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About the Tutorial

Contributors:

▶ Elias Alevizos.

▶ Manolis Pitsikalis.

▶ Efthimis Tsilionis.

Resources: http://cer.iit.demokritos.gr

▶ Slides: http://cer.iit.demokritos.gr/talks

▶ Code: http://cer.iit.demokritos.gr/software

▶ Data: http://cer.iit.demokritos.gr/datasets

▶ Opportunities for (funded) collaboration: job openings and
topics for BSc/MSc theses and internships
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https://manospits.github.io
http://cer.iit.demokritos.gr
http://cer.iit.demokritos.gr/talks
http://cer.iit.demokritos.gr/software
http://cer.iit.demokritos.gr/datasets
https://cer.iit.demokritos.gr/careers/
https://www.iit.demokritos.gr/education/subjects-msc-bsc-internships/?taxonomy-0=research_tags&term-0=event_recognition


Complex Event Recognition & Applications



Complex Event Recognition (Event Pattern Matching)∗,†

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Simple Event Stream

. . .. . .

. . .. . .

Complex Event Stream

. . . . . .

. . . . . .

https://rdcu.be/cNkQE

∗
Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

†
Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.
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Maritime Situational Awareness∗

http://www.marinetraffic.com

https://cer.iit.demokritos.gr (fishing vessel)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.
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Maritime Situational Awareness∗

https://cer.iit.demokritos.gr (tugging)

https://cer.iit.demokritos.gr (pilot boarding)

https://www.skylight.global (rendez-vous)

https://www.skylight.global (enter area)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.
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https://www.youtube.com/watch?v=QwVsPZy-0lY&feature=emb_logo
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/
https://www.youtube.com/watch?v=xsATVZWcnaU&feature=emb_logo
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/
https://www.skylight.global/resources
https://www.skylight.global/resources


Data Challenges

▶ Velocity, Volume: Millions of position signals/day at European
scale.

▶ Variety: Position signals need to be combined with other data
streams
▶ Weather forecasts, sea currents, etc.

▶ ... and static information
▶ NATURA areas, shallow waters areas, coastlines, etc.

▶ Lack of Veracity: GPS manipulation, vessels reporting false
identity, communication gaps.

▶ Distribution: Vessels operating across the globe.
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Human Activity Recognition

https://cer.iit.demokritos.gr (activity recognition)
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Human Activity Recognition

Input Output

340 inactive(id0)

340 p(id0)=(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2)=(25.88,−19.80)

340 active(id1)

340 p(id1)=(20.88,−11.90)

340 walking(id3)

340 p(id3)=(24.78,−18.77)

380 walking(id3)

380 p(id3)=(27.88,−9.90)

380 walking(id2)

380 p(id2)=(28.27,−9.66)
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Human Activity Recognition
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City Transport & Traffic Management
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Credit Card Fraud Recognition

Simple events:

▶ Credit card transactions from all over the world.

Complex events:

▶ Cloned card — a credit card is being used simultaneously in
different countries.

▶ New high use — the card is being frequently used in
merchants or countries never used before.

▶ Potential batch fraud — many transactions from multiple
cards in the same point-of-sale terminal in high amounts.

9 / 31



Credit Card Fraud Recognition

▶ Fraud must be detected within a matter of milliseconds.

▶ Fraudulent transactions: 0.1% of the total number of
transactions.

▶ Fraud is constantly evolving.

▶ Erroneous transactions, missing fields.
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Requirements

▶ Expressive representation
▶ to capture complex relationships between the events that

stream into the system.

▶ Efficient reasoning
▶ to support real-time decision-making in large-scale,

(geographically) distributed applications.

▶ Automated knowledge construction
▶ to avoid the time-consuming, error-prone manual CE definition

development.

▶ Reasoning under uncertainty
▶ to deal with various types of noise.

▶ Complex event forecasting
▶ to support proactive decision-making.
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Course Structure

▶ Introduction to Complex Event Recognition (CER).
▶ We have Deep Learning and it seems to work — can we go

home now?

