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Event Recognition (Event Pattern Matching)

Input:

I Symbolic representation of time-stamped, low-level events
(LLE) coming from (geographically distributed) sources.

I Big Data.

Output:
I High-level events (HLE) — collections of LLE and/or HLE

that satisfy some pattern (temporal, spatial, logical
constraints).

I Not restricted to aggregates.

I Humans understand HLE easier than LLE.

Tutorial scope:

I Systems with a formal semantics.



Cardiac Arrhythmia Recognition

I LLE: P and QRS waves representing heart activity.

I HLE: Cardiac arrhythmias.

A cardiac arrhythmia is defined as a temporal combination of P
and QRS waves.



Cardiac Arrhythmia Recognition

Input Output

16338 qrs[normal]

17091 p wave[normal]

17250 qrs[normal]

17952 p wave[normal]

18913 p wave[normal]

19066 qrs[normal]

19838 p wave[normal]

20713 p wave[normal]

20866 qrs[normal]

21413 qrs[abnormal]

21926 p wave[normal]

22496 qrs[normal]

. . .



Cardiac Arrhythmia Recognition

Input Output

16338 qrs[normal] [17091, 19066] mobitzII

17091 p wave[normal]

17250 qrs[normal]

17952 p wave[normal]

18913 p wave[normal]

19066 qrs[normal]

19838 p wave[normal]

20713 p wave[normal]

20866 qrs[normal]

21413 qrs[abnormal]

21926 p wave[normal]

22496 qrs[normal]

. . .



Cardiac Arrhythmia Recognition

Input Output

77091 qrs[normal]

77250 p wave[normal]

77952 qrs[normal]

78913 qrs[abnormal]

79066 p wave[normal]

79838 qrs[normal]

80000 qrs[abnormal]

80713 p wave[normal]

80866 qrs[normal]

81413 qrs[abnormal]

81926 p wave[normal]

. . .



Cardiac Arrhythmia Recognition

Input Output

77091 qrs[normal] [78913, 81413] bigeminy

77250 p wave[normal]

77952 qrs[normal]

78913 qrs[abnormal]

79066 p wave[normal]

79838 qrs[normal]

80000 qrs[abnormal]

80713 p wave[normal]

80866 qrs[normal]

81413 qrs[abnormal]

81926 p wave[normal]

. . .



Humpback Whale Song Recognition

I LLE: Song units representing whale sounds.

I HLE: Whale songs.

A whale song is defined as a temporal combination of songs units.



Humpback Whale Song Recognition

Input Output

[200, 400] A

[400, 500] B

[500, 550] C

[600, 700] B

[700, 800] D

[800, 1000] A

[1050, 1200] E

[1300, 1500] B

[1600, 1800] E

[1800, 1900] C

[1900, 2000] B

. . .



Humpback Whale Song Recognition

Input Output

[200, 400] A [200, 550] S1

[400, 500] B [700, 1200] S2

[500, 550] C [1600, 2000] S3

[600, 700] B . . .

[700, 800] D

[800, 1000] A

[1050, 1200] E

[1300, 1500] B

[1600, 1800] E

[1800, 1900] C

[1900, 2000] B

. . .



Event Recognition for Maritime Surveillance

LLE:

I Vessel movement.

I Entering/leaving port.

I Communication gap.

HLE:

I Shipping in protected areas.

I Shipping in unsafe areas.

I Loitering.

I Collision.

I Forbidden fishing.

HLE are spatio-temporal combinations of LLE and background
knowledge.



Event Recognition for Energy Management



Credit Card Fraud Recognition

LLE:

I Credit card transactions from all over the world.

HLE:

I Cloned card — a credit card is being used simultaneously in
different countries.

I Spike usage — the 24-hour running sum is considerably higher
than the monthly average of the last 6 months.

I New high use — the card is being frequently used in
merchants or countries never used before.

I Potential batch fraud — many transactions from multiple
cards in the same point-of-sale terminal in high amounts.

A fraud is a spatio-temporal combination of transactions and
background knowledge.



Running Example I:
Event Recognition for Public Space Surveillance



Event Recognition for Public Space Surveillance

Input Output

340 inactive(id0)

340 p(id0) =(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

. . .



Event Recognition for Public Space Surveillance

Input Output

340 inactive(id0) 340 leaving object(id1, id0 )

340 p(id0) =(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

. . .



Event Recognition for Public Space Surveillance

Input Output

340 inactive(id0) 340 leaving object(id1, id0 )

340 p(id0) =(20.88,−11.90) since(340) moving(id2, id3)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

. . .



Event Recognition for Public Space Surveillance

Input Output

420 active(id4)

420 p(id4) =(10.88,−71.90)

420 inactive(id3)

420 p(id3) =(5.8,−50.90)

420 abrupt(id5)

420 p(id5) =(11.80,−72.80)

420 active(id6)

420 p(id6) =(7.8,−52.90)

480 abrupt(id4)

480 p(id4) =(20.45,−12.90)

480 abrupt(id5)

480 p(id5) =(17.88,−11.90)

. . .



