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Complex Event Recognition (Event Pattern Matching)

Input:

I Symbolic representation of time-stamped, simple, derived
events (SDE) coming from (geographically distributed)
sources.

I Big Data.

Output:
I Complex or composite events (CE) — collections of SDE

and/or CE that satisfy some pattern (temporal, spatial, logical
constraints).

I Not restricted to aggregates.

I Humans understand CE easier than SDE.
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Input Output

200 scheduled stop enter

215 late stop leave since(215) non-punctual

[215, 400] abrupt acceleration

[350, 600] sharp turn [215, 600] uncomfortable driving
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density=high since(620) congestion
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Credit Card Fraud Recognition

SDE:

I Credit card transactions from all over the world.

CE:

I Cloned card — a credit card is being used simultaneously in
different countries.

I New high use — the card is being frequently used in
merchants or countries never used before.

I Potential batch fraud — many transactions from multiple
cards in the same point-of-sale terminal in high amounts.



Credit Card Fraud Recognition

I Fraud must be detected within 25 milliseconds.

I Fraudulent transactions: 0.1% of the total number of
transactions.

I Fraud is constantly evolving.

I Erroneous transactions, missing fields.
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Fast Approach

I A vessel is moving at a high speed ...

I towards other vessels.



Suspicious Delay

I A vessel fails to report position ...

I and the estimated speed during the communication gap is low.



Possible Rendezvous

I Two vessels are suspiciously delayed ...

I in the same location ...

I at the same time.



Package Picking

I A vessel stops in a location ...

I and another vessel stops in the same location ...

I in a short period of time.



Event Recognition for Maritime Surveillance

‘Sea’ of information:

I 400,000 vessels globally: 40,000 signals/sec to be processed
online.

I Position signals need to be combined with other data streams
I Weather forecasts, sea currents, etc.

I ... and static information
I NATURA areas, shallow waters, coastlines, etc.
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Event Recognition for Maritime Surveillance

‘Sea’ of noisy information:

I GPS manipulation has risen 59% over the past two years.

I There is a 30% increase over the past two years of vessels
reporting a false identity.

I 27% of vessels do not report position at least 10% of the
time.

I 19% of vessels are repeat offenders.
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Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.
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Composite Event Algebra

Core components of an event algebra with point-based semantics:

I Sequencing (SEQ) lists the required event types in temporal
order — eg SEQ(A,B,C ).

I Kleene closure (+) collects a finite yet unbound number of
events of a particular type. It is used as a component of SEQ

— eg SEQ(A,B+,C ).

I Negation (˜ or !) verifies the absence of certain events in a
sequence — eg SEQ(A, !B,C ).

I Value predicates specify constraints on the event attributes
I Aggregate functions max , min, count, sum, avg .
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Composite Event Algebra

I Composition refers to:
I Union of constraints — eg SEQ(A,B,C ) ∪ SEQ(A,D,E ).
I Negation of a sequence — eg !SEQ(A,B,C ).
I Kleene closure of a constraint — eg SEQ(A,B,C )+.

I Windowing (WITHIN) restricts a CE definition to a specific
time period.



Composite Event Algebra

I Composition refers to:
I Union of constraints — eg SEQ(A,B,C ) ∪ SEQ(A,D,E ).
I Negation of a sequence — eg !SEQ(A,B,C ).
I Kleene closure of a constraint — eg SEQ(A,B,C )+.

I Windowing (WITHIN) restricts a CE definition to a specific
time period.



Event Selection Strategies

I Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

I Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

I Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. E.g. for
SEQ(A,B,C ) and a1, b1, b2, c1, only a1, b1, c1 will be detected.

I Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, a1, b2, c1

will also be detected.



Event Selection Strategies

I Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

I Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

I Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. E.g. for
SEQ(A,B,C ) and a1, b1, b2, c1, only a1, b1, c1 will be detected.

I Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, a1, b2, c1

will also be detected.



