all clauses that correctly initiate the TP

Termination Learner
Reward all clauses that correctly allow the TP to persist
Appendix I: Learning Sets of Clauses

<table>
<thead>
<tr>
<th>TP</th>
<th>Annotation</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>holds</td>
<td>holds</td>
<td>All ok!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FP</th>
<th>Annotation</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>not holds</td>
<td>holds</td>
<td>Incorrectly initiated by clause R_{init}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Specialize R_{init}</td>
<td>Generate new termination clause</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FN</th>
<th>Annotation</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>holds</td>
<td>not holds</td>
<td>Incorrectly terminated by clause R_{term}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Specialize R_{term}</td>
<td>Generate new initiation clause</td>
</tr>
</tbody>
</table>

Initiation Learner

Termination Learner

Input stream

OR
Appendix I: Learning Sets of Clauses

- **TP (True Positive)**: Annotation holds, Inferred holds
 - All ok!

- **FP (False Positive)**: Annotation not holds, Inferred holds
 - Incorrectly initiated by clause R_{init}
 - Specialize R_{init}
 - Generate new termination clause

- **FN (False Negative)**: Annotation holds, Inferred not holds
 - Incorrectly terminated by clause R_{term}
 - Specialize R_{term}
 - Generate new initiation clause

Initiation Learner
- Reward all clauses that correctly initiate the TP

Termination Learner
- Reward all clauses that correctly allow the TP to persist

Input stream
Appendix I: Learning Sets of Clauses

<table>
<thead>
<tr>
<th>TP</th>
<th>Annotation</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>holds</td>
<td>holds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All ok!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FP</th>
<th>Annotation</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>not holds</td>
<td>holds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrectly initiated by clause R_{init}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specialize R_{init}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No termination clause “fires”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate new termination clause</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FN</th>
<th>Annotation</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>holds</td>
<td>not holds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrectly terminated by clause R_{term}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specialize R_{term}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No initiation clause “fires”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate new initiation clause</td>
</tr>
</tbody>
</table>

Initiation Learner
Penalize all clauses that incorrectly initiate the FP

Termination Learner
Generate new termination clause

Input stream
Appendix I: Learning Sets of Clauses

TP | Annotation: holds | Inferred: holds | All ok!

FP | Annotation: not holds | Inferred: holds | Incorrectly initiated by clause R_{init}
| | | Specialize R_{init} | Generate new termination clause

FN | Annotation: holds | Inferred: not holds | Incorrectly terminated by clause R_{term}
| | | Specialize R_{term} | Generate new initiation clause

OR

Initiation Learner
Generate new initiation clause

Termination Learner
Penalize all clauses that generate the FN

Input stream
Appendix II: Maritime Surveillance Experiments

<table>
<thead>
<tr>
<th>#Cores</th>
<th>Time (sec)</th>
<th>Speed-up</th>
<th>F_1-score</th>
<th>Theory size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>sync</td>
<td>async</td>
<td>sync</td>
</tr>
<tr>
<td>highSpeedIn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>532</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sync</td>
<td>async</td>
<td>sync</td>
</tr>
<tr>
<td>2</td>
<td>116</td>
<td>105</td>
<td>4.58</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>70</td>
<td>6.9</td>
<td>7.6</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>54</td>
<td>8.1</td>
<td>9.8</td>
</tr>
<tr>
<td>lowSpeed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>164</td>
<td>–</td>
<td>–</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sync</td>
<td>async</td>
<td>sync</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>42</td>
<td>3.15</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>43</td>
<td>3.41</td>
<td>3.8</td>
</tr>
<tr>
<td>8</td>
<td>51</td>
<td>54</td>
<td>3.22</td>
<td>3</td>
</tr>
<tr>
<td>stopped</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>98</td>
<td>test</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sync</td>
<td>async</td>
<td>sync</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>51</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>47</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>51</td>
<td>52</td>
<td>1.92</td>
<td>1.8</td>
</tr>
</tbody>
</table>