Event Recognition for Public Space Surveillance

Input Output

420 active(id4) [420, 480] fighting(id4, id5)

420 p(id4) =(10.88,−71.90)

420 inactive(id3)

420 p(id3) =(5.8,−50.90)

420 abrupt(id5)

420 p(id5) =(11.80,−72.80)

420 active(id6)

420 p(id6) =(7.8,−52.90)

480 abrupt(id4)

480 p(id4) =(20.45,−12.90)

480 abrupt(id5)

480 p(id5) =(17.88,−11.90)

. . .



Event Recognition for Public Space Surveillance

Input Output

420 active(id4) [420, 480] fighting(id4, id5)

420 p(id4) =(10.88,−71.90) since(420) meeting(id3, id6)

420 inactive(id3)

420 p(id3) =(5.8,−50.90)

420 abrupt(id5)

420 p(id5) =(11.80,−72.80)

420 active(id6)

420 p(id6) =(7.8,−52.90)

480 abrupt(id4)

480 p(id4) =(20.45,−12.90)

480 abrupt(id5)

480 p(id5) =(17.88,−11.90)

. . .



Running Example II
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Event Recognition for Transport & Traffic Management

Input Output

200 scheduled stop enter

215 late stop leave

[215, 400] abrupt acceleration

[350, 600] sharp turn

620 flow=low

density=high

700 scheduled stop enter

720 flow=low

density=average

820 scheduled stop leave

. . .



Event Recognition for Transport & Traffic Management

Input Output

200 scheduled stop enter

215 late stop leave since(215) non-punctual

[215, 400] abrupt acceleration

[350, 600] sharp turn [215, 600] uncomfortable driving

620 flow=low

density=high since(620) congestion

700 scheduled stop enter

720 flow=low

density=average

820 scheduled stop leave

. . .



Event Recognition for Transport & Traffic Management

Input Output

200 scheduled stop enter

215 late stop leave since(215) non-punctual

[215, 400] abrupt acceleration

[350, 600] sharp turn [215, 600] uncomfortable driving

620 flow=low

density=high since(620) congestion

700 scheduled stop enter

720 flow=low

density=average [620,720] congestion

820 scheduled stop leave [215,820] non-punctual

. . .



Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual HLE

definition development.



Tutorial Structure

I Temporal reasoning systems.

I Event recognition under uncertainty.

I Machine learning for event recognition.

I Open issues.



Tutorial Structure

I Temporal reasoning systems.

I Event recognition under uncertainty.

I Machine learning for event recognition.

I Open issues.



HLE Definition

abrupt 
acceleration

Uncomfortable 
driving

abrupt 
deceleration

sharp turn
Very sharp 

turn
Vehicle 
acident

Stop leaveStop enter
Very abrupt 
acceleration

Very abrupt 
deceleration

Reducing 
passenger 
satisfaction

Reducing 
passenger 

comfort

Compromising 
passenger safety

Unsafe driving Non-punctual



HLE as Chronicle

A HLE can be defined as a set of events interlinked by time
constraints and whose occurrence may depend on the context.

I This is the definition of a chronicle.

Chronicle recognition systems have been used in many
applications:

I Cardiac monitoring system.

I Intrusion detection in computer networks.

I Distributed diagnosis of web services.



Chronicle Representation Language

Predicate Meaning

event(E, T) Event E takes place at time T

event(F:(?V1,?V2),T) An event takes place at
time T changing the value of
property F from ?V1 to ?V2

noevent(E, (T1,T2)) Event E does not take place
between [T1,T2)

noevent(F:(?V1,?V2), No event takes place between
(T1,T2)) [T1,T2) that changes the value

of property F from ?V1 to ?V2

hold(F:?V, (T1,T2)) The value of property F is ?V
between [T1,T2)

occurs(N,M,E,(T1,T2)) Event E takes place at least
N times and at most M times
between [T1,T2)



Chronicle Representation Language

chronicle punctual[?id, ?vehicle](T1) {
event( stop enter[?id, ?vehicle, ?stopCode, scheduled], T0 )

event( stop leave[?id, ?vehicle, ?stopCode, scheduled], T1 )

T1 > T0

end - start in [1, 2000]

}

chronicle non punctual[?id, ?vehicle]() {
event( stop enter[?Id, ?vehicle, *, late], T0 )

}

chronicle punctuality change[?id, ?vehicle, non punctual](T1) {
event( punctual[?id, ?vehicle], T0 )

event( non punctual[?id, ?vehicle], T1 )

T1 > T0

noevent( punctual[?id, ?vehicle], ( T0+1, T1 ) )

noevent( non punctual[?id, ?vehicle], ( T0+1, T1 ) )

end - start in [1, 20000]

}



Chronicle Representation Language

I Mathematical operators in the atemporal constraints of the
language are not allowed:

I cannot express that passenger safety is compromised more
when a vehicle accident takes place far from a hospital or a
police station.

I Universal quantification is not allowed:
I cannot express that a route is punctual if all buses of the route

are punctual.

CRS is a purely temporal reasoning system.

It is also a very efficient and scalable system.