Event Selection Strategies

I Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

I Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

I Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. E.g. for
SEQ(A,B,C ) and a1, b1, b2, c1, only a1, b1, c1 will be detected.

I Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, a1, b2, c1

will also be detected.



Event Selection Strategies

I Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

I Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

I Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. E.g. for
SEQ(A,B,C ) and a1, b1, b2, c1, only a1, b1, c1 will be detected.

I Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, a1, b2, c1

will also be detected.



Example

Quickly moving away from an area of suspicious activity:

I After a communication gap, ...

I a vessel changes speed to over 30 knots.

I Partition contiguity ensures that a, b, c are contiguous and
refer to the same vessel (vesselId).

PATTERN SEQ(gapStart a, gapEnd b, speedChange c)
WHERE partition-contiguity

AND vesselId

AND c .velocity > 30

WITHIN 3600



Example

Fishing pattern:

I A vessel slows down, ...

I begins a series of turns, where, for each pair of successive
turns, their difference in heading is more than 90 degrees, ...

I and subsequently the vessel stops moving at a low speed.

PATTERN SEQ(lowSpeedStart a, turn + b, lowSpeedEnd c)
WHERE skip-till-next-match

AND vesselId

AND b[i ].heading−b[i−1 ].heading > 90

WITHIN 21600



CE as Chronicle

A CE can be defined as a set of events interlinked by time
constraints and whose occurrence may depend on the context.

I This is the definition of a chronicle.

Chronicle recognition systems have been used in many
applications:

I Cardiac monitoring system.

I Intrusion detection in computer networks.

I Distributed diagnosis of web services.
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Chronicle Representation Algebra

Predicate Meaning

event(E, T) Event E takes place at time T

event(F:(?V1,?V2),T) An event takes place at
time T changing the value of
property F from ?V1 to ?V2

noevent(E, (T1,T2)) Event E does not take place
between [T1,T2)

noevent(F:(?V1,?V2), No event takes place between
(T1,T2)) [T1,T2) that changes the value

of property F from ?V1 to ?V2

hold(F:?V, (T1,T2)) The value of property F is ?V
between [T1,T2)

occurs(N,M,E,(T1,T2)) Event E takes place at least
N times and at most M times
between [T1,T2)



Chronicle Representation Language

chronicle abnormal vessel movement[?id](T2) {
event( speedChange[?id], T0 )

event( speedChange[?id], T1 )

event( speedChange[?id], T2 )

T1 > T0

T2 > T1

T2 - T0 in [1, 20000]

noevent( turn[?id], ( T0+1, T2 ) )

}



Chronicle Representation Language

I Mathematical operators in the atemporal constraints of the
language are not allowed.

I No spatial reasoning.
I No use of background knowledge.

I Universal quantification is not allowed.
I cannot express a property about all vessels in some area.

CRS is a purely temporal reasoning system.

It is also a very efficient and scalable system.
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Chronicle Recognition System: Semantics

Each CE definition is represented as a Temporal Constraint
Network. Eg:

turn [?id]
speedChange

[?id]

[1,2000]



Chronicle Recognition System: Consistency Checking

Compilation stage:

I Constraint propagation in the Temporal Constraint Network.

I Consistency checking.

[2, 5]

A

CA

B

[1, 6]

[0, 10]

[0, 10]

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

A

CA

B

[0, 8]



Chronicle Recognition System: Recognition

Recognition stage:

I Partial CE instance evolution.

I Forward (predictive) recognition.

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

[0, 8]

6 98 106 16111611

A

C

B

A

A

A

B

C

C@10

→



Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

time

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated
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Chronicle Recognition System

Recognition stage — partial CE instance management:

I In order to manage all the partial CE instances, CRS stores
them in trees, one for each CE definition.

I Each event occurrence and each clock tick traverses these
trees in order to kill some CE instances (tree nodes) or to
develop some CE instances.

