Can Computers Understand what is Happening? The Run-Time Event Calculus

> Alexander Artikis^{1,2} Periklis Mantenoglou^{1,3}

¹NCSR Demokritos, Athens, Greece ²University of Piraeus, Greece ³NKUA, Greece

https://cer.iit.demokritos.gr

Complex Event Recognition

Complex Event Recognition

Event Calculus*

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.

^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

Event Calculus*

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.
- Built-in representation of inertia:
 - F = V holds at a particular time-point if F = V has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

• Interval-based reasoning \rightarrow avoid unintended semantics.

 \blacktriangleright Interval-based reasoning \rightarrow avoid unintended semantics.

Formal, declarative semantics \rightarrow robust/trustworthy CER.

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.
- Expressive language \rightarrow *n*-ary constraints.

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.
- Expressive language \rightarrow *n*-ary constraints.
- lncremental reasoning \rightarrow handle out-of-order streams.

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.
- Expressive language \rightarrow *n*-ary constraints.
- lncremental reasoning \rightarrow handle out-of-order streams.
- Caching \rightarrow real-time performance.

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.
- Expressive language \rightarrow *n*-ary constraints.
- ▶ Incremental reasoning → handle out-of-order streams.
- Caching \rightarrow real-time performance.
- ► Direct routes to probabilistic reasoning → handle the lack of veracity of data streams.

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.
- Expressive language \rightarrow *n*-ary constraints.
- ▶ Incremental reasoning → handle out-of-order streams.
- Caching \rightarrow real-time performance.
- ► Direct routes to probabilistic reasoning → handle the lack of veracity of data streams.
- ► Direct routes to machine learning → automated complex event definition construction*.

^{*}Michelioudakis et al, Online Semi-Supervised Learning of Composite Event Rules by Combining Structure and Mass-based Predicate Similarity. Machine Learning, 2024.

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.
- ► Expressive language → *n*-ary constraints.
- Incremental reasoning \rightarrow handle out-of-order streams.
- Caching \rightarrow real-time performance.
- ► Direct routes to probabilistic reasoning → handle the lack of veracity of data streams.
- ► Direct routes to machine learning → automated complex event definition construction*.
- Various implementation routes[†].

^{*}Michelioudakis et al, Online Semi-Supervised Learning of Composite Event Rules by Combining Structure and Mass-based Predicate Similarity. Machine Learning, 2024.

[†]Tsilionis et al, A Tensor-based Formalisation of the Event Calculus. IJCAI, 2024.

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions] terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt $(F = V, T) \leftarrow$ happensAt (E_{T_j}, T) , [conditions]

where

. . .

conditions: $\begin{array}{ll} 0^{-K} happensAt(E_k, T), \\ 0^{-M} holdsAt(F_m = V_m, T), \\ 0^{-N} a temporal constraint_n \end{array}$

^{*}Artikis et al, An Event Calculus for Event Recognition. IEEE TKDE, 2015. https://github.com/aartikis/RTEC

initiatedAt(F = V, T) \leftarrow happensAt(E_{ln_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions]

. . .

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions]

. . .

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{ln_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions]

. . .

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions] terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

. . .

holdsFor(F = V, I)

 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(\textit{v}_{hs},\textit{V}),\textit{Speed} > V. \end{array}$

 $\begin{array}{l} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel}, \textit{Speed}), T), \\ \textit{threshold}(\textit{v_{hs}}, V), \textit{Speed} \leq V. \end{array}$

 $\begin{aligned} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel}, \textit{Speed}), T), \\ \textit{threshold}(\textit{v_{hs}}, V), \textit{Speed} \leq V. \end{aligned}$

 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(\textit{v}_{hs},\textit{V}),\textit{Speed} > V. \end{array}$

 $\begin{array}{l} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel}, \textit{Speed}), T), \\ \textit{threshold}(\textit{v_{hs}}, V), \textit{Speed} \leq V. \end{array}$

 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(v_{hs}, V),\textit{Speed} > V. \end{array}$

 $\begin{aligned} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel}, \textit{Speed}), T), \\ \textit{threshold}(\textit{v_{hs}}, V), \textit{Speed} \leq V. \end{aligned}$

 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(\textit{v}_{hs},\textit{V}),\textit{Speed} > V. \end{array}$

 $\begin{array}{l} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel}, \textit{Speed}), T), \\ \textit{threshold}(\textit{v_{hs}}, V), \textit{Speed} \leq V. \end{array}$

 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}),\textit{Speed} > \textit{V}. \end{array}$

terminatedAt(*highSpeedNC*(*Vessel*) = true, T) \leftarrow happensAt(*velocity*(*Vessel*, *Speed*), T), *threshold*(v_{hs} , V), *Speed* $\leq V$.

terminatedAt(*highSpeedNC*(*Vessel*) = true, T) \leftarrow happensAt(*end*(*withinArea*(*Vessel*, *nearCoast*) = true), T).

https://cer.iit.demokritos.gr (high speed near coast)

Fleet Management*

https://cer.iit.demokritos.gr (refuelling opportunities)

^{*}Tsilionis et al, Online Event Recognition from Moving Vehicles. Theory and Practice of Logic Programming, 2019.

