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Complex Event Recognition (Event Pattern Matching)∗,†
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∗
Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.
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Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

1 / 38

https://rdcu.be/cNkQE


Complex Event Recognition (Event Pattern Matching)∗,†

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Simple Event Stream

. . .. . .

. . .. . .

Complex Event Stream

. . . . . .

. . . . . .

https://rdcu.be/cNkQE

∗
Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

†
Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

1 / 38

https://rdcu.be/cNkQE


Maritime Situational Awareness∗

http://www.marinetraffic.com

https://cer.iit.demokritos.gr (fishing vessel)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.

2 / 38

http://www.marinetraffic.com
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/


Maritime Situational Awareness∗

http://www.marinetraffic.com

https://cer.iit.demokritos.gr (fishing vessel)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.

2 / 38

http://www.marinetraffic.com
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/


Maritime Situational Awareness∗

https://cer.iit.demokritos.gr (tugging)

https://cer.iit.demokritos.gr (pilot boarding)

https://www.skylight.global (rendez-vous)

https://www.skylight.global (enter area)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.
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https://www.youtube.com/watch?v=QwVsPZy-0lY&feature=emb_logo
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/
https://www.youtube.com/watch?v=xsATVZWcnaU&feature=emb_logo
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/
https://www.skylight.global/platform#events
https://www.skylight.global/platform#events


Data Challenges

I Velocity, Volume: Millions of position signals/day at European
scale.

I Variety: Position signals need to be combined with other data
streams
I Weather forecasts, sea currents, etc.

I ... and static information
I NATURA areas, shallow waters areas, coastlines, etc.

I Lack of Veracity: GPS manipulation, vessels reporting false
identity, communication gaps.

I Distribution: Vessels operating across the globe.
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Many Other Applications

I Cardiac arrhythmia recognition.

I Financial fraud detection.

I Human activity recognition.

I Intrusion detection in computer networks.

I Traffic congestion recognition and forecasting in smart cities.

5 / 38



Requirements

I Expressive representation
I to capture complex relationships between the events that

stream into the system.

I Efficient reasoning
I to support real-time decision-making in large-scale,

(geographically) distributed applications.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

I Reasoning under uncertainty
I to deal with various types of noise.

I Complex event forecasting
I to support proactive decision-making.
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Complex Event Recognition vs
Database Management Systems∗

Complex event recognition systems:

I Process data without storing them.

I Data are continuously updated.
I Data stream into the system in high velocity.
I Data streams are large (usually unbounded).

I No assumption can be made on data arrival order.
I Users install standing/continuous queries:

I Queries deployed once and executed continuously until
removed.

I Online reasoning.

I Latency requirements are very strict.

∗
Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing.

ACM Computing Surveys, 2012.
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Complex Event Recognition vs Deep Learning

We have Deep Learning and it seems to work. Can we go home?

Complex event recognition:

I Formal semantics for trustworthy models.

I Explanation — why did we detect a complex event?
I Machine Learning is necessary. But:

I Complex events are rare.
I Supervision is scarce.

I More often than not, background knowledge is available —
let’s use it!
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A Simple Unifying Event Algebra

ce ::= se |
ce1 ; ce2 | Sequence
ce1 ∨ ce2 | Disjunction
ce∗ | Iteration
¬ ce | Negation
σθ(ce) | Selection
πm(ce) | Projection
[ce]T2

T1
Windowing (from T1 to T2)

I Sequence: Two events following each other in time.

I Disjunction: Either of two events occurring, regardless of
temporal relations.

I The combination of Sequence and Disjunction expresses
Conjunction (both events occurring).
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ce ::= se |
ce1 ; ce2 | Sequence
ce1 ∨ ce2 | Disjunction
ce∗ | Iteration
¬ ce | Negation
σθ(ce) | Selection
πm(ce) | Projection
[ce]T2

T1
Windowing (from T1 to T2)

I Iteration: An event occurring N times in sequence, where
N ≥ 0. This operation is similar to the Kleene star operation
in regular expressions, the difference being that Kleene star is
unbounded.
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Processing Model

Selection strategies filter the set of matched patterns.

I Assume the pattern α;β and the stream (α, 1), (α, 2), (β, 3).

I The multiple selection strategy produces (α, 1), (β, 3) and
(α, 2), (β, 3).

I The single selection strategy produces either (α, 1), (β, 3) or
(α, 2), (β, 3).

I The single selection strategy represents a family of strategies,
depending on the matches actually chosen among all possible
ones.
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Instantaneous vs Interval-based Reasoning∗,†

Consider:

I the pattern β; (α; γ)

I and the stream (α, 1), (β, 2), (γ, 3).

Does the stream match the pattern?

∗
Paschke, ECA-LP / ECA-RuleML: A Homogeneous Event-Condition-Action Logic Programming Language.

RuleML, 2006.
†

White et al, What is “Next” in Event Processing?, PODS, 2007.