▶ Formal Models for CER
▶ ... including interval-based and incremental CER.

▶ Probabilistic CER.

▶ Complex Event Forecasting.

▶ Open issues & further research.
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Complex Event Recognition &
Related Research



Complex Event Recognition vs
DataBase Management Systems∗

Complex event recognition (CER) systems:

▶ Process data without storing them.

▶ Data are continuously updated.
▶ Data stream into the system in high velocity.
▶ Data streams are large (usually unbounded).

▶ No assumption can be made on data arrival order.
▶ Users install standing/continuous queries:

▶ Queries deployed once and executed continuously until
removed.

▶ Online reasoning.

▶ Latency requirements are very strict.

∗
Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing.

ACM Computing Surveys, 2012.
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Complex Event Recognition vs
Data Stream Management Systems

Data stream management systems:

▶ Handle (unbounded) streams as opposed to tables.

▶ Typically perform a single-pass over the data.

▶ Support continuous queries.

▶ Language with limited expressivity.

CER systems:

▶ Represent complex temporal patterns of events.
▶ The patterns may also be extended by spatial operators.

▶ A sequence of transactions using the same credit card, with an
increasing amount withdrawn or spent, in a short period of
time, in large distances.

14 / 31



Complex Event Recognition vs
Data Stream Management Systems

Data stream management systems:

▶ Handle (unbounded) streams as opposed to tables.

▶ Typically perform a single-pass over the data.

▶ Support continuous queries.

▶ Language with limited expressivity.

CER systems:

▶ Represent complex temporal patterns of events.
▶ The patterns may also be extended by spatial operators.

▶ A sequence of transactions using the same credit card, with an
increasing amount withdrawn or spent, in a short period of
time, in large distances.

14 / 31



Complex Event Recognition vs
Data Stream Management Systems

Data stream management systems:

▶ Handle (unbounded) streams as opposed to tables.

▶ Typically perform a single-pass over the data.

▶ Support continuous queries.

▶ Language with limited expressivity.

CER systems:

▶ Represent complex temporal patterns of events.

▶ The patterns may also be extended by spatial operators.
▶ A sequence of transactions using the same credit card, with an

increasing amount withdrawn or spent, in a short period of
time, in large distances.

14 / 31



Complex Event Recognition vs
Data Stream Management Systems

Data stream management systems:

▶ Handle (unbounded) streams as opposed to tables.

▶ Typically perform a single-pass over the data.

▶ Support continuous queries.

▶ Language with limited expressivity.

CER systems:

▶ Represent complex temporal patterns of events.
▶ The patterns may also be extended by spatial operators.

▶ A sequence of transactions using the same credit card, with an
increasing amount withdrawn or spent, in a short period of
time, in large distances.

14 / 31



Complex Event Recognition vs
Data Stream Management Systems

Data stream management systems:

▶ Handle (unbounded) streams as opposed to tables.

▶ Typically perform a single-pass over the data.

▶ Support continuous queries.

▶ Language with limited expressivity.

CER systems:

▶ Represent complex temporal patterns of events.
▶ The patterns may also be extended by spatial operators.

▶ A sequence of transactions using the same credit card, with an
increasing amount withdrawn or spent, in a short period of
time, in large distances.

14 / 31



Complex Event Recognition vs Deep Learning

We have Deep Learning and it seems to work. Can we go home?

CER:

▶ Formal semantics for trustworthy models.

▶ Explanation — why did we detect a complex event?
▶ Machine Learning is necessary. But:

▶ Complex events are rare.
▶ Supervision is scarce.

▶ More often than not, background knowledge is available —
let’s use it!
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Models of Complex Event Recognition



Models of Complex Event Recognition Systems

▶ Data model.

▶ Time model.

▶ Pattern language model.

▶ Processing model.

▶ Deployment model.

16 / 31



Data Model

▶ An event is an object in the form of a tuple of data
components, signifying an activity and holding certain
relationships to other events by time, causality and
aggregation.

