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Tutorial Resources

» Alexander Artikis, Anastasios Skarlatidis, Francois Portet,
Georgios Paliouras: Logic-based event recognition. Knowledge
Engineering Review 27(4): 469-506 (2012).

» Software, datasets, slides & papers at
cer.iit.demokritos.gr


cer.iit.demokritos.gr

Event Recognition (Event Pattern Matching)

Input:

» Symbolic representation of time-stamped, low-level events
(LLE) coming from (geographically distributed) sources.

» Big Data.

Output:

» High-level events (HLE) — collections of LLE and/or HLE
that satisfy some pattern (temporal, spatial, logical
constraints).

> Not restricted to aggregates.

» Humans understand HLE easier than LLE.

Tutorial scope:

» Systems with a formal semantics.



Cardiac Arrhythmia Recognition
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» LLE: P and QRS waves representing heart activity.
» HLE: Cardiac arrhythmias.
A cardiac arrhythmia is defined as a temporal combination of P

and QRS waves.



Cardiac Arrhythmia Recognition

Input Output

16338 grs[normal]
17091 p_wave[normal]
17250 grs[normal]
17952 p_wave[normal]
18913 p_wave[normal]
19066 grs[normal]
19838 p_wave[normal]
20713 p_wave[normal]
20866 grs[normal]
21413 grs[abnormal]
21926 p_wave[normal]
22496 grs[normal]




Cardiac Arrhythmia Recognition

Input Output

16338 qrs[normal] [17091, 19066] mobitzII
17091 p_wave[normal]
17250 grs[normal]
17952 p_wave[normal]
18913 p_wave[normal]
19066 grs[normal]
19838 p_wave[normal]
20713 p_wave[normal]
20866 grs[normal]
21413 grs[abnormal]
21926 p_wave[normal]
22496 grs[normal]




Cardiac Arrhythmia Recognition

Input Output

77091 grs[normal]
77250 p_wave[normal]
77952 grs[normal]
78913 grs[abnormal]
79066 p_wave[normal]
79838 grs[normal]
80000 grs[abnormal]
80713 p_wave[normal]
80866 grs[normal]
81413 grs[abnormal]
81926 p_wave[normal]




Cardiac Arrhythmia Recognition

Input Output

77091 grs[normal] [78913, 81413] bigeminy
77250 p_wave[normal]
77952 grs[normal]
78913 qgrs[abnormal]
79066 p_wave[normal]
79838 grs[normal
80000 grs[abnormal]
80713 p_wave[normal]
80866 qrs[normal
81413 grs[abnormal]
81926 p_wave[normal]




Humpback Whale Song Recognition
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» LLE: Song units representing whale sounds.
» HLE: Whale songs.

A whale song is defined as a temporal combination of songs units.



Humpback Whale Song Recognition

Input Output

[200, 400]
[400, 500]
[500, 550]
[600, 700]
[700, 800]
[800, 1000]
[1050, 1200]
[1300, 1500]
[1600, 1800]
[1800, 1900]
[1900, 2000]
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Humpback Whale Song Recognition

Input Output
[200, 400] A [200,550] S
[400, 500] B [700,1200] S
[500, 550] C [1600,2000] S3
[600, 700] B
[700, 800] D
[800,1000] A
[1050,1200] E
[1300,1500] B
[1600,1800] E
[1800,1900] C
[1900,2000] B




Event Recognition for Maritime Surveillance

LLE:
> Vessel movement.
» Entering/leaving port.
» Communication gap.
HLE:
» Shipping in protected areas.
» Shipping in unsafe areas.
» Loitering.
> Collision.
» Forbidden fishing.

HLE are spatio-temporal combinations of LLE and background
knowledge.



Event Recognition for Energy Management
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Credit Card Fraud Recognition b

LLE:
» Credit card transactions from all over the world.
HLE:

» Cloned card — a credit card is being used simultaneously in
different countries.

» Spike usage — the 24-hour running sum is considerably higher
than the monthly average of the last 6 months.

> New high use — the card is being frequently used in
merchants or countries never used before.

» Potential batch fraud — many transactions from multiple
cards in the same point-of-sale terminal in high amounts.

A fraud is a spatio-temporal combination of transactions and
background knowledge.



Running Example I
Event Recognition for Public Space Surveillance
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Event Recognition for Public Space Surveillance

Input Output

340 inactive(idp)

340 p(idy) =(20.88,—11.90)
340 appear(idy)

340 walking(id>)

340 p(id») =(25.88, —19.80)
340 active(idy)

340 p(idy) =(20.88, —11.90)
340 walking(ids)

340 p(ids) =(24.78, —18.77)
380 walking(ids)

380 p(id3) =(27.88,—9.90)
380 walking(id>)

380 p(id2) =(28.27,—9.66)



Event Recognition for Public Space Surveillance

Input Output

340 inactive(idp) 340 leaving _object(idy, idp )
340 p(idy) =(20.88,—11.90)
340 appear(idy)

340 walking(id>)

340 p(id») =(25.88, —19.80)
340 active(idy)

340 p(idy) =(20.88, —11.90)
340 walking(ids)

340 p(ids) =(24.78, —18.77)
380 walking(ids)

380 p(id3) =(27.88,—9.90)
380 walking(id>)

380 p(id2) =(28.27,—9.66)



Event Recognition for Public Space Surveillance

Input Output

340 inactive(idp) 340 leaving _object(idy, idp )
340 p(idy) =(20.88,—11.90)  since(340) moving(idy, id3)
340 appear(idp)

340 walking(id>)

340 p(idy) =(25.88,—19.80)

340 active(idy)

340 p(id;)=(20.88,—11.90)

340 walking (id3)

340 p(ids) =(24.78, —18.77)

380 walking(id3)