11 / 38



Deductive Databases∗: Event Calculus†

I A logic programming language for representing and reasoning
about events and their effects.

I Key components:
I event (typically instantaneous).
I fluent: a property that may have different values at different

points in time.

I Built-in representation of inertia:
I F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

∗
Ramamohanarao and Harland. An Introduction to Deductive Database Languages and Systems. VLDB

Journal, 1994.
†

Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.
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Run-Time Event Calculus (RTEC)∗,†

initiatedAt(F =V , T )← terminatedAt(F =V , T )←
happensAt(EIn1 , T ), happensAt(ET1 , T ),
[conditions] [conditions]

. . . . . .
initiatedAt(F =V , T )← terminatedAt(F =V , T )←

happensAt(EIni , T ), happensAt(ETj
, T ),

[conditions] [conditions]

where

conditions: 0−KhappensAt(Ek , T ),
0−MholdsAt(Fm =Vm, T ),
0−Natemporal-constraintn

∗
Artikis et al, An Event Calculus for Event Recognition. IEEE TKDE, 2015.

†
Mantenoglou et al, Stream Reasoning with Cycles. KR, 2022. https://github.com/aartikis/RTEC

13 / 38
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Fleet Management∗

https://cer.iit.demokritos.gr (refuelling opportunities)

∗
Tsilionis et al, Online Event Recognition from Moving Vehicles. Theory and Practice of Logic Programming,

2019.

15 / 38

https://cer.iit.demokritos.gr/blog/applications/fleet_management/
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Incremental Reasoning: Deletion Phase∗
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∗
Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.
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RTEC: Correctness and Complexity

Correctness

RTEC computes all maximal intervals of a fluent, and no other
interval, provided that interval delays/retractions, if any, are
tolerated by the window size.

Complexity

The time to compute the maximal intervals of a fluent is linear to
the window size.
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Performance: Indicative Results
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Summary

Run-Time Event Calculus (RTEC):

I Interval-based reasoning∗ → avoid unintended semantics.

I Formal, declarative semantics → robust/trustworthy CER.

I White-box model → explainability.

I Expressive language → n-ary constraints.

I Incremental reasoning → handle out-of-order streams.

I Caching, temporal specification optimisation → real-time
performance.

I Direct routes to probabilistic reasoning → handle the lack of
veracity of data streams.

∗
Mantenoglou et al, Complex Event Recognition with Allen Relations. KR, 2023.
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Human Activity Recognition

https://cer.iit.demokritos.gr (activity recognition)
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Online Probabilistic Interval-Based Event Calculus

Prob-EC =
Event Calculus
+ ProbLog
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Instantaneous Recognition

initiatedAt(moving(P1 ,P2 ) = true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 ) = true, T ),
holdsAt(orientation(P1 ,P2 ) = true, T ).

terminatedAt(moving(P1 ,P2 ) = true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 ) = false, T ).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).
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∗
Skarlatidis et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic

Programming, 2015.
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I several initiations and
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I few probabilistic conjuncts.
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Online Probabilistic Interval-Based Event Calculus

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2 ) = true,T ) ←
happensAt(walking(P1 ),T ),
happensAt(walking(P2 ),T ),
holdsAt(close(P1 ,P2 ) = true,T ),
holdsAt(similarOrientation(P1 ,P2 ) = true,T ).

terminatedAt(moving(P1 ,P2 ) = true,T ) ←
happensAt(walking(P1 ),T ),
holdsAt(close(P1 ,P2 ) = false,T ).

...

Event Calculus Axioms

holdsAt(F = V ,T ) ←
initially(F = V ),
not broken(F = V , 0 ,T ).

holdsAt(F = V ,T ) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T ).

...

Data Stream

0 .73 :: happensAt(walking(id0 ),T1 )
0 .79 :: happensAt(walking(id1 ),T1 )
0 .92 :: happensAt(active(id5 ),T1 )

...

Point-based CE Stream

0 .57 :: holdsAt(moving(id0 , id1 ),T2 )
0 .73 :: holdsAt(meeting(id1 , id5 ),T2 )
0 .67 :: holdsAt(meeting(id0 , id5 ),T2 )

...

oPIEC =
PIEC +

support set
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0 .73 :: happensAt(walking(id0 ),T1 )
0 .79 :: happensAt(walking(id1 ),T1 )
0 .92 :: happensAt(active(id5 ),T1 )

...

Point-based CE Stream

0 .57 :: holdsAt(moving(id0 , id1 ),T2 )
0 .73 :: holdsAt(meeting(id1 , id5 ),T2 )
0 .67 :: holdsAt(meeting(id0 , id5 ),T2 )

...

oPIEC =
PIEC +

support set

Interval-based CE Stream

0 .61 :: holdsFor(moving(id0 , id1 ), (T2 ,T5 ))
0 .88 :: holdsFor(meeting(id1 , id5 ), (T2 ,T4 ))
0 .66 :: holdsFor(meeting(id0 , id5 ), (T2 ,T9 ))

...

