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Introduction

Motivation

0start 1 2 3 · · ·50 $ 100 $ 200 $ 500 $

I Is this a fraud?

I How long will it last?

I With what probability?



Event Forecasting with Pattern Markov Chains

Introduction

Motivation

0start 1 2 3 · · ·50 $ 100 $ 200 $ 500 $

I Is this a fraud?

I How long will it last?

I With what probability?



Event Forecasting with Pattern Markov Chains

Introduction

Motivation

0start 1 2 3 · · ·50 $ 100 $ 200 $ 500 $

I Is this a fraud?

I How long will it last?

I With what probability?



Event Forecasting with Pattern Markov Chains

Introduction

Motivation

0start 1 2 3 · · ·50 $ 100 $ 200 $ 500 $

I Is this a fraud?

I How long will it last?

I With what probability?



Event Forecasting with Pattern Markov Chains

Introduction

Online Probabilistic Complex Event Forecasting

I Patterns defined as regular expressions.

I Consume streams of events and forecast when a pattern is
expected to be fully matched.

I Revise forecasts to reflect changes in the state of the pattern.

I Remember “arbitrarily” long sequences.
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Introduction

Assumptions

I Selection strategy: (partition)-contiguity.

I Stream generated by a m-order Markov process.

I Stream stationary.

I A forecast reports for how many transitions we will have to
wait until a full match.
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Theory

Regular Expression → Pattern Markov Chain
R = a · c · c. Σ = {a, b, c}. No memory.
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Theory

Regular Expression → Pattern Markov Chain
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Implementation

Waiting-Time and Forecasts

I Warm-up period to learn distributions.

I Set a threshold, e.g., Pfcast = 50%.
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Implementation

Example: R = a · b · b · b.
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Implementation

Example: R = a · b · b · b.
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Implementation

Example: R = a · b · b · b.
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Empirical Analysis

Credit Card Fraud Management: Real Dataset (m = 1).
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Empirical Analysis

Credit Card Fraud Management: Real Dataset (m = 3).
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Empirical Analysis

Maritime Monitoring: Real Dataset.

R = Turn · GapStart · GapEnd · Turn,
where Turn = (TurnNorth + TurnEast + TurnSouth + TurnWest)
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Empirical Analysis

Summary & Future Work

I Contributions:
I Regular expressions as opposed to sequential patterns.
I Forecasts with guaranteed precision, if Markov process.
I Useful forecasts even in applications where we do not know

beforehand the stream properties.

I Future work:
I Constraints on event properties.
I More selection strategies.
I Support drift.
I Forecasts that correspong to real time (not transitions).
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Appendix

Validation tests
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Figure: R = a · (a + b)∗ · c
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Appendix

Credit cards (precision for m = 1, 2, 3)
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Appendix

Maritime (precision)

R = Turn · GapStart · GapEnd · Turn
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Appendix

Maritime (precision)

R = TurnNorth · (TurnNorth + TurnEast)∗ · TurnSouth
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