380 p(id3) =(27.88,—9.90)

380 walking(id>)

380 p(id») =(28.27, —9.66)



Event Recognition for Public Space Surveillance

Input Output

420 active(ids)

420 p(idsy) =(10.88, —71.90)
420 inactive(ids)

420 p(id3) =(5.8,—-50.90)
420 abrupt(ids)

420 p(ids) =(11.80, —72.80)
420 active(ids)

420 p(ids) =(7.8, —52.90)
480 abrupt(idy)

480 p(ids) =(20.45, —12.90)
480 abrupt(ids)

480 p(ids) =(17.88, —11.90)



Event Recognition for Public Space Surveillance

Input Output

420 active(ids) [420, 480] fighting (ids, ids)
420 p(idsy) =(10.88, —71.90)
420 inactive(ids)

420 p(id3) =(5.8,—-50.90)
420 abrupt(ids)

420 p(ids) =(11.80, —72.80)
420 active(ids)

420 p(ids) =(7.8, —52.90)
480 abrupt(idy)

480 p(ids) =(20.45, —12.90)
480 abrupt(ids)

480 p(ids) =(17.88, —11.90)



Event Recognition for Public Space Surveillance

Input Output

420 active(ids) [420, 480] fighting (ids, ids)
420 p(idy) =(10.88,—71.90) since(420) meeting(ids, ide)
420 inactive(ids)

420 p(id3) =(5.8, —50.90)

420 abrupt(ids)

420 p(ids) =(11.80, —72.80)

420 active(ids)

420 p(ids) =(7.8, —52.90)

480 abrupt(ids)

480 p(ids) =(20.45, —12.90)

480 abrupt(ids)

480 p(ids) =(17.88, —11.90)



Running Example [l
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Event Recognition for Transport & Traffic Management

Input Output
200 scheduled stop enter
215 late stop leave

[215,400] abrupt acceleration
[350,600] sharp turn

620 flow=low
density=high

700 scheduled stop enter

720 flow=low

density=average

820 scheduled stop leave




Event Recognition for Transport & Traffic Management

200
215
[215, 400]
[350, 600]
620

700
720

820

Input Output
scheduled stop enter
late stop leave since(215) non-punctual
abrupt acceleration
sharp turn [215,600] uncomfortable driving
flow=Ilow
density=high since(620) congestion

scheduled stop enter

flow=low

density=average

scheduled stop leave




Event Recognition for Transport & Traffic Management

Input

Output

200
215
[215, 400]
[350, 600]
620

700
720

820

scheduled stop enter
late stop leave since(215)

abrupt acceleration

sharp turn [215,600]
flow=low

density=high since(620)
scheduled stop enter

flow=low

density=average [620,720]

scheduled stop leave [215,820]

non-punctual

uncomfortable driving

congestion

congestion

non-punctual




Event Recognition

Requirements:
» Efficient reasoning

> to support real-time decision-making in large-scale,
(geographically) distributed applications.

» Reasoning under uncertainty
» to deal with various types of noise.
» Automated knowledge construction

> to avoid the time-consuming, error-prone manual HLE
definition development.



Tutorial Structure

v

Temporal reasoning systems.

v

Event recognition under uncertainty.

v

Machine learning for event recognition.

v

Open issues.



Tutorial Structure

v

Temporal reasoning systems.

» Event recognition under uncertainty.

v

Machine learning for event recognition.

v

Open issues.
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HLE Definition
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HLE as Chronicle

A HLE can be defined as a set of events interlinked by time
constraints and whose occurrence may depend on the context.

» This is the definition of a chronicle.

Chronicle recognition systems have been used in many
applications:

» Cardiac monitoring system.
> Intrusion detection in computer networks.

» Distributed diagnosis of web services.



Chronicle Representation Language

Predicate

Meaning

event(E, T)

event (F: (?V1,7V2),T)

noevent (E, (T1,T2))

noevent (F: (?V1,7V2),
(T1,T2))

hold(F:?V, (T1,T2))

occurs(N,M,E, (T1,T2))

Event E takes place at time T

An event takes place at
time T changing the value of
property F from ?V1 to 7V2

Event E does not take place
between [T1,T2)

No event takes place between
[T1,T2) that changes the value
of property F from ?7V1 to 7V2

The value of property F is 7V
between [T1,T2)

Event E takes place at least
N times and at most M times
between [T1,T2)




Chronicle Representation Language

chronicle punctual[?id, ?vehicle]l(T1) {

event ( stop_enter[?id, 7vehicle, ?stopCode, scheduled], TO )
event ( stop_leave[?7id, 7vehicle, 7stopCode, scheduled], T1 )
T1 > TO

end - start in [1, 2000]

}

chronicle non_punctuall[?id, ?vehicle]() {
event ( stop_enter[?Id, 7vehicle, *, late], TO )

}

chronicle punctuality_change[?id, ?vehicle, non_punctuall (T1) {
event ( punctual([?id, ?vehicle], TO )

event ( non_punctual[?id, ?vehicle], T1 )

T1 > TO

noevent ( punctual[?id, ?vehicle], ( TO+1, T1 ) )

noevent ( non_punctual[?id, ?vehicle], ( TO+1, T1 ) )

end - start in [1, 20000]



Chronicle Representation Language

» Mathematical operators in the atemporal constraints of the
language are not allowed:

» cannot express that passenger safety is compromised more
when a vehicle accident takes place far from a hospital or a
police station.

» Universal quantification is not allowed:

» cannot express that a route is punctual if all buses of the route
are punctual.

CRS is a purely temporal reasoning system.

It is also a very efficient and scalable system.