Chronicle Recognition System: Semantics

Each HLE definition is represented as a Temporal Constraint
Network. Eg:

stop enter
[?id,?vehicle,
?stopcode,
scheduled]

stop leave
[?id,?vehicle,
?stopcode,
scheduled]

[1,2000]



Chronicle Recognition System: Consistency Checking

Compilation stage:

I Constraint propagation in the Temporal Constraint Network.

I Consistency checking.

[2, 5]

A

CA

B

[1, 6]

[0, 10]

[0, 10]

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

A

CA

B

[0, 8]



Chronicle Recognition System: Recognition

Recognition stage:

I Partial HLE instance evolution.

I Forward (predictive) recognition.

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

[0, 8]

6 98 106 16111611

A

C

B

A

A

A

B

C

C@10

→



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

time

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]
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Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]
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timeA@1
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A@3
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B@5

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance
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Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated



Chronicle Recognition System

Recognition stage — partial HLE instance management:

I In order to manage all the partial HLE instances, CRS stores
them in trees, one for each HLE definition.

I Each event occurrence and each clock tick traverses these
trees in order to kill some HLE instances (tree nodes) or to
develop some HLE instances.

I For K HLE instances, each having n subevents, the
complexity of processing each incoming event or a clock
update is O(Kn2).

I To deal with out-of-order LLE streams, CRS keeps in memory
partial HLE instances longer.



Chronicle Recognition System: Optimisation

Several techniques have been developed for improving efficiency.
Eg, ‘temporal focusing’:

I Distinguish between very rare events and frequent events
based on a priori knowledge.

I Focus on the rare events: If, according to a HLE definition, a
rare event should take place after the frequent event, store the
incoming frequent events, and start recognition only upon the
arrival of the rare event.

I This way the number of partial HLE instances is significantly
reduced.

I Example: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration



Chronicle Recognition System: Summary

I One of the earliest and most successful formal event
processing systems.

I Being AI-based, it has been largely overlooked by the event
processing community.

I Very efficient and scalable event recognition.
I But:

I It is a purely temporal reasoning system.
I It does not handle uncertainty.



Event Calculus

I A logic programming language for representing and reasoning
about events and their effects.

I Key components:
I event (typically instantaneous).
I fluent: a property that may have different values at different

points in time.

I Built-in representation of inertia:
I F = V holds at a particular time-point if F = V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.



HLE Definitions in the Event Calculus

HLE definition:

leaving object(P,Obj) initiated iff
appear(Obj) happens,
inactive(Obj) holds,
close(P,Obj) holds,
person(P) holds

leaving object(P,Obj) terminated iff
disappear(Obj) happens

HLE recognition:

I leaving object(P,Obj) holdsFor I



HLE Definitions in the Event Calculus

HLE definition:

punctuality(ID) = non punctual initiated iff
enter stop(ID, Stop, late) happens or
leave stop(ID,Stop, early) happens

punctuality(ID) = non punctual terminatedAt T iff
enter stop(ID, Stop, scheduled) happensAt T ′,
leave stop(ID,Stop, scheduled) happensAt T ,
T > T ′

HLE recognition:

I punctuality(ID) = non punctual holdsFor I



HLE Definitions in the Event Calculus

HLE definition:

driving quality(ID) = low iff
punctuality(ID) = non punctual or
driving style(ID) = unsafe

Compiled HLE definition:

driving quality(ID) = low holdsFor I1 ∪ I2 iff
punctuality(ID) = non punctual holdsFor I1 ,
driving style(ID) = unsafe holdsFor I2



HLE Definitions in the Event Calculus

HLE definition:

driving quality(ID) = medium iff
punctuality(ID) = punctual ,
driving style(ID) = uncomfortable

Compiled HLE definition:

driving quality(ID) = medium holdsFor I1 ∩ I2 iff
punctuality(ID) = punctual holdsFor I1 ,
driving style(ID) = uncomfortable holdsFor I2



HLE Definitions in the Event Calculus

HLE definition:

fighting(P1 ,P2 ) iff
(abrupt(P1 ) or abrupt(P2 )),
close(P1 ,P2 ),
not (inactive(P1 ) or inactive(P2 ))

Compiled HLE definition:

fighting(P1 ,P2 ) holdsFor ((I1 ∪ I2 ) ∩ I3 ) \ (I4 ∪ I5 ) iff
abrupt(P1 ) holdsFor I1 ,
abrupt(P2 ) holdsFor I2 ,
close(P1 ,P2 ) holdsFor I3 ,
inactive(P1 ) holdsFor I4 ,
inactive(P2 ) holdsFor I5



Run-Time Event Recognition

Real-time decision-support in the presence of:

I Very large LLE streams.

I Non-sorted LLE streams.

I LLE revision.

I Very large HLE numbers.



Event Calculus: Run-Time Event Recognition

time

Q178 Q182Q181Q180Q179Q177

Working Memory



Event Calculus: Run-Time Event Recognition

time
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Event Calculus: Run-Time Event Recognition

time

Q178 Q182Q181Q180Q179Q177

Working Memory

time

Q178 Q182Q181Q180Q179Q177

Working Memory

time

Q178 Q182Q181Q180Q179Q177

Working Memory



Event Calculus: Summary

I Representation of complex temporal phenomena.
I Succinct representation → code maintenance.
I Intuitive representation → facilitates interaction with domain

experts unfamiliar with programming.

