
Can Computers Understand what is Happening?
Complex Event Forecasting

Alexander Artikis1,2 and Periklis Mantenoglou1,3

Slides: Elias Alevizos1

1NCSR Demokritos, Athens, Greece
2University of Piraeus, Greece

3NKUA, Greece

https://cer.iit.demokritos.gr

https://cer.iit.demokritos.gr


Complex Event Forecasting (CEF)∗,†

Input I Forecasting I Output �

Event

Forecasting

System

Complex

Event

Definitions

Simple Events

. . .. . .

. . .. . .

slowSpeedStart(ID0 , 22/2/18 .00 :00 :12 )
turn(ID0 , 11 , 22/2/18 .00 :03 :12 )
turn(ID0 , 12 , 22/2/18 .00 :06 :46 )
slowSpeedEnd(ID0 , 22/2/18 .00 :10 :33 )
. . .

Recognised Complex Events

. . . . . .

. . . . . .

PATTERN SEQ(slowSpeedStart(VesselId ,Timestamp),
ITER(turn(VesselId ,TurnRate,Timestamp)),
slowSpeedEnd(VesselId ,Timestamp))

WHERE turn[i ].TurnRate > 10
PARTITION BY VesselId
WITHIN 3600

∗
Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

†
Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.
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Complex Event Forecasting (CEF)

0start 1 1 · · ·
slowSpeedStart TurnRate = 11 TurnRate = 12

▶ Is this a fishing manoeuvre?

▶ How long will it last?

▶ With what probability?

▶ Given a stream of events S and a pattern R,
▶ Recognition: Find the ‘full matches’ of R in S .
▶ Forecast the full matches.
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Wayeb: A Complex Event Forecasting system∗

https://cer.iit.demokritos.gr (forecasting)

∗
https://github.com/ElAlev/Wayeb
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https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/
https://github.com/ElAlev/Wayeb


Complex Event Forecasting vs Machine Learning

▶ In Machine Learning, the goal is to predict the output of a
function on previously unseen input data.
▶ The input data need not necessarily have a temporal

dimension.

▶ In Complex Event Forecasting, the task is to predict the
temporally future output of a function, ie the future
occurrence of an event.
▶ Time is thus a crucial component.
▶ From the (current) timepoint where a forecast is produced

until the (future) timepoint for which we try to make a
forecast, no data is available.
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Complex Event Forecasting vs Machine Learning

We have Deep Learning and it seems to work. Can we go home?

Complex event forecasting:

▶ Formal semantics∗ for trustworthy models.

▶ Explanation — why did we forecast a complex event?
▶ Machine Learning is necessary. But:

▶ Complex events are rare.
▶ Supervision is scarce.

▶ More often than not, background knowledge is available —
let’s use it!

∗
Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems,

2021.
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Automata-based Complex Event Forecasting∗

▶ Patterns defined as regular expressions.

▶ Consume streams of events and forecast when a pattern is
expected to be fully matched.

▶ Revise forecasts to reflect changes in the ‘state’ of the pattern.

∗
Alevizos et al, Event Forecasting with Pattern Markov Chains. Distributed and Event-based Systems

(DEBS), 2017.
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Approach overview

▶ Given a stream of events S and a pattern R:
▶ Convert R into an automaton A.

▶ Feed S to A.
▶ For every (non-final) state A finds itself in, estimate the

probability of reaching its final state within some window w .
▶ If the model is confident enough, emit a forecast.
▶ We may also emit a future interval within which a complex

event is expected.
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Probability Estimation

▶ Convert pattern automata into Markov chains to produce a
probabilistic model for the automaton’s behaviour.

▶ How long (number of transitions) will we have to wait before
reaching the final state?
▶ Calculate the waiting-time distribution for each state.

▶ Scan the waiting-time distributions to produce forecasts.
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Regular Expression → Pattern Markov Chain

R = a · c · c. Σ = {a, b, c}. No memory.

0start 1 2 3

b, c

a

a

c

b

c

a

b a

b, c

0 1 2 3

P (b) + P (c)

P (a)

P (a)

P (c)

P (b)

P (c)

P (b)

P (a)

1.0
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Regular Expression → Pattern Markov Chain

R = a · c · c. Σ = {a, b, c}. m = 1.