I To deal with out-of-order SDE streams, CRS keeps in memory
partial CE instances longer.
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Chronicle Recognition System: Optimisation

Several techniques have been developed for improving efficiency.
Eg, temporal focusing:

I Distinguish between rare events and frequent events.

I If, according to a CE definition, a rare event should take place
after a frequent event, store the incoming frequent events,
and start recognition only upon the arrival of the rare events.

I The number of partial CE instances is significantly reduced.

I Example:
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Chronicle Recognition System: Summary

I One of the earliest and most successful formal event
processing systems.

I Many of its features appear in modern event processing
systems.

I Very efficient and scalable event recognition.

I But:
I It is a purely temporal reasoning system.
I It does not handle uncertainty.
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Event Calculus

I A logic programming language for representing and reasoning
about events and their effects.

I Key components:
I event (typically instantaneous).
I fluent: a property that may have different values at different

points in time.

I Built-in representation of inertia:
I F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.
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Run-Time Event Calculus (RTEC)

Predicate Meaning

happensAt(E ,T ) Event E occurs at time T

initiatedAt(F =V ,T ) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T ) At time T a period of time for which
F =V is terminated

holdsFor(F =V , I ) I is the list of the maximal intervals
for which F =V holds continuously

holdsAt(F =V ,T ) The value of fluent F is V at time T

union all([J1 , . . . , Jn], I ) I =(J1 ∪ . . . ∪ Jn)

intersect all([J1 , . . . , Jn], I ) I =(J1 ∩ . . . ∩ Jn)

relative complement all I = I ′ \ (J1 ∪ . . . ∪ Jn)
(I ′, [J1 , . . . , Jn], I )
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CE Definitions in the Run-Time Event Calculus:
Simple Fluents

CE definition:

initiatedAt(CE , T )← terminatedAt(CE , T )←
happensAt(EIn1 , T ), happensAt(ET1 , T ),
[conditions] [conditions]

. . . . . .
initiatedAt(CE , T )← terminatedAt(CE , T )←

happensAt(EIni , T ), happensAt(ETj
, T ),

[conditions] [conditions]

where

conditions: 0−KhappensAt(Ek , T ),
0−MholdsAt(Fm, T ),
0−Natemporal-constraintn
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CE Definitions in the Run-Time Event Calculus:
Simple Fluents

CE definition:

initiatedAt(leaving object(P,Obj) = true, T )←
happensAt(appear(Obj), T ),
holdsAt(inactive(Obj) = true, T ),
holdsAt(close(P,Obj) = true, T ),
holdsAt(person(P) = true, T )

terminatedAt(leaving object(P,Obj) = true, T )←
happensAt(disappear(Obj), T )

CE recognition: holdsFor(leaving object(P,Obj) = true, I )



CE Definitions in the Run-Time Event Calculus:
Statically Determined Fluents

holdsFor(CE , I ) ←
holdsFor(F1, IF1),
. . . ,
holdsFor(Ff , IFf

),
interval manipulation1 (Iα, . . . , Iω),
. . . ,
interval manipulationk (IA, . . . , IΩ)

where

interval manipulation(I1, . . . , In, I ) :
union([I1 , . . . , In], I )
intersection([I1 , . . . , In], I )
relative complement(I1 , [I2 , . . . , In], I )



Interval Manipulation: Union

time

union([I1,I2], I)

I1
I2



Interval Manipulation: Intersection

time

intersection([I1,I2], I)

I1
I2



Interval Manipulation: Relative Complement

time

relative_complement

(I1, [I2], I)

I1
I2



CE Definitions in the Run-Time Event Calculus:
Statically Determined Fluents

CE definition:

holdsFor(abnormal(Vessel) = true, I ) ←
holdsFor(slowMotion(Vessel) = true, I1 ),
holdsFor(gap(Vessel) = true, I2 ),
holdsFor(stop(Vessel) = true, I3 ),
union([I1 , I2 , I3 ], I )

