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Online Probabilistic Complex Event Forecasting

v

Patterns defined as regular expressions.

v

Consume streams of events and forecast when a pattern is
expected to be fully matched.

v

Revise forecasts to reflect changes in the state of the pattern.

v

Remember “arbitrarily” long sequences.
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Llntroduction

Assumptions

v

Selection strategy: (partition)-contiguity.

v

Stream generated by a m-order Markov process.

v

Stream stationary.

v

A forecast reports for how many transitions we will have to
wait until a full match.
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Y ={a, b, c}.

Regular Expression — Pattern Markov Chain
R=a-c-c

No memory.
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Regular Expression — Pattern Markov Chain
R=a-c-c. Y ={a, b, c}. No memory.
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Regular Expression — Pattern Markov Chain
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leplementation

Waiting-Time and Forecasts

» Warm-up period to learn distributions.
» Set a threshold, e.g., Prast = 50%.
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[ Implementation

Example: R=a-b-b-b.
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[ Implementation

Example: R=a-b-b-b.
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[ Implementation

Example: R=a-b-b-b.
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Credit Card Fraud Management: Real Dataset (m
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Credit Card Fraud Management
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L Empirical Analysis

Maritime Monitoring: Real Dataset.

R = Turn - GapStart - GapEnd - Turn,
where Turn = (TurnNorth + TurnEast + TurnSouth + TurnWest)
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L Empirical Analysis

Summary & Future Work

» Contributions:

» Regular expressions as opposed to sequential patterns.

» Forecasts with guaranteed precision, if Markov process.

» Useful forecasts even in applications where we do not know
beforehand the stream properties.
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L Empirical Analysis

Summary & Future Work

» Contributions:

» Regular expressions as opposed to sequential patterns.

» Forecasts with guaranteed precision, if Markov process.

» Useful forecasts even in applications where we do not know
beforehand the stream properties.

» Future work:
» Constraints on event properties.
More selection strategies.
Support drift.
Forecasts that correspong to real time (not transitions).
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Appendix

DA
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Validation tests
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Credit cards (precision for m =1, 2, 3)
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Maritime (precision)

R = Turn - GapStart - GapEnd - Turn
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Maritime (precision)

R = TurnNorth - (TurnNorth + TurnEast)* - TurnSouth
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