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Maritime Situational Awareness

http://www.marinetraffic.com

https://cer.iit.demokritos.gr (maritime)
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Data Challenges

I Velocity, Volume: 19,000,000 position signals/day at
European scale.

I Variety: Position signals need to be combined with other data
streams
I Weather forecasts, sea currents, etc.

I ... and static information
I NATURA areas, shallow waters areas, coastlines, etc.

I Lack of Veracity: GPS manipulation, vessels reporting false
identity, communication gaps.

I Distribution: Vessels operating across the globe.
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Many Other Applications

I Cardiac arrhythmia recognition.

I Financial fraud detection.

I Human activity recognition.

I Intrusion detection in computer networks.

I Traffic congestion recognition and forecasting in smart cities.
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Requirements

I Expressive representation
I to capture complex relationships between the events that

stream into the system.

I Efficient reasoning
I to support real-time decision-making in large-scale,

(geographically) distributed applications.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

I Reasoning under uncertainty
I to deal with various types of noise.

I Complex event forecasting
I to support proactive decision-making.
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Issues

I The main research focus in CER has been on practical issues.

I The semantics of the CER operators is often defined
indirectly, by means of examples, or by translation into
evaluation models.

I Even when a formal semantics is given, this semantics is
unsatisfactory because it has unintuitive behaviour (eg,
sequencing is non-associative) or is restricted (eg, operators
cannot be nested).

I As a result, it is not straightforward to understand and
compare CER languages (and systems).

Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.
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Event Calculus

I A logic programming language for representing and reasoning
about events and their effects.

I Key components:
I event (typically instantaneous).
I fluent: a property that may have different values at different

points in time.

I Built-in representation of inertia:
I F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.
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Run-Time Event Calculus (RTEC)

Predicate Meaning

happensAt(E ,T ) Event E occurs at time T

initiatedAt(F =V ,T ) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T ) At time T a period of time for which
F =V is terminated

holdsFor(F =V , I ) I is the list of the maximal intervals
for which F =V holds continuously

holdsAt(F =V ,T ) The value of fluent F is V at time T

union all([J1 , . . . , Jn], I ) I =(J1 ∪ . . . ∪ Jn)

intersect all([J1 , . . . , Jn], I ) I =(J1 ∩ . . . ∩ Jn)

relative complement all I = I ′ \ (J1 ∪ . . . ∪ Jn)
(I ′, [J1 , . . . , Jn], I )

Artikis et al, An Event Calculus for Event Recognition. IEEE TKDE, 2015. https://github.com/aartikis/RTEC
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CE Definitions in the Run-Time Event Calculus

initiatedAt(CE , T )← terminatedAt(CE , T )←
happensAt(EIn1 , T ), happensAt(ET1 , T ),
[conditions] [conditions]

. . . . . .
initiatedAt(CE , T )← terminatedAt(CE , T )←

happensAt(EIni , T ), happensAt(ETj
, T ),

[conditions] [conditions]

where

conditions: 0−KhappensAt(Ek , T ),
0−MholdsAt(Fm, T ),
0−Natemporal-constraintn
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Fleet Management

https://cer.iit.demokritos.gr (fleet management)
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Interval Manipulation

time

union_all([I1,I2], I)

I1
I2

time

intersect_all([I1,I2], I)

I1
I2

time

relative_complement_all

(I1, [I2], I)

I1
I2
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CE Definitions in the Run-Time Event Calculus

holdsFor(fighting(P1 ,P2 ) = true, I )←
holdsFor(abrupt(P1 ) = true, I1 ),
holdsFor(abrupt(P2 ) = true, I2 ),
union all([I1 , I2 ], I3 ),
holdsFor(close(P1 ,P2 ) = true, I4 ),
intersect all([I3 , I4 ], I5 ),
holdsFor(inactive(P1 ) = true, I6 ),
holdsFor(inactive(P2 ) = true, I7 ),
relative complement all(I5 , [I6 , I7 ], I )