▶ An event with N attributes can be represented as
EventType(Attr1 , . . . ,AttrN ,T ) where the timestamp T is
▶ a point for an instantaneous event;
▶ an interval for a durative event.

▶ For input events, T represents the event occurrence time or
the time at which the event arrives at the CER system.

▶ For output events, T is typically the result of reasoning on the
timestamps of input events.

▶ Event streams are typically heterogeneous: events have
different payload (number and type of attributes).
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Data Model: Examples

Maritime situational awareness:

▶ Instantaneous input/simple event:
speedChange(vessel17 , high, 10 :15 :02).

▶ Durative input/simple event:
stopped(vessel22 , [10 :23 :12 , 10 :32 :10 ]).

▶ Output/complex events (CEs) are typically durative.

▶ Durative CE: illegalFishing(vessel45 , [9 :26 :12 , 12 :42 :16 ]).

▶ Output events (CEs) are often relational.

▶ Durative, relational CE:
tugging(vessel72 , vessel33 , [10 :23 :12 , 10 :57 :10 ]).
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Time Model

Implicit representation (eg, in data stream management systems):

▶ Event timestamps are used for ordering events before entering
the CER engine, and ignored afterwards.

▶ Sometimes the timestamps are also used for selecting a subset
of the input stream.

Explicit representation (CER):
▶ Event timestamps are explicitly used in pattern matching.

▶ Human activity recognition: two people are said to be moving
together if they are walking at the same time.

▶ Credit card fraud detection: increasing amounts withdrawn
within minutes.
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Pattern Language Model

▶ CER refers to matching patterns among the incoming streams
of simple events (SE)s.

▶ Thus, we need a language for expressing such patterns.

▶ We present a basic event algebra with common operators.

▶ Some systems extend this algebra with additional operators.
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A Simple Unifying Event Algebra

ce ::= se |
ce1 ; ce2 | Sequence
ce1 ∨ ce2 | Disjunction
ce∗ | Iteration
¬ ce | Negation
σθ(ce) | Selection
πm(ce) | Projection
[ce]T2

T1
Windowing (from T1 to T2)

▶ Sequence: Two events following each other in time.

▶ Disjunction: Either of two events occurring, regardless of
temporal relations.

▶ The combination of Sequence and Disjunction expresses
Conjunction (both events occurring).
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ce1 ∨ ce2 | Disjunction
ce∗ | Iteration
¬ ce | Negation
σθ(ce) | Selection
πm(ce) | Projection
[ce]T2

T1
Windowing (from T1 to T2)

▶ Iteration: An event occurring N times in sequence, where
N ≥ 0. This operation is similar to the Kleene star operation
in regular expressions, the difference being that Kleene star is
unbounded.
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possibly transformed subset of the attribute values of its
sub-events.
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Types of Window

▶ Logical (time-based) windows: bounds are defined as a
function of time.
▶ Example: Match a pattern only on the events received in the

last 10 minutes.

▶ Physical (count-based) windows: bounds depend on the
number of items included in the window.
▶ Example: Match a pattern only on the last 10 received events.

▶ In either case, both bounds advance with a pre-defined logical
or physical step.
▶ Pane windows: overlapping sliding windows.
▶ Tumble windows: non-overlapping sliding windows.
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Processing Model

Selection strategies filter the set of matched patterns.

▶ Assume the pattern α;β and the stream (α, 1), (α, 2), (β, 3).

▶ The multiple selection strategy produces (α, 1), (β, 3) and
(α, 2), (β, 3).

▶ The single selection strategy produces either (α, 1), (β, 3) or
(α, 2), (β, 3).

▶ The single selection strategy represents a family of strategies,
depending on the matches actually chosen among all possible
ones.
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Processing Model

Consumption policies place constraints on the use of events.

▶ Assume the pattern α;β and the stream (α, 1), (β, 2), (β, 3).