I The full power of logic programming is available.
I Complex atemporal computations in HLE definitions.
I Combination of streaming data with historical knowledge.

I Very efficient reasoning.
I Even when LLE arrive with a delay and are revised.
I Even in the presence of large HLE hierarchies.

I But:
I The Event Calculus has to deal with uncertainty.



Tutorial Structure

I Temporal reasoning systems.

I Event recognition under uncertainty.

I Machine learning for event recognition.

I Open issues.



Common Problems of Event Recognition

I Limited dictionary of LLE and context variables.
I No explicit representation of hand shaking, falling down, etc.

I Incomplete LLE stream.
I Abrupt acceleration was not detected.

I Erroneous LLE detection.
I Abrupt acceleration was classified as sharp turn.

I Inconsistent ground truth (HLE & LLE annotation).
I Disagreement between (human) annotators.

Therefore, an adequate treatment of uncertainty is required.



Logic-based models & Probabilistic models

I Logic-based models:
I Very expressive with formal declarative semantics
I Directly exploit background knowledge
I Trouble with uncertainty

I Probabilistic graphical models:
I Handle uncertainty
I Lack of a formal representation language
I Difficult to model complex events
I Difficult to integrate background knowledge



Can these approaches combined?

Research communities that try combine these approaches:

I Probabilistic (Inductive) Logic Programming

I Statistical Relational Learning

How?

I Logic-based approaches incorporate statistical methods

I Probabilistic approaches learn logic-based models



ProbLog

I A Probabilistic Logic Programming language.

I Allows for independent ‘probabilistic facts’ prob::fact.

I Prob indicates the probability that fact is part of a possible
world.

I Rules are written as in classic Prolog.

I The probability of a query q imposed on a ProbLog database
(success probability) is computed by the following formula:

Ps(q) = P(
∨

e∈Proofs(q)

∧
fi∈e

fi )



Event Recognition using ProbLog

Input Output

340 0.45 :: inactive(id0) 340 0.41 :: leaving object(id1, id0)

340 0.80 :: p(id0) =(20.88,−11.90) 340 0.55 :: moving(id2, id3)

340 0.55 :: appear(id0)

340 0.15 :: walking(id2)

340 0.80 :: p(id2) =(25.88,−19.80)

340 0.25 :: active(id1)

340 0.66 :: p(id1) =(20.88,−11.90)

340 0.70 :: walking(id3)

340 0.46 :: p(id3) =(24.78,−18.77)

. . .



Event Calculus in ProbLog
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Event Calculus in ProbLog: Experimental Evaluation

To compare ProbLog-EC to Crisp-EC:

I We add noise (probabilities) in LLE:
I Crisp-EC: LLE with probability < 0.5 are discarded.
I ProbLog-EC: all LLE are kept with their probabilities.

I In ProbLog-EC we accept as recognised the HLE that have
probability > 0.5.



Event Calculus in ProbLog: Experimental Evaluation

0

5000

10000

15000

20000

25000

30000

35000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

LL
E 

O
cc

u
rr

e
n

ce
s

Noise (Gamma distribution mean)



Event Calculus in ProbLog: Experimental Evaluation

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 

F 
m

ea
su

re
 

Gamma Distribution Mean 

Meeting  

Crisp-EC 

ProbLog-EC 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

F 
m

ea
su

re

Gamma Distribution Mean

Moving 

moving(P1 ,P2 ) initiated iff
walking(P1 ) happens,
walking(P2 ) happens,
close(P1 ,P2 ) holds,
orientation(P1 ) = O1 holds,
orientation(P2 ) = O2 holds,
|O1 − O2 | < threshold



Event Calculus in ProbLog: Experimental Evaluation
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Event Calculus in ProbLog: Summary

I ProbLog-EC clearly outperforms Crisp-EC when:
I The environment is highly noisy (LLE < 0.5) — realistic

assumption in many domains,
I there are successive initiations that allow the HLE’s probability

to increase and eventually exceed the specified (0.5) threshold,
and

I the amount of probabilistic conjuncts in an initiation condition
is limited.

I Note that:
I we also need to deal with uncertainty in the HLE definitions.



Markov Logic Networks (MLN)

INPUT I TRANSFORMATION I INFERENCE I OUTPUT �

Compact

Knowledge

Base

HLE

Definitions

EC

Axioms

LLE

Stream

Recognised

HLEs

Markov Logic Networks

I Syntax: weighted first-order logic formulas (Fi ,wi ).

I Semantics: (Fi ,wi ) represents a probability distribution over
possible worlds.

I A world violating formulas becomes less probable, but not
impossible.



Markov Logic: Representation

Example definition of HLE ‘uncomfortable driving’ :

w1

abrupt movement(Id ,Vehicle,T )←
abrupt acceleration(Id ,Vehicle,T ) ∨
abrupt deceleration(Id ,Vehicle,T ) ∨
sharp turn(Id ,Vehicle,T )

w2

uncomfortable driving(Id ,Vehicle,T2)←
approach intersection(Id ,Vehicle,T1) ∧
abrupt movement(Id ,Vehicle,T2) ∧
before(T1,T2)



Markov Logic: Representation

I Weight: a real-valued number.

