### Formal Models of Complex Event Recognition

Alexander Artikis

NCSR Demokritos University of Piraeus Athens, Greece a.artikis@unipi.gr

https://cer.iit.demokritos.gr

**DEBS 2022** 

## Complex Event Recognition (Event Pattern Matching)



Giatrakos et al, Complex event recognition in the Big Data era: a survey, VLDB Journal. 2020.

Gugola and Margara, Processing flows of information: From data stream to complex event processing. ACM Computing Surveys, 2012.

## Complex Event Recognition (Event Pattern Matching)



Giatrakos et al, Complex event recognition in the Big Data era: a survey, VLDB Journal. 2020.

Gugola and Margara, Processing flows of information: From data stream to complex event processing. ACM Computing Surveys, 2012.



https://rdcu.be/cNkQE

#### Maritime Situational Awareness



http://www.marinetraffic.com

#### Maritime Situational Awareness



http://www.marinetraffic.com



https://cer.iit.demokritos.gr (maritime)

► Velocity, Volume: 19,000,000 position signals/day at European scale.

- ► Velocity, Volume: 19,000,000 position signals/day at European scale.
- Variety: Position signals need to be combined with other data streams
  - ▶ Weather forecasts, sea currents, etc.
- ... and static information
  - ► NATURA areas, shallow waters areas, coastlines, etc.

- ► Velocity, Volume: 19,000,000 position signals/day at European scale.
- Variety: Position signals need to be combined with other data streams
  - ▶ Weather forecasts, sea currents, etc.
- ... and static information
  - ► NATURA areas, shallow waters areas, coastlines, etc.
- Lack of Veracity: GPS manipulation, vessels reporting false identity, communication gaps.

- ► Velocity, Volume: 19,000,000 position signals/day at European scale.
- Variety: Position signals need to be combined with other data streams
  - ▶ Weather forecasts, sea currents, etc.
- ... and static information
  - NATURA areas, shallow waters areas, coastlines, etc.
- Lack of Veracity: GPS manipulation, vessels reporting false identity, communication gaps.
- Distribution: Vessels operating across the globe.

## Many Other Applications

- Cardiac arrhythmia recognition.
- Financial fraud detection.
- Human activity recognition.
- Intrusion detection in computer networks.
- Traffic congestion recognition and forecasting in smart cities.

- Expressive representation
  - ▶ to capture complex relationships between the events that stream into the system.

- Expressive representation
  - to capture complex relationships between the events that stream into the system.
- Efficient reasoning
  - to support real-time decision-making in large-scale, (geographically) distributed applications.

- Expressive representation
  - ▶ to capture complex relationships between the events that stream into the system.
- Efficient reasoning
  - to support real-time decision-making in large-scale, (geographically) distributed applications.
- Automated knowledge construction
  - to avoid the time-consuming, error-prone manual CE definition development.

- Expressive representation
  - ▶ to capture complex relationships between the events that stream into the system.
- Efficient reasoning
  - to support real-time decision-making in large-scale, (geographically) distributed applications.
- Automated knowledge construction
  - to avoid the time-consuming, error-prone manual CE definition development.
- Reasoning under uncertainty
  - to deal with various types of noise.

- Expressive representation
  - ▶ to capture complex relationships between the events that stream into the system.
- Efficient reasoning
  - to support real-time decision-making in large-scale, (geographically) distributed applications.
- Automated knowledge construction
  - to avoid the time-consuming, error-prone manual CE definition development.
- Reasoning under uncertainty
  - to deal with various types of noise.
- Complex event forecasting
  - to support proactive decision-making.

#### Issues

- ▶ The main research focus in CER has been on practical issues.
- The semantics of the CER operators is often defined indirectly, by means of examples, or by translation into evaluation models.

#### Issues

- ▶ The main research focus in CER has been on practical issues.
- The semantics of the CER operators is often defined indirectly, by means of examples, or by translation into evaluation models.
- Even when a formal semantics is given, this semantics is unsatisfactory because it has unintuitive behaviour (eg, sequencing is non-associative) or is restricted (eg, operators cannot be nested).
- As a result, it is not straightforward to understand and compare CER languages (and systems).

Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.

#### **Event Calculus**

- ► A logic programming language for representing and reasoning about events and their effects.
- Key components:
  - event (typically instantaneous).
  - fluent: a property that may have different values at different points in time.