27 / 38



Instantaneous vs Interval-based Recognition
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Instantaneous Recognition

Interval-based Recognition

I Interval Probability: average
probability of the
time-points it contains.

I Probabilistic Maximal
Interval:
I interval probability above

a given threshold;
I no super-interval with

probability above the
threshold.

I Probabilistic maximal
interval computation via
maximal non-negative sum
interval computation.
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Interval-based Recognition∗

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

Complexity

The computation of probabilistic maximal intervals is linear to the
dataset size.

∗
Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics

and Artificial Intelligence, 2021.
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Online Interval-based Recognition
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Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future
probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval
given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the
window and memory size.
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Bounded Online Interval-based Recognition∗
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Bounded Online Interval-based Recognition

I Complex event duration
statistics favor more recent
potential starting points.

∗
Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate

Reasoning, 2023. https://github.com/Periklismant/oPIEC
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Bounded Online Interval-based Recognition

I Complex event duration
statistics favor more recent
potential starting points.

I Comparable accuracy to
batch reasoning.

∗
Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate

Reasoning, 2023. https://github.com/Periklismant/oPIEC
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Topics not covered

I Formal models of CER
I Other approaches on formal complex event recognition∗,†.

I Comparison in terms of expressive power, complexity and
performance.

I Probabilistic CER
I Uncertainty in the complex event definitions.

∗
Bucchi et al, CORE: a COmplex event Recognition Engine. VLDB, 2022.

https://github.com/CORE-cer/CORE
†

Alevizos et al, Complex Event Recognition with Symbolic Register Transducers. VLDB, 2024.
https://github.com/ElAlev/Wayeb
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‡
Grez et al, A Formal Framework for Complex Event Recognition. ACM TODS, 2021.

§
Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM TOCL, 2015.

¶
Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.
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Machine Learning for Complex Event Recognition∗,†

INPUT ▶ RECOGNITION ▶ INPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Simple Event Stream

. . .. . .

. . .. . .

happensAt(slowSpeedStart(ID0 ), t1 )
happensAt(turn(ID0 , 11 ), t2 )
happensAt(turn(ID0 , 12 ), t3 )
happensAt(slowSpeedEnd(ID0 ), t4 )
...

Complex Event Stream

. . . . . .

. . . . . .

holdsFor(trawling(ID0 )= true, [ts0 , te0 ])
holdsFor(drifting(ID1 )= true, [ts1 , te1 ])
holdsFor(loitering(ID3 )= true, [ts2 , te2 ])
...

initiatedAt(stopped(V essel)=nearPorts, T )←
happensAt(stop start(V essel), T ),
holdsAt(withinArea(V essel, nearPorts)= true, T ).

terminatedAt(stopped(V essel)=nearPorts, T )←
happensAt(stop end(V essel), T ).

...

holdsFor(trawling(V essel)= true, I)←
holdsFor(trawlingMovement(V essel)= true, Itc),
holdsFor(trawlingSpeed(V essel)= true, It),
intersect all([Itc, It], Ii),
threshold(vtrawl, Vtrawl),
intDurGreater(Ii, Vtrawl, I).

...

From
These

Learn
These

∗
Katzouris et al, Online Learning Probabilistic Event Calculus Theories in Answer Set Programming. Theory

and Practice of Logic Programming, 2023.
†

Michelioudakis et al, Online semi-supervised learning of composite event rules by combining structure and
mass-based predicate similarity. Machine Learning, 2024.
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Neuro-Symbolic Complex Event Recognition∗

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Differentiable
Inference

Simple Event Stream

. . .. . .

. . .. . .

...

Gradients

Complex Event Stream

. . . . . .

. . . . . .

Symbolic model

Predictions

Complex
Event labels

Loss

∗
Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey. Artificial

Intelligence, 2024.

35 / 38



Tensor-Based Complex Event Recognition∗

initiatedAt(fl(X ,Y )=v , T ) ←

happensAt(e(X ,Y ), T ) ,

holdsAt(d(X ,Y )=vd , T ) .
N

N
Ω

⊙

N

N
Ω

=

N

N
Ω

∗
Tsilionis et al, A Tensor-Based Formalization of the Event Calculus. IJCAI, 2024.
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Complex Event Forecasting∗

I Forecast the occurrence of a
complex event.

I Symbolic automata for complex
event patterns
I Closure properties.
I Formal compositional semantics.

I Prediction suffix trees for
long-term dependencies
I Higher accuracy.
I Comparable training time and

acceptable throughput.

https://cer.iit.demokritos.gr (forecasting)

∗
Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022.

https://github.com/ElAlev/Wayeb
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Tutorial Resources

Resources: http://cer.iit.demokritos.gr

I Slides: http://cer.iit.demokritos.gr/talks

I Code: http://cer.iit.demokritos.gr/software

I Data: http://cer.iit.demokritos.gr/datasets

I Opportunities for (funded) collaboration: job openings and
topics for BSc/MSc theses and internships
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