I Higher weight −→ Stronger constraint
I Hard constraints

I Infinite weight values.
I Background knowledge.

I Soft constraints
I Strong weight values: almost always true.
I Weak weight values: describe exceptions.



Markov Logic: Network Construction

I Formulas are translated into clausal form.

I Weights are divided equally among clauses:
1
3

w1 ¬abrupt acceleration(Id ,Vehicle,T ) ∨ abrupt movement(Id ,Vehicle,T )

1
3

w1 ¬abrupt deceleration(Id ,Vehicle,T ) ∨ abrupt movement(Id ,Vehicle,T )

1
3

w1 ¬sharp turn(Id ,Vehicle,T ) ∨ abrupt movement(Id ,Vehicle,T )

w2 ¬approach intersection(Id ,Vehicle,T1) ∨ ¬abrupt movement(Id ,Vehicle,T2) ∨
¬before(T1,T2) ∨ uncomfortable driving(Id ,Vehicle,T2)



Markov Logic: Network Construction

Template that produces ground Markov network:
I Given a set of constants from the input LLE stream

I Ground all clauses.

I Boolean nodes: ground predicates.
I Each ground clause:

I Forms a clique in the network.
I Is associated with wi and a Boolean feature.

P(X = x) = 1
Z exp (

∑
i wi ni (x))

Z =
∑

x∈X exp(P(X = x))



Markov Logic: Network Construction

1
3

w1 ¬abrupt acceleration(Id ,Vehicle,T ) ∨ abrupt movement(Id ,Vehicle,T )

1
3

w1 ¬abrupt deceleration(Id ,Vehicle,T ) ∨ abrupt movement(Id ,Vehicle,T )

1
3

w1 ¬sharp turn(Id ,Vehicle,T ) ∨ abrupt movement(Id ,Vehicle,T )

w2 ¬approach intersection(Id ,Vehicle,T1) ∨ ¬abrupt movement(Id ,Vehicle,T2) ∨
¬before(T1,T2) ∨ uncomfortable driving(Id ,Vehicle,T2)

LLE:
abrupt acceleration(tr0, tram, 101)
approach intersection(tr0, tram, 100)
before(100, 101)

Constants:
T = {100, 101}
Id = {tr0}
Vehicle = {tram}



Markov Logic: Network Construction

For example, the clause:
w2 ¬approach intersection(Id ,Vehicle,T1) ∨ ¬abrupt movement(Id ,Vehicle,T2) ∨

¬before(T1,T2) ∨ uncomfortable driving(Id ,Vehicle,T2)

produces the following groundings:
w2 ¬approach intersection(tr0 , tram, 100) ∨ ¬abrupt movement(tr0 , tram, 100) ∨

¬before(100 , 100) ∨ uncomfortable driving(tr0 , tram, 100)

w2 ¬approach intersection(tr0 , tram, 100) ∨ ¬abrupt movement(tr0 , tram, 101) ∨
¬before(100 , 101) ∨ uncomfortable driving(tr0 , tram, 101)

w2 ¬approach intersection(tr0 , tram, 101) ∨ ¬abrupt movement(tr0 , tram, 100) ∨
¬before(101 , 100) ∨ uncomfortable driving(tr0 , tram, 100)

w2 ¬approach intersection(tr0 , tram, 101) ∨ ¬abrupt movement(tr0 , tram, 101) ∨
¬before(101 , 101) ∨ uncomfortable driving(tr0 , tram, 101)



Markov Logic: Network Construction
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Markov Logic: World state discrimination

before

(100,100)

before

(101,101)

uncomfortable

_driving

(tr0, tram,101)

abrupt_ 

movement

(tr0,tram,101)

approach_ 

intersection

(tr0,tram,100)

before

(100,101)

abrupt_ 

deceleration

(tr0,tram,101)

sharp_turn

(tr0,tram,101)

abrupt_ 

acceleration

(tr0,tram,101)

uncomfortable

_driving

(tr0, tram,100)

abrupt_ 

movement

(tr0,tram,100)

approach_ 

intersection

(tr0,tram,101)

before

(101,100)

abrupt_ 

deceleration

(tr0,tram,100)

sharp_turn

(tr0,tram,100)

abrupt_ 

acceleration

(tr0,tram,100)

P(X = x1)=
1
Z

exp( 1
3

w1· 2 + 1
3

w1· 2 + 1
3

w1· 2 + w2· 4)= 1
Z

e2w1+4w2

P(X = x1)=
1
Z

exp( 1
3

w1· 2 + 1
3

w1· 2 + 1
3

w1· 2 + w2· 4)= 1
Z

e2w1+4w2

P(X = x2)=
1
Z

exp( 1
3

w1· 2 + 1
3

w1· 2 + 1
3

w1· 2 + w2· 3)= 1
Z

e2w1+3w2



Markov Logic: World state discrimination
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Markov Logic: Inference

I Event recognition involves querying about HLE.