#### Event Calculus

- ► A logic programming language for representing and reasoning about events and their effects.
- Key components:
  - event (typically instantaneous).
  - fluent: a property that may have different values at different points in time.
- ▶ Built-in representation of inertia:
  - F = V holds at a particular time-point if F = V has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

## Run-Time Event Calculus (RTEC)

| Predicate                                             | Meaning                                                                     |
|-------------------------------------------------------|-----------------------------------------------------------------------------|
| happensAt(E,T)                                        | Event $E$ occurs at time $T$                                                |
| $initiatedAt(\mathit{F} = \mathit{V}, \mathit{T})$    | At time $T$ a period of time for which $F = V$ is initiated                 |
| $terminatedAt(\mathit{F} = \mathit{V}, \mathit{T})$   | At time $T$ a period of time for which $F = V$ is terminated                |
| $holdsFor(\mathit{F} = \mathit{V},\mathit{I})$        | I is the list of the maximal intervals for which $F = V$ holds continuously |
| $holdsAt(\mathit{F} = \mathit{V}, \mathit{T})$        | The value of fluent $F$ is $V$ at time $T$                                  |
| union_all( $[J_1,\ldots,J_n],\ I$ )                   | $I = (J_1 \cup \ldots \cup J_n)$                                            |
| $intersect\_all([J_1, \ldots, J_n], I)$               | $I = (J_1 \cap \ldots \cap J_n)$                                            |
| relative_complement_all $(I', [J_1, \ldots, J_n], I)$ | $I=I'\setminus (J_1\cup\ldots\cup J_n)$                                     |

Artikis et al, An Event Calculus for Event Recognition. IEEE TKDE, 2015. https://github.com/aartikis/RTEC

# Run-Time Event Calculus (RTEC)

| Predicate                                             | Meaning                                                                     |
|-------------------------------------------------------|-----------------------------------------------------------------------------|
| happensAt $(E, T)$                                    | Event $E$ occurs at time $T$                                                |
| $initiatedAt(\mathit{F} = \mathit{V}, \mathit{T})$    | At time $T$ a period of time for which $F = V$ is initiated                 |
| $terminatedAt(\mathit{F} = \mathit{V}, \mathit{T})$   | At time $T$ a period of time for which $F = V$ is terminated                |
| holdsFor(F = V, I)                                    | I is the list of the maximal intervals for which $F = V$ holds continuously |
| $holdsAt(\mathit{F} = \mathit{V}, \mathit{T})$        | The value of fluent $F$ is $V$ at time $T$                                  |
| union_all( $[J_1,\ldots,J_n],\ I$ )                   | $I = (J_1 \cup \ldots \cup J_n)$                                            |
| $intersect\_all([J_1,\ldots,J_n],\ I)$                | $I = (J_1 \cap \ldots \cap J_n)$                                            |
| relative_complement_all $(I', [J_1, \ldots, J_n], I)$ | $I = I' \setminus (J_1 \cup \ldots \cup J_n)$                               |

Artikis et al, An Event Calculus for Event Recognition. IEEE TKDE, 2015. https://github.com/aartikis/RTEC

#### CE Definitions in the Run-Time Event Calculus

```
initiatedAt(CE, T) \leftarrow
                                          terminatedAt(CE, T) \leftarrow
         happensAt(E_{ln_1}, T),
                                                happensAt(E_{T_1}, T),
          [conditions]
                                                [conditions]
    . . .
    initiatedAt(CE, T) \leftarrow
                                          terminatedAt(CE, T) \leftarrow
         happensAt(E_{ln_i}, T),
                                                happensAt(E_{T_i}, T),
          [conditions]
                                                [conditions]
where
                                ^{0-K}happensAt(E_k, T),
             conditions:
                                ^{0-M}holdsAt(F_m, T).
                                ^{0-N}atemporal-constraint,
```

## Fleet Management



https://cer.iit.demokritos.gr (fleet management)

## Interval Manipulation



## Interval Manipulation



## Interval Manipulation



#### CE Definitions in the Run-Time Event Calculus

```
\begin{aligned} & \textbf{holdsFor}(\textit{fighting}(P_1, P_2) = \mathsf{true}, \ I) \leftarrow \\ & \textbf{holdsFor}(\textit{abrupt}(P_1) = \mathsf{true}, \ I_1), \\ & \textbf{holdsFor}(\textit{abrupt}(P_2) = \mathsf{true}, \ I_2), \\ & \textbf{union\_all}([I_1, I_2], \ I_3), \\ & \textbf{holdsFor}(\textit{close}(P_1, P_2) = \mathsf{true}, \ I_4), \\ & \textbf{intersect\_all}([I_3, I_4], \ I_5), \\ & \textbf{holdsFor}(\textit{inactive}(P_1) = \mathsf{true}, \ I_6), \\ & \textbf{holdsFor}(\textit{inactive}(P_2) = \mathsf{true}, \ I_7), \\ & \textbf{relative\_complement\_all}(I_5, \ [I_6, I_7], \ I) \end{aligned}
```