▶ The zero consumption policy produces (α, 1), (β, 2) and
(α, 1), (β, 3).
▶ ... assuming a multiple selection strategy.

▶ The selected consumption policy produces (α, 1), (β, 2).
▶ (α, 1) is consumed when the pattern is matched (at the arrival

of (β, 2)), and thus no longer available when (β, 3) arrives.
▶ Once (α, 1) is consumed, it is not considered in ANY other

pattern!
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Deployment Model

▶ Centralised CER: all incoming event streams are processed by
a single node.

▶ Distributed CER: several nodes are utilised.
▶ Distribution type:

▶ Events. CER on different (possibly disjoint) streams.
▶ Patterns. CER on different patterns (possibly compiled by a

pattern rewriting process).

▶ Distribution method:
▶ Cluster. CER by means of strongly connected machines.
▶ Wide area network. Mimimise network usage and support data

privacy by processing events as close as possible to the sources.
▶ In-situ processing. Processing events at the sources.
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A Typical Complex Event Recognition
Language (SASE)



Event Algebra∗

Core components of an event algebra with point-based semantics:

▶ Sequencing (SEQ) lists the required event types in temporal
order — eg SEQ(A,B,C ).

▶ Kleene closure (+) collects a finite yet unbound number of
events of a particular type. It is used as a component of SEQ

— eg SEQ(A,B+,C ).

▶ Negation (˜ or !) verifies the absence of certain events in a
sequence — eg SEQ(A, !B,C ).

▶ Value predicates specify constraints on the event attributes
▶ Aggregate functions max , min, count, sum, avg .

∗
Zhang et al. On complexity and optimization of expensive queries in complex event processing. SIGMOD

2014.
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Event Algebra

▶ Composition refers to:
▶ Union of constraints — eg SEQ(A,B,C ) ∪ SEQ(A,D,E ).
▶ Negation of a sequence — eg !SEQ(A,B,C ).
▶ Kleene closure of a constraint — eg SEQ(A,B,C )+.

▶ Windowing (WITHIN) restricts a CE definition to a specific
time period.

27 / 31



Event Algebra

▶ Composition refers to:
▶ Union of constraints — eg SEQ(A,B,C ) ∪ SEQ(A,D,E ).
▶ Negation of a sequence — eg !SEQ(A,B,C ).
▶ Kleene closure of a constraint — eg SEQ(A,B,C )+.

▶ Windowing (WITHIN) restricts a CE definition to a specific
time period.

27 / 31



Selection Strategies

▶ Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

▶ Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

▶ Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. For
SEQ(A,B,C ) e.g. and a1, b1, b2, c1, only a1, b1, c1 will be
detected.

▶ Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, a1, b2, c1
will also be detected.
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Example (1)

PATTERN SEQ(gapStart a, gapEnd b, speedChange c)
WHERE partition-contiguity

AND vesselId

AND c .velocity > 30

WITHIN 3600

Quickly moving away from an area of suspicious activity:

▶ After a communication gap, ...

▶ a vessel changes speed to over 30 knots.

▶ Partition contiguity ensures that a, b, c refer to the same
vessel (vesselId) and are contiguous with respect to that
vessel.
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Example (2)

PATTERN SEQ(lowSpeedStart a, turn + b, lowSpeedEnd c)
WHERE skip-till-next-match

AND vesselId

AND b[i ].heading−b[i−1 ].heading > 90

WITHIN 21600

Fishing pattern:

▶ A vessel slows down, ...

▶ begins a series of turns, where, for each pair of successive
turns, their difference in heading is more than 90 degrees, ...

▶ and subsequently the vessel stops moving at a low speed.
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Summary

What we’ve seen so far:

▶ Definition, Challenges & Applications of CER.

▶ Related research.

▶ Models of CER.

CER requirements:

▶ Expressive representation.

▶ Efficient reasoning.

▶ Automated knowledge construction.

▶ Reasoning under uncertainty.

▶ Complex event forecasting.

Next: An expressive language with an efficient implementation.
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