Chronicle Recognition System: Semantics

Each HLE definition is represented as a Temporal Constraint
Network. Eg:

stop_enter
[?id, ?vehicle,
7stopcode,

scheduled]

stop_leave
[?id, ?vehicle,
?stopcode,
scheduled]

[1,2000]




Chronicle Recognition System: Consistency Checking

Compilation stage:
» Constraint propagation in the Temporal Constraint Network.

» Consistency checking.
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Chronicle Recognition System: Recognition

Recognition stage:
» Partial HLE instance evolution.

» Forward (predictive) recognition.
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Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A: enter tram intersection

[1,3] [0,3] B: abrupt deceleration
@ @ @ C: abrupt acceleration

time




Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A: enter tram intersection
[1,3] [0,3] B: abrupt deceleration
A B C: abrupt acceleration

A@1 time




Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A: enter tram intersection

[1,3] [0,3] B: abrupt deceleration
@ @ @ C: abrupt acceleration

A@1

time




Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A: enter tram intersection
[1,3] [0,3] B: abrupt deceleration
A B C: abrupt acceleration

A@1 A@3

time




Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A: enter tram intersection
[1,3] [0,3] B: abrupt deceleration
A B C: abrupt acceleration

A@1 A@3

time

On



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A: enter tram intersection
[1,3] [0,3] B: abrupt deceleration
A B C: abrupt acceleration

A@1 A@3 B@5

time

On



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A: enter tram intersection
[1,3] [0,3] B: abrupt deceleration
A B C: abrupt acceleration

A@1 A@3 B@5

time

On



Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A: enter tram intersection
[1,3] [0,3] B: abrupt deceleration
@ @ @ C: abrupt acceleration
AQ@1 A@3 B®@5 time

killed instance
()




Chronicle Recognition System: Partial instances

HLE definition: Reduce tram endurance

A: enter tram intersection
[1,3] [0,3] B: abrupt deceleration
A B C: abrupt acceleration

A@1 A@3 B@5 time

killed instance
OO WORO=C
o//\\
‘)*




Chronicle Recognition System

Recognition stage — partial HLE instance management:

> In order to manage all the partial HLE instances, CRS stores
them in trees, one for each HLE definition.

» Each event occurrence and each clock tick traverses these
trees in order to kill some HLE instances (tree nodes) or to
develop some HLE instances.

» For K HLE instances, each having n subevents, the
complexity of processing each incoming event or a clock
update is O(Kn?).

» To deal with out-of-order LLE streams, CRS keeps in memory
partial HLE instances longer.



Chronicle Recognition System: Optimisation

Several techniques have been developed for improving efficiency.
Eg, ‘temporal focusing':

» Distinguish between very rare events and frequent events
based on a priori knowledge.

» Focus on the rare events: If, according to a HLE definition, a
rare event should take place after the frequent event, store the
incoming frequent events, and start recognition only upon the
arrival of the rare event.

» This way the number of partial HLE instances is significantly
reduced.

» Example: Reduce tram endurance

A: enter tram intersection

[1,3] [0,3] B: abrupt deceleration
@ @ @ C: abrupt acceleration




Chronicle Recognition System: Summary

v

One of the earliest and most successful formal event
processing systems.

v

Being Al-based, it has been largely overlooked by the event
processing community.

v

Very efficient and scalable event recognition.
» But:

> It is a purely temporal reasoning system.
> It does not handle uncertainty.



Event Calculus

» A logic programming language for representing and reasoning
about events and their effects.
» Key components:
» event (typically instantaneous).
> fluent: a property that may have different values at different
points in time.
» Built-in representation of inertia:
» F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.



HLE Definitions in the Event Calculus

HLE definition:
leaving _object(P, Obj) initiated iff
appear(Obj) happens,
inactive(Obj) holds,
close(P, Obj) holds,
person(P) holds

leaving _object( P, Obj) terminated iff
disappear(Obj) happens

HLE recognition:
» leaving _object(P, Obj) holdsFor |/



HLE Definitions in the Event Calculus

HLE definition:
punctuality(ID) = non_punctual initiated iff
enter_stop(ID, Stop, late) happens or
leave_stop(ID, Stop, early) happens

punctuality(ID) = non_punctual terminatedAt T iff
enter_stop(ID, Stop, scheduled) happensAt T’,
leave_stop(ID, Stop, scheduled) happensAt T,
T>T

HLE recognition:
» punctuality(ID) = non_punctual holdsFor |/



HLE Definitions in the Event Calculus

HLE definition:
driving _quality (ID) = low iff
punctuality(ID) = non_punctual or
driving _style(ID) = unsafe

Compiled HLE definition:

driving _quality(ID) = low holdsFor [; U [, iff
punctuality(ID) = non_punctual holdsFor 7,
driving _style(ID) = unsafe holdsFor I



HLE Definitions in the Event Calculus

HLE definition:
driving_quality (ID) = medium iff
punctuality(ID) = punctual,
driving _style(ID) = uncomfortable

Compiled HLE definition:

driving _quality(ID) = medium holdsFor [; N[5 iff
punctuality(ID) = punctual holdsFor I,
driving _style(ID) = uncomfortable holdsFor [>



HLE Definitions in the Event Calculus

HLE definition:
fighting (P, P2) iff
(abrupt(Py) or abrupt(P2)),
c/ose(Pl, Pg),
not (inactive(Pz) or inactive(P2))

Compiled HLE definition:

ﬁghting(Pl,Pg) holdsFor ((/1U/2)ﬂ/3)\(/4U/5) iff
abrupt(P;) holdsFor Iy,
abrupt(P2) holdsFor I,
close(Py1, P2) holdsFor I3,
inactive(P1) holdsFor Iy,
inactive(P2) holdsFor I5



Run-Time Event Recognition

Real-time decision-support in the presence of:
» Very large LLE streams.
» Non-sorted LLE streams.
» LLE revision.