I Given a ground Markov network, apply standard probabilistic
inference methods.

I Markov network may be large and have a complex structure
I Inference may become infeasible.

I MLN combine logical and probabilistic inference methods.



Markov Logic: Conditional inference

Query: Which trams are driven in an
uncomfortable manner?

I Query variables Q: HLE

I Evidence variables E : LLE

I Hidden variables H

P(Q | E = e) =
P(Q,E = e,H)

P(E = e,H)
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Markov Logic: Conditional inference

Query: Which trams are driven in an
uncomfortable manner?

I Query variables Q: HLE

I Evidence variables E : LLE

I Hidden variables H

P(Q | E = e) =
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P(E = e,H)
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Markov Logic: Conditional inference

I Efficiently approximated with sampling.

I Markov Chain Monte Carlo (MCMC): e.g Gibbs sampling.

I Random walks in state space.

I Reject all states where E = e does not hold.



Markov Logic: MCMC
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Markov Logic: Deterministic dependencies

I MCMC is a pure statistical method.

I MLN combine logic and probabilistic models.
I Hard constrained formulas:

I Deterministic dependencies.
I Isolated regions in state space.

I Strong constrained formulas:
I Near-deterministic dependencies.
I Difficult to cross regions.

I Combination of satisfiability testing with
MCMC.

P(X=x)

xxi xj

P(X=x)

xxi xj



Event Calculus
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Event Calculus in MLN
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Hard-constrained inertia rules:

2.3 HLE initiatedAt T if
[Conditions]

¬(HLE holdsAt T ) iff
¬(HLE holdsAt T−1),
¬(HLE initiatedAt T−1)

2.5 HLE terminatedAt T if
[Conditions]

HLE holdsAt T iff
HLE holdsAt T−1,
¬(HLE terminatedAt T−1)



Event Calculus in MLN
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Soft-constrained initiation inertia rules:

2.3 HLE initiatedAt T if
[Conditions]

2.8 ¬(HLE holdsAt T ) iff
¬(HLE holdsAt T−1),
¬(HLE initiatedAt T−1)

2.5 HLE terminatedAt T if
[Conditions]

HLE holdsAt T iff
HLE holdsAt T−1,
¬(HLE terminatedAt T−1)



Event Calculus in MLN
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Soft-constrained termination inertia rules:

2.3 HLE initiatedAt T if
[Conditions]

¬(HLE holdsAt T ) iff
¬(HLE holdsAt T−1),
¬(HLE initiatedAt T−1)

2.5 HLE terminatedAt T if
[Conditions]

2.8 HLE holdsAt T iff
HLE holdsAt T−1,
¬(HLE terminatedAt T−1)



Event Calculus in MLN
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Soft-constrained termination inertia rules:

2.3 HLE initiatedAt T if
[Conditions]

¬(HLE holdsAt T ) iff
¬(HLE holdsAt T−1),
¬(HLE initiatedAt T−1)

2.5 HLE terminatedAt T if
[Conditions]

0.8 HLE holdsAt T iff
HLE holdsAt T−1,
¬(HLE terminatedAt T−1)



Event Calculus in MLN: Experimental Evaluation
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Event Calculus in MLN: Summary

I We can deal with both:
I Uncertainty in the HLE definitions, and
I uncertainty in the input.

I Customisable inertia behaviour to meet the requirements of
different applications.

I But:
I There is room for improvement with respect to efficiency.



Event Recognition under Uncertainty

I Probabilistic reasoning improves recognition accuracy.

I But probabilistic reasoning often does not allow for real-time
event recognition.

I Solution: self-adaptive event recognition
I Streams from multiple sources are matched against each other

to identify mismatches that indicate uncertainty in the sources.
I Temporal regions of uncertainty are identified from which the

system autonomously decides to adapt its event sources in
order to deal with uncertainty, without compromising efficiency.

I Data variety is used to handle veracity.



Self-Adaptive Event Recognition

busReportedCongestion(Lon, Lat) initiated iff
move(Bus, LonB , LatB , 1) happens,
close(LonB , LatB , Lon, Lat)

busReportedCongestion(Lon, Lat) terminated iff
move(Bus, LonB , LatB , 0) happens,
close(LonB , LatB , Lon, Lat)



Self-Adaptive Event Recognition:
Identifying Mismatches among Different Streams

noisy(Bus) initiated iff
move(Bus, LonB , LatB , 1) happens,
close(LonB , LatB , LonS , LatS ),
¬ (scatsReportedCongestion(LonS , LatS ) holds)

noisy(Bus) terminated if
move(Bus, LonB , LatB , 1) happens,
close(LonB , LatB , LonS , LatS ),
scatsReportedCongestion(LonS , LatS ) holds

noisy(Bus) terminated if
move(Bus, LonB , LatB , 0) happens,
close(LonB , LatB , LonS , LatS ),
¬ (scatsReportedCongestion(LonS , LatS ) holds)



Self-Adaptive Event Recognition:
Discard Temporarily Unreliable Event Sources

busReportedCongestion(Lon, Lat) initiated iff
move(Bus, LonB , LatB , 1) happens,
¬ (noisy(Bus) holds),
close(LonB , LatB , Lon, Lat)

busReportedCongestion(Lon, Lat) terminated iff
move(Bus, LonB , LatB , 0) happens,
¬ (noisy(Bus) holds),
close(LonB , LatB , Lon, Lat)



Self-Adaptive Event Recognition in Dublin
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Event Recognition Under Uncertainty: Summary

I Uncertainty in the input:
I Probabilistic reasoning.
I Using variety for veracity (when possible).