Shorthand:

abnormal(Vessel) iff
slowMotion(Vessel) or
gap(Vessel) or
idle(Vessel)
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CE Definitions in the Run-Time Event Calculus:
Statically Determined Fluents

Shorthand:

suspicious(Vessel1 ,Vessel2 ) iff
abnormal(Vessel1 ),
abnormal(Vessel2 ),
close(Vessel1 ,Vessel2 ),
not (in(Vessel1 ,Area) or in(Vessel2 ,Area))

CE definition:
holdsFor(suspicious(Vessel1 ,Vessel2 ) = true, I ) ←

holdsFor(abnormal(Vessel1 ) = true, I1 ),
holdsFor(abnormal(Vessel2 ) = true, I2 ),
holdsFor(close(Vessel1 ,Vessel2 ) = true, I3 ),
holdsFor(in(Vessel1 ,Area) = true, I4 ),
holdsFor(in(Vessel2 ,Area) = true, I5 ),
intersection([I1 , I2 , I3 ], I6 ),
relative complement(I6 , [I4 , I5 ], I )
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CE Hierarchies: Caching



Run-Time Event Recognition

Real-time decision-support in the presence of:

I Very large SDE streams.

I Non-sorted SDE streams.

I SDE revision.

I Very large CE numbers.



Run-Time Event Calculus: Windowing

time
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Working Memory
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Run-Time Event Calculus: Summary

I Representation of complex temporal phenomena.
I Succinct representation → code maintenance.
I Intuitive representation → domain experts unfamiliar with

programming into the loop.

I The full power of logic programming is available.
I Complex atemporal computations.
I Combination of events streams with static knowledge.

I Very efficient reasoning.
I Even when event streams arrive with a delay.
I Even in the presence of large specifications.

I But:
I The Event Calculus does not deal with uncertainty.
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Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.



Common Problems of Event Recognition

I Limited dictionary of SDE and context variables.
I No explicit representation of oil spillage.

I Incomplete SDE stream.
I Sharp turn was not detected.

I Erroneous SDE detection.
I Slow motion was classified as stop.

I Inconsistent ground truth (CE & SDE annotation).
I Disagreement between (human) annotators.

Therefore, an adequate treatment of uncertainty is required.
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Statistical Relational Learning

LOGIC

Formal and
declarative
relational
representation

LEARNING

Improving performance
through experience

PROBABILITIES
Sound mathematical
foundation for
reasoning under
uncertainty



ProbLog

I A probabilistic logic programming language.
I Allows for independent probabilistic facts prob::fact.

I prob indicates the probability that fact is part of a possible
world.

I Rules are written as in classic Prolog.

I The probability of a query q imposed on a ProbLog database
(success probability) is computed by the following formula:

Ps(q) = P(
∨

e∈Proofs(q)

∧
fi∈e

fi )
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Event Recognition using ProbLog

Input Output

340 0.45 :: inactive(id0) 340 0.41 :: left object(id1, id0)

340 0.80 :: p(id0) =(20.88,−11.90) 340 0.55 :: moving(id2, id3)

340 0.55 :: appear(id0)

340 0.15 :: walking(id2)

340 0.80 :: p(id2) =(25.88,−19.80)

340 0.25 :: active(id1)

340 0.66 :: p(id1) =(20.88,−11.90)

340 0.70 :: walking(id3)

340 0.46 :: p(id3) =(24.78,−18.77)



Event Calculus in ProbLog

timeI0 1 2 21 41
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
E

Pr
ob

ab
ili

ty

initiation inertia
continuous

initiations

continuous

terminations



Event Calculus in ProbLog
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Markov Logic Networks (MLN)

Syntax: weighted first-order logic formulas (wi ,Fi )

When input events SDEA and SDEB occur at T ,

then the output event CE is initiated:

3.18 happensAt(SDEA, T ) ∧ happensAt(SDEB , T )⇒ initiatedAt(CE , T )

Semantics: (wi ,Fi ) represents a probability distribution over possible
worlds

P(Y=y |X=x) =
1

Z (x)
exp

(∑
i

wi ni(x, y)

)

A world violating formulas becomes less probable, but not
impossible!