 $\begin{array}{l} \mbox{holdsFor}(anchoredOrMoored(Vessel) = \mbox{true}, \ I) \leftarrow \\ \mbox{holdsFor}(stopped(Vessel) = \mbox{farFromPorts}, \ I_{sf}), \\ \mbox{holdsFor}(withinArea(Vessel, anchorage) = \mbox{true}, \ I_{wa}), \\ \mbox{intersect_all}([I_{sf}, I_{wa}], \ I_{sa}), \\ \mbox{holdsFor}(stopped(Vessel) = \mbox{nearPorts}, \ I_{sn}), \\ \mbox{union_all}([I_{sa}, I_{sn}], \ I). \end{array}$

 $\begin{aligned} & \mathsf{holdsFor}(anchoredOrMoored(Vessel) = \mathsf{true}, \ I) \leftarrow \\ & \mathsf{holdsFor}(stopped(Vessel) = farFromPorts, \ I_{sf}), \\ & \mathsf{holdsFor}(withinArea(Vessel, anchorage) = true, \ I_{wa}), \\ & \mathsf{intersect_all}([I_{sf}, I_{wa}], \ I_{sa}), \\ & \mathsf{holdsFor}(stopped(Vessel) = nearPorts, \ I_{sn}), \\ & \mathsf{union_all}([I_{sa}, I_{sn}], \ I). \end{aligned}$

 $\begin{array}{l} \mathsf{holdsFor}(anchoredOrMoored(Vessel) = \mathsf{true}, \ I) \leftarrow \\ \mathsf{holdsFor}(stopped(Vessel) = farFromPorts, \ I_{sf}), \\ \mathsf{holdsFor}(withinArea(Vessel, anchorage) = true, \ I_{wa}), \\ \mathsf{intersect_all}([I_{sf}, I_{wa}], \ I_{sa}), \\ \mathsf{holdsFor}(stopped(Vessel) = nearPorts, \ I_{sn}), \\ \mathsf{union_all}([I_{sa}, I_{sn}], \ I). \end{array}$

 $\begin{array}{l} \mathsf{holdsFor}(anchoredOrMoored(Vessel) = \mathsf{true}, \ I) \leftarrow \\ \mathsf{holdsFor}(stopped(Vessel) = \mathit{farFromPorts}, \ \mathit{I_{sf}}), \\ \mathsf{holdsFor}(withinArea(Vessel, anchorage) = \mathit{true}, \ \mathit{I_{wa}}), \\ \mathsf{intersect_all}([\mathit{I_{sf}}, \mathit{I_{wa}}], \ \mathit{I_{sa}}), \\ \mathsf{holdsFor}(stopped(Vessel) = \mathit{nearPorts}, \ \mathit{I_{sn}}), \\ \mathsf{union_all}([\mathit{I_{sa}}, \mathit{I_{sn}}], \ I). \end{array}$

 $\begin{array}{l} \mbox{holdsFor}(anchoredOrMoored(Vessel) = true, \ I) \leftarrow \\ \mbox{holdsFor}(stopped(Vessel) = farFromPorts, \ I_{sf}), \\ \mbox{holdsFor}(withinArea(Vessel, anchorage) = true, \ I_{wa}), \\ \mbox{intersect_all}([I_{sf}, I_{wa}], \ I_{sa}), \\ \mbox{holdsFor}(stopped(Vessel) = nearPorts, \ I_{sn}), \\ \mbox{union_all}([I_{sa}, I_{sn}], \ I). \end{array}$

 $\begin{array}{l} \mbox{holdsFor}(anchoredOrMoored(Vessel) = true, \ I) \leftarrow \\ \mbox{holdsFor}(stopped(Vessel) = farFromPorts, \ I_{sf}), \\ \mbox{holdsFor}(withinArea(Vessel, anchorage) = true, \ I_{wa}), \\ \mbox{intersect_all}([I_{sf}, I_{wa}], \ I_{sa}), \\ \mbox{holdsFor}(stopped(Vessel) = nearPorts, \ I_{sn}), \\ \mbox{union_all}([I_{sa}, I_{sn}], \ I). \end{array}$

union_all($[I_1, I_2, I_3], I_u$)

 $\begin{array}{l} \mathsf{intersect_all}([I_1, I_2, I_3], I_i) \\ \mathsf{union_all}([I_1, I_2, I_3], I_u) \end{array}$

^{*}Mantenoglou et al, Complex Event Recognition with Allen Relations. Knowledge Representation and Reasoning (KR), 2023.