I Uncertainty in the HLE definitions:
I Probabilistic reasoning.

I But:
I We are still missing a framework for real-time, probabilistic

event recognition.



Tutorial Structure

I Temporal reasoning systems.

I Event recognition under uncertainty.

I Machine learning for event recognition.

I Open issues.



Machine Learning for Event Recognition

Manual development of HLE definitions:

I Time consuming.

I Error-prone.

Automated construction for HLE definitions:
I Learn complex HLE definitions

I Structure learning

I Learn from noisy data
I Parameter learning

I Learn with incomplete or missing annotation
I Semi-supervised, unsupervised learning

I Learn from large amounts of data
I Scalable algorithms, incremental learning



Learning the Structure of HLE Definitions

Inductive Logic Programming (ILP):

I Input:
I LLE streams annotated with HLE

I Examples E+, E−.

I Event recognition engine
I Background knowledge B.

I Syntax of event recognition language
I Language bias M.

I Output:
I A HLE definition

I Hypothesis H in the language of M such that B ∪H entails all
positive and none of the negative examples.



Learning the Structure of HLE Definitions with ILP

moving(P1 ,P2 ) initiated iff
walking(P1 ) happens,
walking(P2 ) happens,
close(P1 ,P2 ) holds,
orientation(P1 ) = O1 holds,
orientation(P2 ) = O2 holds,
|O1 − O2 | < threshold

Background Knowledge

Examples

. . .

+
moving(alice, bob) holdsAt 10

walking(alice) happensAt 10,
walking(bob) happensAt 10,
close(alice, bob) holdsAt 10,
orientation(alice) = O1 holdsAt 10,
orientation(bob) = O2 holdsAt 10,
|O1 − O2 | < threshold

. . .

−
moving(mary , jim) not holdsAt 10

standing(mary) happensAt 10,
running(jim) happensAt 10,
close(mary , jim) not holdsAt 10,
orientation(mary) = O1 holdsAt 10,
orientation(jim) = O2 holdsAt 10,
|O1 − O2 | > threshold

. . .



Learning HLE definitions with ILP

Non-Observational Predicate Learning:
I Supervision

I holdsAt

I Target
I initiated, terminated

I Traditional ILP systems cannot handle this

Solution:

I Obtain missing supervision by computing possible
explanations of the examples (Abduction).



eXtended Hybrid Abductive-Inductive Learning – XHAIL

Begin

Uncovered
positive examples?

Terminate

Select a positive example:

moving(alice, bob) holdsAt 10

Abduction:

moving(alice, bob) initiatedAt 9

Deduction:

moving(alice, bob) initiatedAt 9 iff
walking(alice) happensAt 9,
walking(bob) happensAt 9,
close(alice, bob) holdsAt 9

Induction:

moving(P1 ,P2) initiated iff
walking(P1) happens,
walking(P2) happens

Covering step:
Remove all positives covered

by the new rule

No Yes



Incremental Learning
Given:

I A LLE stream E annotated with HLE (historical memory)

I A HLE definition H which is correct w.r.t E
I A new LLE batch in which H is incorrect

w1

ok!

w1

ok!

. . . . . .

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

not ok!

fighting(P1 ,P2 ) initiated iff
active(P1 ) happens,
abrupt(P2 ) happens

H :



Incremental Learning
Goal:

I Revise H to an H ′ that is correct w.r.t all examples

w1

ok!

w1

ok!

. . . . . .

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

ok!

fighting(P1 ,P2 ) initiated iff
active(P1 ) happens,
abrupt(P2 ) happens,
close(P1 ,P2 ) holds

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
abrupt(P2 ) happens,
close(P1 ,P2 ) holds

H ′ :



Incremental Learning

Specialisation:

I Reject negative examples

fighting(P1 ,P2 ) initiated iff
active(P1 ) happens,
abrupt(P2 ) happens

H :

fighting(P1 ,P2 ) initiated iff
active(P1 ) happens,
abrupt(P2 ) happens,
close(P1 ,P2 ) holds

H ′ :



Incremental Learning

Generalisation:

I Cover more positive examples

fighting(P1 ,P2 ) initiated iff
active(P1 ) happens,
abrupt(P2 ) happens,
close(P1 ,P2 ) holds

H :

fighting(P1 ,P2 ) initiated iff
active(P1 ) happens,
abrupt(P2 ) happens,
close(P1 ,P2 ) holds

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
abrupt(P2 ) happens,
close(P1 ,P2 ) holds

H ′ :



Incremental Learning is Hard
Example:

I Specialise a HLE definition
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Historical Memory E
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ok!

wn

not ok!