» Very large HLE numbers.



Event Calculus: Run-Time
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Event Recognition
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Event Calculus: Run-Time

—

Working Memory

Event Recognition

time
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Event Calculus: Run-Time Event Recognition

—

Working Memory
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Event Calculus: Summary

v

Representation of complex temporal phenomena.
» Succinct representation — code maintenance.
» Intuitive representation — facilitates interaction with domain
experts unfamiliar with programming.

v

The full power of logic programming is available.

» Complex atemporal computations in HLE definitions.
» Combination of streaming data with historical knowledge.

> Very efficient reasoning.

» Even when LLE arrive with a delay and are revised.
» Even in the presence of large HLE hierarchies.

» But:
» The Event Calculus has to deal with uncertainty.



Tutorial Structure

v

Temporal reasoning systems.

v

Event recognition under uncertainty.

v

Machine learning for event recognition.

v

Open issues.



Common Problems of Event Recognition

v

Limited dictionary of LLE and context variables.
» No explicit representation of hand shaking, falling down, etc.

v

Incomplete LLE stream.
» Abrupt acceleration was not detected.
Erroneous LLE detection.
» Abrupt acceleration was classified as sharp turn.
Inconsistent ground truth (HLE & LLE annotation).
» Disagreement between (human) annotators.

v

v

Therefore, an adequate treatment of uncertainty is required.



Logic-based models & Probabilistic models

» Logic-based models:
» Very expressive with formal declarative semantics
> Directly exploit background knowledge
» Trouble with uncertainty
» Probabilistic graphical models:
» Handle uncertainty
Lack of a formal representation language
Difficult to model complex events
Difficult to integrate background knowledge

vV vy



Can these approaches combined?

Research communities that try combine these approaches:
» Probabilistic (Inductive) Logic Programming

» Statistical Relational Learning
How?
» Logic-based approaches incorporate statistical methods

» Probabilistic approaches learn logic-based models



ProblLog

v

A Probabilistic Logic Programming language.

v

Allows for independent ‘probabilistic facts' prob::fact.

v

Prob indicates the probability that fact is part of a possible
world.

v

Rules are written as in classic Prolog.

v

The probability of a query g imposed on a ProbLog database
(success probability) is computed by the following formula:

Pi(a)=P( \/  Af)

e€Proofs(q) fice



Event Recognition using ProbLog

Input Output

340 0.45 :: inactive(idp) 340 0.41 :: leaving _object(idy, idy)
340 0.80 :: p(idp) =(20.88, —11.90) 340 0.55 :: moving(idy, id3)

340 0.55 :: appear(idp)

340 0.15 :: walking(id)

340 0.80 :: p(id>) =(25.88, —19.80)

340 0.25 :: active(idy)

340 0.66 :: p(idy) =(20.88, —11.90)

340 0.70 :: walking(id3)

340 0.46 :: p(ids) =(24.78, —18.77)
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Event Calculus in ProbLog: Experimental Evaluation

To compare ProbLog-EC to Crisp-EC:

» We add noise (probabilities) in LLE:
» Crisp-EC: LLE with probability < 0.5 are discarded.
» ProbLog-EC: all LLE are kept with their probabilities.
» In ProbLog-EC we accept as recognised the HLE that have
probability > 0.5.



Event Calculus in ProbLog: Experimental Evaluation

LLE Occurrences

35000
30000
25000
20000
15000
10000
5000
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 55 6.0 6.5 7.0 7.5 8.0

Noise (Gamma distribution mean)



Event Calculus in ProbLog: Experimental Evaluation
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Event Calculus in ProbLog: Experimental Evaluation
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Event Calculus in ProbLog: Summary

» ProbLog-EC clearly outperforms Crisp-EC when:

» The environment is highly noisy (LLE < 0.5) — realistic
assumption in many domains,

» there are successive initiations that allow the HLE's probability
to increase and eventually exceed the specified (0.5) threshold,
and

» the amount of probabilistic conjuncts in an initiation condition
is limited.

> Note that:

» we also need to deal with uncertainty in the HLE definitions.



Markov Logic Networks (MLN)

InpUT > . TRANSFORMATION P . INFERENCE b Outpur B

Compact

HLE :
L Knowledge : i
Definitions " g : Markov Logic Networks

Base

@ :
71\, :
>.\ /.—. o Recognised

: HLEs
Ny
o000

LLE

Stream

» Syntax: weighted first-order logic formulas (F;, w;).

» Semantics: (F;, w;) represents a probability distribution over
possible worlds.

» A world violating formulas becomes less probable, but not
impossible.



Markov Logic: Representation

Example definition of HLE ‘uncomfortable_driving' :

abrupt_movement(Ild, Vehicle, T) <
w1 abrupt_acceleration(ld, Vehicle, T) v
abrupt_deceleration(ld, Vehicle, T) v
sharp_turn(ld, Vehicle, T)

uncomfortable_driving(Id, Vehicle, T,) +
W approach_intersection(ld, Vehicle, T1) A
abrupt_movement(Ild, Vehicle, Ty) A
before(T1, T>)



Markov Logic: Representation

v

Weight: a real-valued number.

v

Higher weight — Stronger constraint
Hard constraints

v

> Infinite weight values.
» Background knowledge.

Soft constraints

» Strong weight values: almost always true.
» Weak weight values: describe exceptions.

v



Markov Logic: Network Construction

» Formulas are translated into clausal form.