Shorthand:

fighting(P1 ,P2 ) iff
(abrupt(P1 ) or abrupt(P2 )),
close(P1 ,P2 ),
not (inactive(P1) or inactive(P2))
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Fighting

https://cer.iit.demokritos.gr (activity-recognition-i) https://cer.iit.demokritos.gr (activity-recognition-ii)

13 / 23

https://www.youtube.com/watch?v=H-5dXRX-cbU
https://www.youtube.com/watch?v=sOHy9yOdJtU&t=2s


Semantics

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling

lowSpeed

tugging

permission
=false

quote=true

suspended
=true

contract 
=true

power 
=true

obligation 
=true

status 
=proposed

status 
=voting

status 
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

Proposition

An event description in RTEC is a locally stratified logic program.

Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.
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Stratification & Reasoning
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Windowing

time

ω

qi-1 - ω

 

 

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

qi-1

 

initiatedAt(F=V,T) ← 
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Incremental Reasoning: Deletion Phase
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Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.
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Incremental Reasoning: Addition Phase

time

ω

qiqi-1qi  - ω

  

Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.
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Noisy Data Streams: A Probabilistic Event Calculus

Prob-EC =
Event Calculus
+ ProbLog
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Noisy Data Streams: A Probabilistic Event Calculus

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2 ) = true,T ) ←
happensAt(walking(P1 ),T ),
happensAt(walking(P2 ),T ),
holdsAt(close(P1 ,P2 ) = true,T ),
holdsAt(similarOrientation(P1 ,P2 ) = true,T ).

terminatedAt(moving(P1 ,P2 ) = true,T ) ←
happensAt(walking(P1 ),T ),
holdsAt(close(P1 ,P2 ) = false,T ).

...
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Interval-based CE Stream

0 .61 :: holdsFor(moving(id0 , id1 ), (T2 ,T5 ))
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0 .66 :: holdsFor(meeting(id0 , id5 ), (T2 ,T9 ))

...

19 / 23



Human Activity Recognition
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initiatedAt(moving(P1 ,P2 ) = true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 ) = true, T ),
holdsAt(similarOrientation(P1 ,P2 ) = true, T ).

terminatedAt(moving(P1 ,P2 ) = true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 ) = false, T ).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).
0 .73 :: happensAt(walking(mike), 2).
0 .55 :: happensAt(active(sarah), 2).

0 .69 :: happensAt(walking(mike), 21).
0 .58 :: happensAt(walking(sarah), 21).

0 .18 :: happensAt(inactive(mike), 41).
0 .32 :: happensAt(walking(sarah), 41).
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Instantaneous vs Interval-based Recognition

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
E

CE probability

threshold

point-based
recognition

PIEC
recognition

21 / 23



Online Interval-based Recognition
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I Optimal stream
history compression.

I Comparable accuracy
to batch processing
with very small
memory.

Mantenoglou et al, Online Probabilistic Interval-based Event Calculus. European Conference on AI (ECAI), 2020.

https://github.com/Periklismant/oPIEC
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Topics not covered

I Uncertainty in the event patterns∗.
I Automated construction of event patterns†.

I Semi-supervised ML‡.

I Neuro-symbolic reasoning for end-to-end CER�.

I Other approaches on formal CER∇.

I Complex event forecasting♠.

∗Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

†Katzouris et al, Online Learning Probabilistic Event Calculus Theories in Answer Set Programming. Theory and
Practice of Logic Programming, 2022. https://github.com/nkatzz/ORL

‡Michelioudakis et al, Semi-Supervised Online Structure Learning for Composite Event Recognition. Machine
Learning, 2019. https://github.com/anskarl/LoMRF

�Manhaeve et al, Neural probabilistic logic programming in DeepProbLog. Artificial Intelligence, 2021.
https://github.com/ML-KULeuven/deepproblog

∇Artikis et al, Dagstuhl Seminar on the Foundations of Composite Event Recognition. SIGMOD Record, 2020.

♠Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022.

https://github.com/ElAlev/Wayeb
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