Negative examples covered

fighting(P1 ,P2 ) initiated iff
active(P1 ) happens,
abrupt(P2 ) happensH :
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Incremental Learning is Hard
Example:

I Specialise a HLE definition

w1

?

w1

?

. . . . . .

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

ok!
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Incremental Learning is Hard
Example:

I Specialise a HLE definition

w1

?

w1

not ok!

. . . . . .

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

ok!

Positive examples not covered

fighting(P1 ,P2 ) initiated iff
active(P1 ) happens,
abrupt(P2 ) happens,
close(P1 ,P2 ) holds
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Incremental Learning is Hard
Example:

I Specialise a HLE definition

w1

?

w1

ok!

. . . . . .

Historical Memory E

wn−2

?

wn−1

?

wn

?

We must start all over again...

fighting(P1 ,P2 ) initiated iff
active(P1 ) happens,
abrupt(P2 ) happens,
close(P1 ,P2 ) holds

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens

H ′′ :



Efficient Incremental Learning: Support Set
I While constructing a HLE definition, summarize the positive

examples it covers so far.
I This memory can be used for specialisation without having to

look back.

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
close(P1 ,P2 ) holds,
abrupt(P2 ) happens

fighting(P1 ,P2 ) initiated iff
active(P2 ) happens,
close(P1 ,P2 ) holds,
abrupt(P1 ) happens

+

wi

. . . +

wj

+

wk

. . . +

wm



Support Set
I To revise a HLE definition while preserving the positive

examples it covers
I It suffices for the revision to subsume the support set

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
close(P1 ,P2 ) holds

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
close(P1 ,P2 ) holds,
abrupt(P2 ) happens

fighting(P1 ,P2 ) initiated iff
active(P2 ) happens,
close(P1 ,P2 ) holds,
abrupt(P1 ) happens

+

wi

. . . +

wj

+

wk

. . . +

wm



Support Set Example
Find the smallest set of “supported” specialisations such that:

I All specialisations subsume the support set.
I Each specialisation rejects the negative examples.

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
close(P1 ,P2 ) holds,
abrupt(P2 ) happens

fighting(P1 ,P2 ) initiated iff
active(P2 ) happens,
close(P1 ,P2 ) holds,
abrupt(P1 ) happens

+

wi

. . . +

wj

–

wn

+

wk

. . . +

wm



Support Set Example
Find the smallest set of “supported” specialisations such that:

I All specialisations subsume the support set.
I Each specialisation rejects the negative examples.
I A single specialisation may suffice.

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
close(P1 ,P2 ) holds

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
close(P1 ,P2 ) holds,
abrupt(P2 ) happens

fighting(P1 ,P2 ) initiated iff
active(P2 ) happens,
close(P1 ,P2 ) holds,
abrupt(P1 ) happens

+

wi

. . . +

wj

–

wn

+

wk

. . . +

wm



Support Set Example
Find the smallest set of “supported” specialisations such that:

I All specialisations subsume the support set.
I Each specialisation rejects the negative examples.
I The HLE definition may need to “split”.

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
abrupt(P2 ) happens

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
active(P2 ) happens

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
close(P1 ,P2 ) holds,
abrupt(P2 ) happens

fighting(P1 ,P2 ) initiated iff
active(P2 ) happens,
close(P1 ,P2 ) holds,
abrupt(P1 ) happens

+

wi

. . . +

wj

–

wn

+

wk

. . . +

wm



What do we achieve?

I Without the support set

w1

ok!

w1

ok!

. . . . . .

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

not ok!

Negative examples covered

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happensH :
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fighting(P1 ,P2 ) initiated iff
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active(P2 ) happens

H ′ :



What do we achieve?

I With the support set

w1

ok!

w1

ok!

. . . . . .

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

not ok!

Negative examples covered

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happensH :



What do we achieve?
I With the support set

I Reject negative examples locally, preserve positive examples
globally.

I Reasoning within the support set, avoid redundant inference in
the historical memory

I At most one pass over the historical memory is required.

w1

ok!

w1

ok!

. . . . . .

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

ok!

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
active(P2 ) happens

fighting(P1 ,P2 ) initiated iff
abrupt(P1 ) happens,
abrupt(P2 ) happens

H ′ :



Machine Learning for Event Recognition: Summary

I Automated construction & refinement of HLE definitions
I Taking advantage of very large datasets.
I Dealing with partial supervision.

I But:
I We also need to deal with noise

I Simultaneous optimisation of structure and parameters.



Tutorial Structure

I Temporal reasoning systems.

I Event recognition under uncertainty.

I Machine learning for event recognition.

I Open issues.



Open Issues

I Machine learning under uncertainty.

I Real-time event recognition under uncertainty.

I Distributed event recognition.

I Multi-scale temporal aggregation of events.

I Event forecasting under uncertainty.

I User-friendly authoring tools enabling non-programmers to use
event recognition & forecasting.



Tutorial Resources

I Alexander Artikis, Anastasios Skarlatidis, Francois Portet,
Georgios Paliouras: Logic-based event recognition. Knowledge
Engineering Review 27(4): 469-506 (2012).

I Software, datasets, slides & papers at
cer.iit.demokritos.gr

cer.iit.demokritos.gr