» Weights are divided equally among clauses:

%wl —abrupt_acceleration(ld, Vehicle, T) \V abrupt_movement(ld, Vehicle, T)

%wl —abrupt_deceleration(ld, Vehicle, T) \ abrupt_movement(ld, Vehicle, T)
%Wl —sharp_turn(ld, Vehicle, T) V abrupt_movement(ld, Vehicle, T)

wy  —approach_intersection(ld, Vehicle, Ty) V —abrupt_movement(ld, Vehicle, T;) V
—before(Ti1, T2) V uncomfortable_driving(Id, Vehicle, T»)



Markov Logic: Network Construction

Template that produces ground Markov network:
» Given a set of constants from the input LLE stream
» Ground all clauses.
» Boolean nodes: ground predicates.
» Each ground clause:

» Forms a clique in the network.
» |s associated with w; and a Boolean feature.

P(X=x)= %exp (> wini(x))

Z=2xex @p(P(X=x))



Markov Logic: Network Construction

%W]_ —abrupt_acceleration(ld, Vehicle, T) V abrupt_movement(ld, Vehicle, T)
%Wl —abrupt_deceleration(ld, Vehicle, T) \ abrupt_movement(ld, Vehicle, T)
%wl —sharp_turn(ld, Vehicle, T) vV abrupt_movement(Id, Vehicle, T)

wy —approach_intersection(ld, Vehicle, T1) V —abrupt_movement(Id, Vehicle, T») V
—before( Ty, T2) V uncomfortable_driving(ld, Vehicle, T»)

LLE: Constants:
abrupt_acceleration(try, tram, 101) T = {100,101}
approach_intersection(trg, tram, 100) Id = {tro}

before(100, 101) Vehicle = {tram}



Markov Logic: Network Construction

For example, the clause:
wy  —approach_intersection(ld, Vehicle, T1) V —abrupt_movement(Id, Vehicle, T2) vV
—before(T1, T2) V uncomfortable_driving(Id, Vehicle, T»)

produces the following groundings:
wz  —approach_intersection(trg, tram, 100) V —abrupt_movement(trg, tram, 100) V
—before(100, 100) V uncomfortable_driving(tro, tram, 100)

wy  —approach_intersection(trp, tram, 100) V —abrupt_movement(try, tram, 101) V
—before(100, 101) V uncomfortable_driving(trg, tram, 101)

wz  —approach_intersection(trg, tram, 101) V —abrupt_movement(trg, tram, 100) V
—before(101, 100) V uncomfortable_driving(tro, tram, 100)

ws  —approach_intersection(trg, tram, 101) V —abrupt_movement(trg, tram, 101) V
—before(101, 101) V uncomfortable_driving(trp, tram, 101)



Markov Logic: Network Construction

abrupt_
acceleration
(tro,tram,100)

abrupt_
deceleration
(tro,tram,100)

sharp_turn
(tro,tram,100)

before
(100,100)

abrupt_

approach_

(tro,tram,100)

(tro,tram,100)

uncomfortable
_driving
(tro, tram,100)

uncomfortable
_driving
(tro, tram,101)

before
(101,100)

before
(100,101)

abrupt_ approach_

it
(tro,tram,101) (tro,tram,101)

before
(101,101)

abrupt_
acceleration
(tro,tram,101)

abrupt_
deceleration
(tro,tram,101)

sharp_turn
(tro,tram,101)



state discrimination

Markov Logic: World

sharp_turn
(tro,tram,100)

abrupt_ )
acceleration
_(tro,tram, 100)

abrupt_
deceleration
(tro,tram, 100)

F before
{  (100,100)

abrupt_

it

A (tro,tram, 100)

before
(101,100)

approach_

“Uncomfortable
_driving

/ (tro,tram, 101)

(tro,tram,100)

before
(100,101)

abrupt_

it
(tro,tram,101)
before

(101,101)

abrupt_
deceleration
(tro,tram,101)

abrupt_
acceleration
(tro,tram,101)

sharp_turn
(tro,tram,101)

P(X=x1)= %exp(%w1-2+ %W1~2+ %w1~2 +wp-4)= éezwl‘*"“"@



Markov Logic: World state discrimination

abrupt_ abrupt_
deceleration acceleration
tro,tram,100) tro,tram, 100)

sharp_turn
tro,tram,100)

before
\ (100,100

approach_

(tro,tram,100)

- -

uncomfortable \ before

before _driving (101,100)
(100,101) (1o, wam 101), . Y

approach

abrupt_

(tro,tram,101)

it
(tro,tram,101)

before
(101,101)

abrupt_
deceleration
(tro,tram, 101,

abrupt_
acceleration
(tro,tram,101)

sharp_turn
(tro,tram,101)

P(X=x1)=2exp(3w1-2+ fwi- 24 Fwi 2+ wp-4) = Se2mtém

P(X=x)= %exp(%w1-2+ %W1~2+ %W1~2+ wo-3) = %62W1+3W2



Markov Logic: Inference

v

Event recognition involves querying about HLE.

v

Given a ground Markov network, apply standard probabilistic
inference methods.

v

Markov network may be large and have a complex structure
> Inference may become infeasible.

v

MLN combine logical and probabilistic inference methods.



Markov Logic: Conditional inference

approach_
intersection

Query: Which trams are driven in an
(tro,tram,100)

uncomfortable manner?

» Query variables Q: HLE

uncomfortable
_driving
(tro, tram,101)

before
(100,101)

abrupt_
movement
(tro,tram,101)

P(Q,E=e,H)
P(E=e, H)

abrupt_
deceleration
(tro,tram,101)

abrupt_
acceleration
(tro,tram,101)

sharp_turn
(tro,tram,101)

P(Q|E=e)=



Markov Logic: Conditional inference

Query: Which trams are driven in an
uncomfortable manner?

» Query variables Q: HLE
» Evidence variables E: LLE

T \g
\ 2/

movement
(tro,tram,101)

P(Q| E—e)— PQE=eH)

P(E=e, H)



Markov Logic: Conditional inference

Query: Which trams are driven in an
uncomfortable manner?