Possible world: CEs

SDEs weight of the i-th formula

Partition function number of satisfied groundings
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Event Calculus in Markov Logic Networks (MLN-EC)

INPUT I TRANSFORMATION I INFERENCE I OUTPUT �

Compact
Knowledge

Base

Composite
Event

Definitions

Event
Calculus
Axioms

Simple,
Derived
Event

Stream

Recognised
Composite

Events

Markov Logic Networks



MLN-EC: Probabilistic Inference

Marginal Inference:

I For all time points T, calculate the probability of each CE
being true (recognised), given all input SDEs (evidence)

P(holdsAt(CE , T )=true|SDEs)

I Marginal inference is #P-complete → approximate inference

I MC-SAT algorithm (Markov Chain Monte Carlo techniques
with SAT solver)



MLN-EC: Probabilistic Inference

Maximum a Posteriori (MAP) Inference:

I Find the world with the highest probability

I Input: truth values for all input SDEs (evidence)

I Output: truth values of the output CEs that maximise the
probability (recognition)

argmax
holdsAt(CE ,T )

(
P(holdsAt(CE , T )|SDEs)

)

I MAP Inference is NP-hard → approximate inference

I Various methods: local search, linear programming, etc.



MLN-EC: Inertia

time I0 3 10 20

0

0.5

1
ECcrisp

initiation initiation termination

∞ holdsAt(CE, T+1)⇐[
Initiation Conditions

]
∞ ¬holdsAt(CE, T+1)⇐

¬holdsAt(CE), T) ∧
¬
[
Initiation Conditions

]

∞ ¬holdsAt(CE, T+1)⇐[
Termination Conditions

]
∞ holdsAt(CE, T+1)⇐

holdsAt(CE, T) ∧
¬
[
Termination Conditions

]
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MLN-EC: Complete Data

moving meeting
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ECcrisp : Crisp Event Calculus
l−CRF : Linear-chain Conditional Random Field
MLN−ECHI : Hard-constrained inertia
MLN−ECSIT : Soft-constrained termination inertial rules
MLN−ECSI : Soft-constrained inertial rules
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MLN-EC: Summary

I We can deal with both:
I Uncertainty in the CE definitions, and
I uncertainty in the input data streams.

I Customisable inertia behaviour to meet the requirements of
different applications.

But:

I There is room for improvement with respect to efficiency.
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Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.



Machine Learning for Event Recognition

Manual development of CE definitions:

I Time consuming.

I Error-prone.

Automated construction for CE definitions:
I Learn complex definitions

I Structure learning.

I Learn from noisy data
I Weight learning.

I Learn with incomplete or missing annotation
I Semi-supervised, unsupervised learning.

I Learn from large amounts of (streaming) data
I Incremental learning, online learning.
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Machine Learning for Event Recognition

INPUT I CE DEFINITION CONSTRUCTION J INPUT

Machine
Learning
System

CE Definitions

Streams of SDEs

. . .. . .

. . .. . .

Annotated CEs

. . . . . .

. . . . . .



Structure Learning with ILP

Inductive Logic Programming (ILP):

I Input: SDE streams annotated with CE
I Positive (E+) and negative (E−) examples.

I Event recognition engine
I Background knowledge B.

I Syntax of event recognition language
I Language bias M.

I Output: A set of CE definitions
I A hypothesis H in the language of M, such that:

maximize
e+∈E+

B ∪H � e+ and minimize
e−∈E−

B ∪H � e−



A Generic ILP Algorithm
H = ∅ (Begin)

Positives
not covered by H?Return H

Select a positive example:
holdsAt(moving(id1, id2), 10),
happensAt(walking(id1 ), 9),
happensAt(walking(id2 ), 9),
holdsAt(close(id1 , id2 , 34), 9),
holdsAt(orientation(id1 , id2 , 45), 9)

Construct a Bottom Clause BC :
initiatedAt(moving(X ,Y ),T )←

happensAt(walking(X ),T ),
happensAt(walking(Y ),T ),
holdsAt(close(X ,Y , 34),T ),
holdsAt(orientation(X ,Y , 45),T ).

