Can Computers Understand what is Happening? Complex Event Forecasting

Alexander Artikis^{1,2} and Periklis Mantenoglou^{1,3} Slides: Elias Alevizos¹

> ¹NCSR Demokritos, Athens, Greece ²University of Piraeus, Greece ³NKUA, Greece

> > https://cer.iit.demokritos.gr

Complex Event Forecasting (CEF)*,[†]

^{*}Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

[†]Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

Complex Event Forecasting (CEF)*,[†]

^{*}Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

[†]Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

Complex Event Forecasting (CEF)

start
$$\rightarrow 0$$
 $\xrightarrow{slowSpeedStart}$ 1 $\xrightarrow{TurnRate = 11}$ 1 $\xrightarrow{TurnRate = 12}$ \cdots

- Is this a fishing manoeuvre?
- ► How long will it last?
- With what probability?

Complex Event Forecasting (CEF)

$$\mathsf{start} \to \underbrace{\mathbf{0}}^{slowSpeedStart} \underbrace{\mathbf{1}}^{TurnRate = 11} \underbrace{\mathbf{1}}^{TurnRate = 12} \underbrace{\cdots}$$

- Is this a fishing manoeuvre?
- How long will it last?
- With what probability?
- Given a stream of events S and a pattern R,
 - Recognition: Find the 'full matches' of R in S.

Complex Event Forecasting (CEF)

start
$$\rightarrow 0$$
 $\xrightarrow{slowSpeedStart}$ 1 $\xrightarrow{TurnRate = 11}$ 1 $\xrightarrow{TurnRate = 12}$ \cdots

- Is this a fishing manoeuvre?
- How long will it last?
- With what probability?
- ▶ Given a stream of events *S* and a pattern *R*,
 - Recognition: Find the 'full matches' of R in S.
 - Forecast the full matches.

Wayeb: A Complex Event Forecasting system*

https://cer.iit.demokritos.gr (forecasting)

^{*}https://github.com/ElAlev/Wayeb

Complex Event Forecasting vs Machine Learning

In Machine Learning, the goal is to predict the output of a function on previously unseen input data.

The input data need not necessarily have a temporal dimension.

Complex Event Forecasting vs Machine Learning

In Machine Learning, the goal is to predict the output of a function on previously unseen input data.

- The input data need not necessarily have a temporal dimension.
- In Complex Event Forecasting, the task is to predict the temporally future output of a function, ie the future occurrence of an event.
 - ► Time is thus a crucial component.
 - From the (current) timepoint where a forecast is produced until the (future) timepoint for which we try to make a forecast, no data is available.

Complex Event Forecasting vs Machine Learning

We have Deep Learning and it seems to work. Can we go home?

Complex event forecasting:

- ► Formal semantics* for trustworthy models.
- Explanation why did we forecast a complex event?
- Machine Learning is necessary. But:
 - Complex events are rare.
 - Supervision is scarce.
- More often than not, background knowledge is available let's use it!

^{*}Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.

Automata-based Complex Event Forecasting*

Patterns defined as regular expressions.

^{*}Alevizos et al, Event Forecasting with Pattern Markov Chains. Distributed and Event-based Systems (DEBS), 2017.

Automata-based Complex Event Forecasting*

- Patterns defined as regular expressions.
- Consume streams of events and forecast when a pattern is expected to be fully matched.

^{*}Alevizos et al, Event Forecasting with Pattern Markov Chains. Distributed and Event-based Systems (DEBS), 2017.

Automata-based Complex Event Forecasting*

- Patterns defined as regular expressions.
- Consume streams of events and forecast when a pattern is expected to be fully matched.
- Revise forecasts to reflect changes in the 'state' of the pattern.

^{*}Alevizos et al, Event Forecasting with Pattern Markov Chains. Distributed and Event-based Systems (DEBS), 2017.

▶ Given a stream of events *S* and a pattern *R*:

Convert *R* into an automaton *A*.

▶ Given a stream of events *S* and a pattern *R*:

- Convert *R* into an automaton *A*.
- Feed S to A.

▶ Given a stream of events *S* and a pattern *R*:

- Convert *R* into an automaton *A*.
- Feed S to A.
- For every (non-final) state A finds itself in, estimate the probability of reaching its final state within some window w.

• Given a stream of events S and a pattern R:

- Convert *R* into an automaton *A*.
- Feed S to A.
- For every (non-final) state A finds itself in, estimate the probability of reaching its final state within some window w.
- If the model is confident enough, emit a forecast.