» Query variables Q: HLE

» Evidence variables E: LLE
» Hidden variables H

T \a

movement
(tro,tram,101)

P(Q| E—e)— PQE=eH)

P(E=e, H)



Markov Logic: Conditional inference

v

Efficiently approximated with sampling.
Markov Chain Monte Carlo (MCMC): e.g Gibbs sampling.

Random walks in state space.

v

v

v

Reject all states where E = e does not hold.



(I
ton

abrupt_
ment

before
e

Sharp-turs
{rowanaon)

(o vam 101)

abrupt_
decoleration
Loem

—
intersection
Lorami%9)

s
R anEn
(rotam.101)

ic:

betore
N

Markov

oy
e
(otram.101)

el
i)
m00)

sharp_tum
{roamion)

e
ont

belore

v
Thoveny

{onmioy

abrupt_
decoleraion
Lol

ey
acceleration
(oiram.101)

<harp_tum
{roam 0y,

Lomios




Markov Logic: Deterministic dependencies

P(X=x)

v

MCMC is a pure statistical method.

v

MLN combine logic and probabilistic models.

v

Hard constrained formulas:

» Deterministic dependencies.
> Isolated regions in state space.

v

Strong constrained formulas:

P(X=x)
» Near-deterministic dependencies.
» Difficult to cross regions.

v

Combination of satisfiability testing with

MCMC.



Event Calculus
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Event Calculus in MLN

1.0
0.5 /
00 | — f f f —@— Tlme
0 3 10 20
Initiated Initiated Terminated
Hard-constrained inertia rules:
2.3 HLE initiatedAt T if 2.5 HLE terminatedAt T if
[Conditions| [Conditions|
—(HLE holdsAt T) iff HLE holdsAt T iff
—(HLE holdsAt T—-1), HLE holdsAt T-1,

—(HLE initiatedAt T—1) —(HLE terminatedAt T-1)



Event Calculus in MLN

1.0
0.5 \/

00 | — f f f —@— TI me
0 3 10 20
Initiated Initiated Terminated

Soft-constrained initiation inertia rules:

2.3 HLE initiatedAt T if 2.5 HLE terminatedAt T if
[Conditions| [Conditions|

2.8 —(HLE holdsAt T) iff HLE holdsAt T iff
—(HLE holdsAt T—-1), HLE holdsAt T—1,

—(HLE initiatedAt T—1) —(HLE terminatedAt T-1)



Event Calculus in MLN

1.0

0.5

00 | — f f f —@— Tlme
0 3 10 20

Initiated Initiated Terminated

Soft-constrained termination inertia rules:

2.3 HLE initiatedAt T if 2.5 HLE terminatedAt T if
[Conditions| [Conditions|
—(HLE holdsAt T) iff 2.8 HLE holdsAt T iff
—(HLE holdsAt T—-1), HLE holdsAt T—1,

—(HLE initiatedAt T—1) —(HLE terminatedAt T-1)



Event Calculus in MLN

1.0
o M
OOI\\ | I B . Tttt —@— Tlme
0 3 10 20
Initiated Initiated Terminated
Soft-constrained termination inertia rules:
2.3 HLE initiatedAt T if 2.5 HLE terminatedAt T if
[Conditions| [Conditions|
—(HLE holdsAt T) iff 0.8 HLE holdsAt T iff
—(HLE holdsAt T—-1), HLE holdsAt T-1,

—(HLE initiatedAt T—1) —(HLE terminatedAt T-1)



Event Calculus in MLN: Experimental Evaluation

F) score
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Event Calculus in MLN: Summary

» We can deal with both:
» Uncertainty in the HLE definitions, and
> uncertainty in the input.
» Customisable inertia behaviour to meet the requirements of
different applications.
> But:

» There is room for improvement with respect to efficiency.



Event Recognition under Uncertainty

» Probabilistic reasoning improves recognition accuracy.

» But probabilistic reasoning often does not allow for real-time
event recognition.
» Solution: self-adaptive event recognition
» Streams from multiple sources are matched against each other
to identify mismatches that indicate uncertainty in the sources.
» Temporal regions of uncertainty are identified from which the
system autonomously decides to adapt its event sources in
order to deal with uncertainty, without compromising efficiency.
» Data variety is used to handle veracity.



Self-Adaptive Event Recognition

busReportedCongestion(Lon, Lat) initiated iff
move(Bus, Long, Latg, 1) happens,
close(Long, Latg, Lon, Lat)

busReportedCongestion(Lon, Lat) terminated iff
move(Bus, Long, Latg, 0) happens,
close(Long, Latg, Lon, Lat)



Self-Adaptive Event Recognition:
|dentifying Mismatches among Different Streams

noisy(Bus) initiated iff
move(Bus, Long, Latg, 1) happens,
close(Long, Latg, Lons, Lats),
— (scatsReportedCongestion(Lons, Lats) holds)

noisy(Bus) terminated if
move(Bus, Long, Latg, 1) happens,
close(Long, Latg, Lons, Lats),
scatsReportedCongestion(Lons, Lats) holds

noisy(Bus) terminated if
move(Bus, Long, Latg, 0) happens,
close(Long, Latg, Lons, Lats),
— (scatsReportedCongestion(Lons, Lats) holds)



Self-Adaptive Event Recognition:
Discard Temporarily Unreliable Event Sources

busReportedCongestion(Lon, Lat) initiated iff
move(Bus, Long, Latg, 1) happens,
= (noisy(Bus) holds),
close(Long, Latg, Lon, Lat)
busReportedCongestion(Lon, Lat) terminated iff
move(Bus, Long, Latg, 0) happens,
= (noisy(Bus) holds),
close(Long, Latg, Lon, Lat)



Self-Adaptive Event Recognition in Dublin

Static Event Recognition —o—Self-Adaptive Event Recognition

=
o
)

Time (sec)

O B N W & U1 O N O
L

10 min= 30 min = 50 min = 70 min = 90 min = 110 min =
12,5K LLE 40,5K LLE 67K LLE 94,5K LLE 124K LLE 152K LLE
Working Memory



Event Recognition Under Uncertainty: Summary

» Uncertainty in the input:

» Probabilistic reasoning.
» Using variety for veracity (when possible).