Find a “good” clause r:
• SearchSpace: Clauses that θ-subsume BC. e.g.:

initiatedAt(moving(X ,Y ),T )←
happensAt(walking(X ),T ),
holdsAt(close(X ,Y , 34),T ).

• score(r): A clause evaluation function, e.g.:
score(r) = rP − rN − |r |, (compression).

• Return: r ∈ SearhSpace with the best score

H = H ∪ r

Covering step:
Remove all positives covered by H

No Yes
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Online Learning
Goal:

I Revise H to an H ′ that accounts for (all) the examples.

w1

ok!

w1

ok!

. . . . . .

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

ok!

initiatedAt(moving(X ,Y ),T )←
happensAt(walking(X ),T ),
happensAt(walking(Y ),T ),
holdsAt(close(X ,Y , 34),T ),
holdsAt(orientation(X ,Y , 45),T ).

terminatedAt(moving(X ,Y ),T )←
happensAt(inactive(X ),T ),
not holdsAt(close(X ,Y , 34),T ).

H ′ :
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Markov Logic Networks: Online Structure Learning using
background knowledge Axiomatization (OSLα)

Learnt Hypothesis Ht:

0.51 HoldsAt(move(id1, id2), t+1)⇐
HappensAt(walking(id1), t)∧
HappensAt(walking(id2), t)

+

MLN−EC Axioms:
HoldsAt(f, t+1)⇐

InitiatedAt(f, t)

HoldsAt(f, t+1)⇐
HoldsAt(f, t) ∧
¬TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
¬HoldsAt(f, t) ∧
¬InitiatedAt(f, t)

OSLα

Micro-Batch Dt

HappensAt(walking(ID1), 99)
HappensAt(walking(ID2), 99)
OrientationMove(ID1, ID2, 99)
Close(ID1, ID2, 34, 99)
Next(99, 100)
HoldsAt(move(ID1, ID2), 100)
. . .

Micro-Batch Dt+1

HappensAt(exit(ID1), 200)
HappensAt(walking(ID2), 200)
¬OrientationMove(ID1, ID2, 200)
¬Close(ID1, ID2, 34, 200)
Next(200, 201)
¬HoldsAt(move(ID1, ID2), 201)
. . .

. . .

. . .

. . .

Data Stream/Training Examples

Inference Hypergraph

Paths to
Clauses

Clause
Evaluation

Weight
Learning



Training Example (Micro-Batch)

Simple Derived Events Complex Event Annotation

. . . . . .

HappensAt(walking(ID1), 99)

HappensAt(walking(ID2), 99)

OrientationMove(ID1, ID2, 99) HoldsAt(move(ID1, ID2), 100)

Close(ID1, ID2, 34, 99)

Next(99, 100)

. . . . . .
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Hypergraph and Relational Pathfinding

yPt =
(
¬HoldsAt(MoveID1ID2, 100)

)
{HoldsAt(MoveID1ID2, 100),

WalkingID1

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt

100

99

WalkingID2



Relational Pathfinding

yPt =
(
¬HoldsAt(MoveID1ID2, 100)

)
{HoldsAt(MoveID1ID2, 100), Next(99, 100),

WalkingID1

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt

100

99

WalkingID2



Relational Pathfinding

yPt =
(
¬HoldsAt(MoveID1ID2, 100)

)
{HoldsAt(MoveID1ID2, 100), Next(99, 100),

HappensAt(WalkingID1, 99),

WalkingID1

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt

100

99

WalkingID2



Relational Pathfinding

yPt =
(
¬HoldsAt(MoveID1ID2, 100)