 $\begin{aligned} & \mathsf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true},\textit{I}) \leftarrow \\ & \mathsf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true},\mathcal{S}), \\ & \mathsf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts},\mathcal{T}), \\ & \mathsf{allen}(\mathsf{meets},\mathcal{S},\mathcal{T},\mathsf{target},\textit{I}). \end{aligned}$

^{*}Mantenoglou et al, Complex Event Recognition with Allen Relations. Knowledge Representation and Reasoning (KR), 2023.

 $\begin{aligned} & \mathsf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, \textit{I}) \leftarrow \\ & \mathsf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true},\mathcal{S}), \\ & \mathsf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts},\mathcal{T}), \\ & \mathsf{allen}(\mathsf{meets},\mathcal{S},\mathcal{T},\mathsf{target},\textit{I}). \end{aligned}$

^{*}Mantenoglou et al, Complex Event Recognition with Allen Relations. Knowledge Representation and Reasoning (KR), 2023.

 $\begin{aligned} & \mathsf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, \textit{I}) \leftarrow \\ & \mathsf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true},\mathcal{S}), \\ & \mathsf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts},\mathcal{T}), \\ & \mathsf{allen}(\mathsf{meets},\mathcal{S},\mathcal{T},\mathsf{target},\textit{I}). \end{aligned}$

^{*}Mantenoglou et al, Complex Event Recognition with Allen Relations. Knowledge Representation and Reasoning (KR), 2023.

 $\begin{aligned} & \mathsf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, I) \leftarrow \\ & \mathsf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true},\mathcal{S}), \\ & \mathsf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts},\mathcal{T}), \\ & \mathsf{allen}(\mathsf{meets},\mathcal{S},\mathcal{T},\mathsf{target},I). \end{aligned}$

^{*}Mantenoglou et al, Complex Event Recognition with Allen Relations. Knowledge Representation and Reasoning (KR), 2023.

Semantics

Semantics

Semantics

Proposition

An event description in RTEC is a locally stratified logic program*.

^{*}Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.

Windowing

Windowing

Windowing

Windowing: Delayed Additions and Deletions

Windowing: Delayed Additions and Deletions

Windowing: Delayed Additions and Deletions

^{*}Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of Al Research (JAIR), 2022.

^{*}Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

^{*}Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

^{*}Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

^{*}Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

RTEC: Correctness and Complexity

Correctness

RTEC computes all maximal intervals of a fluent, and no other interval, provided that interval delays/retractions, if any, are tolerated by the window size.

RTEC: Correctness and Complexity

Correctness

RTEC computes all maximal intervals of a fluent, and no other interval, provided that interval delays/retractions, if any, are tolerated by the window size.

Complexity

The time to compute the maximal intervals of a fluent is linear to the window size.

Performance: Indicative Results

Indicative Comparative Analysis

§Logica: Language of Big Data, https://github.com/EvgSkv/logica.

¹Falcionelli et al., Indexing the event calculus: Towards practical human-readable personal health systems. Artificial Intelligence in Medicine, 2019.

^{*}Srinivasan et al., Learning explanations for biological feedback with delays using an event calculus. Machine Learning, 2022.

[†]Arias et al., Modeling and reasoning in event calculus using goal-directed constraint answer set programming. Theory and Practice of Logic Programming, 2022.

[‡]Beck et al., Ticker: A system for incremental asp-based stream reasoning. Theory and Practice of Logic Programming, 2017.

Indicative Comparative Analysis

Monitoring maritime activities with Allen relations

Window size		Reasoning Time (ms)		Output Intervals	
Days	Input Intervals	RTEC	D ² IA*	RTEC	D ² IA
1	19K	40	410	6K	6K
2	37K	65	592	9K	9K
4	74K	99	1.1K	16K	16K
8	148K	156	1.6K	32K	31K
16	297K	285	2.7K	77K	76K

^{*}Awad et al, D²IA: User-defined interval analytics on distributed streams. Information Systems, 2022.

Summary

RTEC:

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.
- Expressive language \rightarrow *n*-ary constraints.

Summary

RTEC:

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.
- Expressive language \rightarrow *n*-ary constraints.
- lncremental reasoning \rightarrow handle out-of-order streams.
- Caching \rightarrow real-time performance.
- ► Direct routes to machine learning → automated complex event definition construction.
- Direct routes to probabilistic reasoning.

Summary

RTEC:

- Interval-based reasoning \rightarrow avoid unintended semantics.
- Formal, declarative semantics \rightarrow robust/trustworthy CER.
- White-box model \rightarrow explainability.
- ► Expressive language → *n*-ary constraints.
- lncremental reasoning \rightarrow handle out-of-order streams.
- Caching \rightarrow real-time performance.
- ► Direct routes to machine learning → automated complex event definition construction.
- Direct routes to probabilistic reasoning.

Next: Handle the lack of veracity of data streams.