0b

0c

1a 2c 3c

P (b | b)

P (c | b)

P (a | b)

P (a | a)

P (c | a)

P (b | a)

P (c | c)

P (b | c)

P (a | c)

1.0

P (c | c)

P (b | c)
P (a | c)
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Waiting-Time and Forecasts

▶ Assume R := a · b · b · b; Σ = {a, b}; and no memory.

0start 1 2 3 4
a b b b
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Example: R = a · b · b · b.
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Example: R = a · b · b · b.
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Symbolic Automata & Variable-order Markov Models∗

▶ Use symbolic automata.
▶ Infinite alphabet.
▶ Closed under concatenation, intersection, union, Kleene-star

and complement; determinisable.

▶ Use a variable-order Markov model.
▶ Prediction Suffix Trees.
▶ Focus on the statistically significant properties of the stream.

∗
Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022.
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Complex Event Forecasting with Prediction Suffix Trees

0start 1 2

b

a

a

b

a

b

ε,(0.6,0.4)

a,(0.7,0.3)

aa,(0.75,0.25) ba,(0.8,0.2)

aba,(0.9,0.1) bba,(0.1,0.9)

b,(0.5,0.5)

{1,aa}

▶ Let’s compute the waiting-time distributions.

▶ Assume automaton in state 1 and suffix is aa.

▶ Estimate distribution step by step, for k = 1,
k = 2, etc.
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Complex Event Forecasting with Prediction Suffix Trees

0start 1 2
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{1,aa} 6

a,0.75

▶ k = 1.

▶ Assume another a arrives. Suffix still aa,
automaton again in state 1.

▶ Reaches a non-final state. Not interested.
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Complex Event Forecasting with Prediction Suffix Trees

0start 1 2
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{2,b} 4
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▶ k = 1.

▶ Assume b arrives first. Suffix is b, automaton in
state 2.

▶ Reaches a final state. No other options. Thus
P(W{1,aa} = 1) = 0.25.
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Complex Event Forecasting with Prediction Suffix Trees
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▶ k = 2.

▶ Assume b arrives first. Suffix is b, automaton in
state 2.

▶ Reaches a final state already at k = 1. All
downstream paths pruned.
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Complex Event Forecasting with Prediction Suffix Trees
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Complex Event Forecasting with Prediction Suffix Trees
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▶ k = 2.

▶ Assume a arrives first. Then b.

▶ Reaches a final state at k = 2. Only path
leading to a final at k = 2. Thus
P(W{1,aa} = 2) = 0.75 ∗ 0.25 = 0.1875.
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Hyper-paremeter tuning for Complex Event Forecasting

▶ Complex Event Forecasting systems have hyper-parameters,
eg model order, confidence threshold, etc.

▶ Finding the proper values through exhaustive search may be
sub-optimal.

▶ Efficient search of the hyper-parameter space with Bayesian
Optimization.
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Bayesian Optimization for Complex Event Forecasting∗

Training 
Time 
(tt),
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(MCC)

Statistics 
Collector

m,
pMin,
γ

Benchmarker
• Prescribed next c=[m,θfc,pMin,γ]

micro-benchmark 
• Current optimal copt[m, θfc, pMin, γ]

if ¬convergence()
run micro-benchmark

else deploy copt[m, θfc, pMin, γ]

Training 
Data

Validation
Data

Wayeb CEF Engine

Learning a
prediction
suffix tree

Estimation of
waiting-time 
distributions 
for each state

Construction 
of 
forecasts

BO (GPR) Model

Acquisition Function

BO Cost Modeler

Sc
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c
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 f
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Completed micro-
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θfc

Next micro-benchmark

∗
Stavropoulos et al, Optimizing complex event forecasting. Distributed and Event-based Systems (DEBS),

2022.

23 / 25



Exhaustive search vs Bayesian Optimization
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Summary

Complex event forecasting:
▶ Symbolic automata for complex event patterns

▶ Closure properties.
▶ Formal compositional semantics.

▶ Prediction suffix trees for long-term dependencies
▶ Higher accuracy.
▶ Comparable training time and acceptable throughput.

Current work:
▶ CEF with Symbolic Register Automata:

▶ Symbolic automata with ‘memory’.
▶ Express n-ary relations between events.
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