» Uncertainty in the HLE definitions:
» Probabilistic reasoning.
> But:

» We are still missing a framework for real-time, probabilistic
event recognition.



Tutorial Structure

v

Temporal reasoning systems.

» Event recognition under uncertainty.

v

Machine learning for event recognition.

v

Open issues.



Machine Learning for Event Recognition

Manual development of HLE definitions:
» Time consuming.

» Error-prone.

Automated construction for HLE definitions:

» Learn complex HLE definitions
» Structure learning

» Learn from noisy data
» Parameter learning

» Learn with incomplete or missing annotation
» Semi-supervised, unsupervised learning

> Learn from large amounts of data
» Scalable algorithms, incremental learning



Learning the Structure of HLE Definitions

Inductive Logic Programming (ILP):

> Input:
» LLE streams annotated with HLE
» Examples ET, E™.
» Event recognition engine
» Background knowledge B.
» Syntax of event recognition language
> Language bias M.
» Output:
» A HLE definition

» Hypothesis H in the language of M such that B U H entails all
positive and none of the negative examples.



Learning the Structure of HLE Definitions with ILP

moving (P, P,) initiated iff
walking(P;) happens,
walking(P>) happens,

close(P;, P;) holds,

orientation(P;) = O; holds,
orientation(P>) = O, holds,
|0; — 03| < threshold

T

Background Knowledge

T

Examples

moving (alice, bob) holdsAt 10

walking (alice) happensAt 10,
walking(bob) happensAt 10,
close(alice, bob) holdsAt 10,
orientation(alice) = O; holdsAt 10,
orientation(bob) = O, holdsAt 10,
|0; — 05| < threshold

moving(mary, jim) not holdsAt 10

standing(mary) happensAt 10,
running(jim) happensAt 10,
close(mary, jim) not holdsAt 10,
orientation(mary) = O; holdsAt 10,
orientation(jim) = O, holdsAt 10,
|O; — 02| > threshold




Learning HLE definitions with [LP

Non-Observational Predicate Learning:
» Supervision
> holdsAt
> Target
> initiated, terminated

» Traditional ILP systems cannot handle this

Solution:

» Obtain missing supervision by computing possible
explanations of the examples (Abduction).



eXtended Hybrid Abductive-Inductive Learning — XHAIL

Begin

l

Uncovered
positive examples?

No Yes Select a positive example:

Terminate
moving(alice, bob) holdsAt 10

T |

Covering step:
Remove all positives covered
by the new rule

Abduction:

moving(alice, bob) initiatedAt 9

[ |

. Deduction:
Induction:

moving(alice, bob) initiatedAt 9 iff
walking(alice) happensAt 9,
walking(bob) happensAt 9,
close(alice, bob) holdsAt 9

moving(Pz, P>) initiated iff o
walking(P;) happens,
walking(P2) happens



Incremental Learning
Given:

» A LLE stream & annotated with HLE (historical memory)

» A HLE definition H which is correct w.r.t £

» A new LLE batch in which H is incorrect

Historical Memory £

fighting(P1, P,) initiated iff
H: active(P;) happens,
abrupt(P;) happens

not ok!

Wp



Incremental Learning
Goal:

» Revise H to an H’ that is correct w.r.t all examples

Historical Memory £

ok! ok! ok! ok! ok!
W Wi Wnp—2 Wp—1 Whn

fighting(Py, P>) initiated iff fighting(P;, P,) initiated iff
active(P;) happens, abrupt(P;) happens,
abrupt(P;) happens, abrupt(P2) happens,
close(P;, P2) holds close(P;, P>) holds



Incremental Learning

Specialisation:

> Reject negative examples

H: H :

fighting(Py, P») initiated iff
active(P;) happens,
abrupt(P;) happens,
close(P;, P2) holds

fighting(Py, P,) initiated iff
active(P;) happens, —
abrupt(P;) happens



Incremental Learning

Generalisation:

» Cover more positive examples

fighting(Py, P,) initiated iff
active(P;) happens,
abrupt(P,) happens,
close(P1, P2) holds

fighting(Py, P>) initiated iff fighting(P;, P>) initiated iff
active(P;) happens, abrupt(P;) happens,
abrupt(P;) happens, abrupt(P2) happens,
close(P;, P2) holds close(P;, P>) holds



Incremental Learning is Hard
Example:
» Specialise a HLE definition

Historical Memory £

ok! ok! ok! ok!

1741 1741 Wp—2 Wh—1

Negative examples covered

fighting(Py, P») initiated iff
active(P;) happens,
abrupt(P;) happens

not ok!



Incremental Learning is Hard
Example:
» Specialise a HLE definition

Historical Memory £

7 7 7 7

fighting(Py, P>) initiated iff
active(P;) happens,
abrupt(P;) happens,
close(P;, P2) holds

ok!



Incremental Learning is Hard
Example:
» Specialise a HLE definition

Historical Memory £

7 7 7 ok!

fighting(Py, P>) initiated iff
active(P;) happens,
abrupt(P;) happens,
close(Py, P2) holds

ok!



Incremental Learning is Hard
Example:
» Specialise a HLE definition

Historical Memory £

7 7 ok! ok!

fighting(Py, P>) initiated iff
active(P;) happens,
abrupt(P;) happens,
close(Py, P2) holds

ok!