#### CE Definitions in the Run-Time Event Calculus

```
\begin{aligned} & \textbf{holdsFor}(fighting(P_1, P_2) = \text{true}, \ I) \leftarrow \\ & \textbf{holdsFor}(abrupt(P_1) = \text{true}, \ I_1), \\ & \textbf{holdsFor}(abrupt(P_2) = \text{true}, \ I_2), \\ & \textbf{union\_all}([I_1, I_2], \ I_3), \\ & \textbf{holdsFor}(close(P_1, P_2) = \text{true}, \ I_4), \\ & \textbf{intersect\_all}([I_3, I_4], \ I_5), \\ & \textbf{holdsFor}(inactive(P_1) = \text{true}, \ I_6), \\ & \textbf{holdsFor}(inactive(P_2) = \text{true}, \ I_7), \\ & \textbf{relative\_complement\_all}(I_5, \ [I_6, I_7], \ I) \end{aligned}
```

#### Shorthand:

```
fighting(P_1, P_2) iff (abrupt(P_1) or abrupt(P_2)), close(P_1, P_2), not (inactive(P_1) or inactive(P_2))
```

## **Fighting**



https://cer.iit.demokritos.gr (activity-recognition-i)



https://cer.iit.demokritos.gr (activity-recognition-ii)

#### **Semantics**



#### **Semantics**



#### **Semantics**



#### Proposition

An event description in RTEC is a locally stratified logic program.

Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.









# Stratification & Reasoning



# Windowing



# Windowing



# Windowing









































# Human Activity Recognition



```
initiatedAt(moving(P_1, P_2) = true, T) \leftarrow
                                                       0.70 :: happensAt(walking(mike), 1).
                                                       0.46 :: happensAt(walking(sarah), 1).
  happensAt(walking(P_1), T),
                                                       0.73 :: happensAt(walking(mike), 2).
  happensAt(walking(P_2), T),
                                                       0.55 :: happensAt(active(sarah), 2).
  holdsAt(close(P_1, P_2) = true, T),
  holdsAt(similarOrientation(P_1, P_2) = true, T).
                                                       0.69 :: happensAt(walking(mike), 21).
                                                       0.58 :: happensAt(walking(sarah), 21).
terminatedAt(moving(P_1, P_2) = true, T) \leftarrow
  happensAt(walking(P_1), T),
                                                       0.18 :: happensAt(inactive(mike), 41).
  holdsAt(close(P_1, P_2) = false, T).
                                                       0.32 :: happensAt(walking(sarah), 41).
```

### Instantaneous vs Interval-based Recognition











- Optimal stream history compression.
- Comparable accuracy to batch processing with very small memory.

Mantenoglou et al, Online Probabilistic Interval-based Event Calculus. European Conference on AI (ECAI), 2020. https://github.com/Periklismant/oPIEC

#### Topics not covered

- Uncertainty in the event patterns\*.
- Automated construction of event patterns<sup>†</sup>.
  - Semi-supervised ML<sup>‡</sup>.
- Neuro-symbolic reasoning for end-to-end CER<sup>⋄</sup>.
- Other approaches on formal CER<sup>▽</sup>.
- Complex event forecasting<sup>4</sup>.

<sup>\*</sup> Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

<sup>†</sup> Katzouris et al, Online Learning Probabilistic Event Calculus Theories in Answer Set Programming. Theory and Practice of Logic Programming, 2022. https://github.com/nkatzz/ORL

<sup>&</sup>lt;sup>‡</sup> Michelioudakis et al, Semi-Supervised Online Structure Learning for Composite Event Recognition. Machine Learning, 2019. https://github.com/anskarl/LoMRF

<sup>♦</sup> Manhaeve et al, Neural probabilistic logic programming in DeepProbLog. Artificial Intelligence, 2021. https://github.com/ML-KULeuven/deepproblog

 $<sup>^{</sup>abla}$  Artikis et al, Dagstuhl Seminar on the Foundations of Composite Event Recognition. SIGMOD Record, 2020.

Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022. https://github.com/ElAlev/Wayeb