▶ Given a stream of events *S* and a pattern *R*:

- Convert *R* into an automaton *A*.
- Feed S to A.
- For every (non-final) state A finds itself in, estimate the probability of reaching its final state within some window w.
- If the model is confident enough, emit a forecast.
- We may also emit a future interval within which a complex event is expected.

Probability Estimation

Convert pattern automata into Markov chains to produce a probabilistic model for the automaton's behaviour.

Probability Estimation

- Convert pattern automata into Markov chains to produce a probabilistic model for the automaton's behaviour.
- How long (number of transitions) will we have to wait before reaching the final state?
 - Calculate the waiting-time distribution for each state.

Probability Estimation

- Convert pattern automata into Markov chains to produce a probabilistic model for the automaton's behaviour.
- How long (number of transitions) will we have to wait before reaching the final state?
 - Calculate the waiting-time distribution for each state.
- Scan the waiting-time distributions to produce forecasts.

Regular Expression \rightarrow Pattern Markov Chain

 $R = a \cdot c \cdot c.$ $\Sigma = \{a, b, c\}.$ No memory.

Regular Expression \rightarrow Pattern Markov Chain

 $R = a \cdot c \cdot c.$ $\Sigma = \{a, b, c\}.$ No memory.

Regular Expression \rightarrow Pattern Markov Chain

Waiting-Time and Forecasts

• Assume $R := a \cdot b \cdot b \cdot b$; $\Sigma = \{a, b\}$; and no memory.

Example: $R = a \cdot b \cdot b \cdot b$.

Example: $R = a \cdot b \cdot b \cdot b$.

Example: $R = a \cdot b \cdot b \cdot b$.

Symbolic Automata & Variable-order Markov Models*

Use symbolic automata.

- Infinite alphabet.
- Closed under concatenation, intersection, union, Kleene-star and complement; determinisable.

^{*}Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022.

Symbolic Automata & Variable-order Markov Models*

Use symbolic automata.

- Infinite alphabet.
- Closed under concatenation, intersection, union, Kleene-star and complement; determinisable.
- Use a variable-order Markov model.
 - Prediction Suffix Trees.
 - Focus on the statistically significant properties of the stream.

^{*}Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022.

- Let's compute the waiting-time distributions.
- Assume automaton in state 1 and suffix is aa.
- Estimate distribution step by step, for k = 1, k = 2, etc.

- k = 1.
- Assume another a arrives. Suffix still aa, automaton again in state 1.
- Reaches a non-final state. Not interested.

- k = 1.
 - Assume b arrives first. Suffix is b, automaton in state 2.
- Reaches a final state. No other options. Thus P(W_{1,aa} = 1) = 0.25.

- ▶ k = 2.
- Assume b arrives first. Suffix is b, automaton in state 2.
- Reaches a final state already at k = 1. All downstream paths pruned.

- ▶ k = 2.
- Assume *a* arrives first. Then *b*.
- Reaches a final state at k = 2. Only path leading to a final at k = 2. Thus P(W_{{1,aa}} = 2) = 0.75 * 0.25 = 0.1875.

Hyper-paremeter tuning for Complex Event Forecasting

- Complex Event Forecasting systems have hyper-parameters, eg model order, confidence threshold, etc.
- Finding the proper values through exhaustive search may be sub-optimal.

Hyper-paremeter tuning for Complex Event Forecasting

- Complex Event Forecasting systems have hyper-parameters, eg model order, confidence threshold, etc.
- Finding the proper values through exhaustive search may be sub-optimal.
- Efficient search of the hyper-parameter space with Bayesian Optimization.

Bayesian Optimization for Complex Event Forecasting*

^{*}Stavropoulos et al, Optimizing complex event forecasting. Distributed and Event-based Systems (DEBS), 2022.

Exhaustive search vs Bayesian Optimization

PMin

Summary

Complex event forecasting:

- Symbolic automata for complex event patterns
 - Closure properties.
 - Formal compositional semantics.

Summary

Complex event forecasting:

- Symbolic automata for complex event patterns
 - Closure properties.
 - Formal compositional semantics.
- Prediction suffix trees for long-term dependencies
 - Higher accuracy.
 - Comparable training time and acceptable throughput.

Summary

Complex event forecasting:

- Symbolic automata for complex event patterns
 - Closure properties.
 - Formal compositional semantics.
- Prediction suffix trees for long-term dependencies
 - Higher accuracy.
 - Comparable training time and acceptable throughput.

Current work:

- CEF with Symbolic Register Automata*:
 - Symbolic automata with 'memory'.
 - Express *n*-ary relations between events.

^{*}Alevizos et al, Complex Event Recognition with Symbolic Register Transducers. VLDB, 2024.