Incremental Learning is Hard
Example:
» Specialise a HLE definition

Historical Memory £

? not ok! ok! ok!

wi w1 Wn—2 Wn—1

Positive examples not covered

fighting(P;, P») initiated iff
active(P;) happens,
abrupt(P;) happens,
close(Py, P2) holds

ok!



Incremental Learning is Hard
Example:
» Specialise a HLE definition

Historical Memory £

? ok! ? ? ?
w1 w1 Wp—2 Wh—1 Whp

We must start all over again...

fighting(Pz, P>) initiated iff fighting(P;, P>) initiated iff
active(P;) happens, abrupt(P;) happens
abrupt(P2) happens,
close(P;, P2) holds



Efficient Incremental Learning: Support Set

» While constructing a HLE definition, summarize the positive
examples it covers so far.

» This memory can be used for specialisation without having to
look back.

fighting(Py, P>) initiated iff
abrupt(P;1) happens

e ™

fighting(P1, P2) initiated iff fighting(P1, P2) initiated iff
active(P2) happens, abrupt(P;) happens,
close(P1, P2) holds, close(P1, P2) holds,
abrupt(P;) happens abrupt(P2) happens

[\ /\
B =

4 wj Wi Wm



Support Set

> To revise a HLE definition while preserving the positive
examples it covers
» It suffices for the revision to subsume the support set

fighting(P1, P2) initiated iff
abrupt(P;) happens,
close(Pz, P>) holds

VAN

fighting(P1, P2) initiated iff fighting(P1, P2) initiated iff
active(P2) happens, abrupt(P;) happens,
close(P1, P2) holds, close(P1, P2) holds,
abrupt(P;) happens abrupt(P2) happens

/N /N

4 wj Wi Wm



Support Set Example
Find the smallest set of “supported” specialisations such that:
» All specialisations subsume the support set.
» Each specialisation rejects the negative examples.

fighting(P1, P2) initiated iff
abrupt(P;) happens

VRN

fighting(P1, P2) initiated iff fighting(P1, P2) initiated iff
active(P2) happens, abrupt(P;) happens,
close(P1, P2) holds, close(P1, P2) holds,
abrupt(P;) happens abrupt(P2) happens

"0 =

w; w;



Support Set Example
Find the smallest set of “supported” specialisations such that:
» All specialisations subsume the support set.
» Each specialisation rejects the negative examples.
» A single specialisation may suffice.

fighting(P1, P2) initiated iff
abrupt(P;) happens,
close(P1, P2) holds

AN

fighting(P1, P>) initiated iff fighting(P1, P2) initiated iff
active(P2) happens, abrupt(P;) happens,
close(P1, P2) holds, close(P1, P2) holds,
abrupt(P;) happens abrupt(P2) happens

/N /N
B B 8B B

4 wj

Wi Wm



Support Set Example
Find the smallest set of “supported” specialisations such that:
» All specialisations subsume the support set.
» Each specialisation rejects the negative examples.
» The HLE definition may need to “split”.

fighting(P1, P2) initiated iff fighting(P1, P2) initiated iff
abrupt(P;) happens, abrupt(P;) happens,
active(P2) happens abrupt(P2) happens

fighting(Py, P) initiated iff fighting(P;, P2) initiated iff
active(P2) happens, abrupt(P;) happens,
close(P1, P2) holds, close(P1, P2) holds,
abrupt(P;) happens abrupt(P2) happens

[\ /N
B- 8088

4 wj

Wik Wm



What do we achieve?

» Without the support set

Historical Memory £

ok! ok! ok! ok!

w1 w1 Wp—2 Wh—1

Negative examples covered

fighting(P1, P2) initiated iff
H: abrupt(P;) happens

not ok!

Wp



What do we achieve?

» Without the support set

Historical Memory £

7 7 7 7

w1 Wy Wh—2 Wp—1

fighting(Pz, P2) initiated iff
H - abrupt(P;) happens,
active(P2) happens

ok!



What do we achieve?

» With the support set

Historical Memory £

ok! ok! ok! ok!

w1 w1 Wp—2 Wh—1

Negative examples covered

fighting(P1, P2) initiated iff
H: abrupt(P;) happens

not ok!

Wp



What do we achieve?

» With the support set
> Reject negative examples locally, preserve positive examples

globally.
» Reasoning within the support set, avoid redundant inference in

the historical memory
» At most one pass over the historical memory is required.

Historical Memory &

ok! ok! ok! ok! ok!
Wi wi Wh—2 Wn—1 Wp

fighting(Pz, P>) initiated iff fighting(P;, P2) initiated iff
H' - abrupt(P;) happens, abrupt(P;) happens,
active(P2) happens abrupt(P,) happens



Machine Learning for Event Recognition: Summary

» Automated construction & refinement of HLE definitions
» Taking advantage of very large datasets.
» Dealing with partial supervision.

» But:
» We also need to deal with noise

> Simultaneous optimisation of structure and parameters.



Tutorial Structure

v

Temporal reasoning systems.

» Event recognition under uncertainty.

v

v

Open issues.

Machine learning for event recognition.



Open lIssues

» Machine learning under uncertainty.

» Real-time event recognition under uncertainty.
» Distributed event recognition.

» Multi-scale temporal aggregation of events.

» Event forecasting under uncertainty.

» User-friendly authoring tools enabling non-programmers to use
event recognition & forecasting.



Tutorial Resources

» Alexander Artikis, Anastasios Skarlatidis, Francois Portet,
Georgios Paliouras: Logic-based event recognition. Knowledge
Engineering Review 27(4): 469-506 (2012).

» Software, datasets, slides & papers at
cer.iit.demokritos.gr


cer.iit.demokritos.gr