)
{HoldsAt(MoveID1ID2, 100), Next(99, 100),

HappensAt(WalkingID1, 99),

HappensAt(WalkingID2, 99)}
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Template-Guided Search

Wrongly predicted atom:

¬HoldsAt(MoveID1ID2, 100)

HoldsAt(f , t1)⇐
InitiatedAt(f , t0)∧
Next(t0, t1)

HoldsAt(MoveID1ID2, 100)⇐
InitiatedAt(MoveID1ID2, t0)∧
Next(t0, 100)

InitiatedAt(MoveID1ID2, 99)



Template-Guided Search

Wrongly predicted atom:

¬HoldsAt(MoveID1ID2, 100)

HoldsAt(f , t1)⇐
InitiatedAt(f , t0)∧
Next(t0, t1)

HoldsAt(MoveID1ID2, 100)⇐
InitiatedAt(MoveID1ID2, t0)∧
Next(t0, 100)

InitiatedAt(MoveID1ID2, 99)



Template-Guided Search

Wrongly predicted atom:

¬HoldsAt(MoveID1ID2, 100)

HoldsAt(f , t1)⇐
InitiatedAt(f , t0)∧
Next(t0, t1)

HoldsAt(MoveID1ID2, 100)⇐
InitiatedAt(MoveID1ID2, t0)∧
Next(t0, 100)

InitiatedAt(MoveID1ID2, 99)



Reduced Hypergraph

WalkingID1

WalkingID2

99

100

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt



Clause Creation, Clause Evaluation and Weight Learning

Clause creation:

I Generalize each path into a definite clause

InitiatedAt(move(id1, id2), t)⇐
HappensAt(walking(id1), t)∧
HappensAt(walking(id2), t)

Clause evaluation:

I Keep clauses whose coverage of the annotation is significantly
greater than that of the clauses already learnt.

Weight learning:

I Extended clauses inherit initially the weights of their ancestors.

I Optimize the weights of all clauses.
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Machine Learning for Event Recognition: Summary

I CE definition construction
I using large (streaming) data;
I tolerant to noise.

I Acceptable predictive accuracy.

I But:
I Constructed CE definitions tend to overfit the data.
I There is room for improvement with respect to efficiency.
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Open Issues



Issue (1): Real-time Probabilistic Event Recognition

Types of uncertainty:

I Noisy input stream.

I Imprecise CE definitions.

Existing solution:

I Probabilistic graphical models & logic-based approaches.

Major drawback:

I Large overhead that does not allow for real-time performance.
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Issue (2): Distributed Recognition

Distribution of CE recognition among multiple nodes:

I Data distribution.

I Distribution of CE (sub-)definitions.

But, virtually no work on distributing probabilistic CE recognition.

Interplay with communication efficiency:
I Reduce communication by decomposing recognition in set of

local constraints at event sources
I By sketching.
I By geometric models.

I Limited to particular types of CE: functions over aggregate
values.
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Issue (3): Multi-scale Temporal Aggregation of Events

CE evolve over multiple scales of time and
space:

I SDE streams.

I Context information, e.g. historic data.

The recognition system should be adaptable,
computing dynamically the appropriate scales

I Appropriate lengths of multi-granular
windows.

I Appropriate slice of context information.

Semantics and processing guarantees, despite
adaptation.
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Issue (4): Event Forecasting

Current work focuses on

I Present (monitoring).

I Past (post mortem analysis).

Stream processing will focus on future

I Predictive analysis.

I Trend detection.

The earlier the better

I Time to react to an anticipated
situation.

I Avoidance of situation or
initialisation of counter measures.
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Resources

I Tutorial paper: A. Artikis, A. Skarlatidis, F. Portet, G.
Paliouras: Logic-based event recognition. Knowledge
Engineering Review 27(4): 469-506 (2012)

I Slides, complex event recognition software, datasets:
http://cer.iit.demokritos.gr

http://cer.iit.demokritos.gr
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