
Complex Event Recognition

Alexander Artikis

Elias Alevizos, Nikos Katzouris,
Vagelis Michelioudakis, George Paliouras

Institute of Informatics & Telecommunications,
NCSR Demokritos, Athens, Greece

http://cer.iit.demokritos.gr

http://cer.iit.demokritos.gr

Complex Event Recognition (Event Pattern Matching)

Input:

I Symbolic representation of time-stamped, simple, derived
events (SDE) coming from (geographically distributed)
sources.

I Big Data.

Output:
I Complex or composite events (CE) — collections of SDE

and/or CE that satisfy some pattern (temporal, spatial, logical
constraints).

I Not restricted to aggregates.

I Humans understand CE easier than SDE.

Complex Event Recognition (Event Pattern Matching)

Input:

I Symbolic representation of time-stamped, simple, derived
events (SDE) coming from (geographically distributed)
sources.

I Big Data.

Output:
I Complex or composite events (CE) — collections of SDE

and/or CE that satisfy some pattern (temporal, spatial, logical
constraints).

I Not restricted to aggregates.

I Humans understand CE easier than SDE.

Complex Event Recognition

INPUT I RECOGNITION I OUTPUT �

Event
Recognition

System

CE Definitions

Streams of SDEs

.

.

Recognised CEs

.

.

Complex Event Recognition for Security

Complex Event Recognition for Security

Input Output

340 inactive(id0)

340 p(id0) =(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

Complex Event Recognition for Security

Input Output

340 inactive(id0) 340 left object(id1, id0)

340 p(id0) =(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

Complex Event Recognition for Security

Input Output

340 inactive(id0) 340 left object(id1, id0)

340 p(id0) =(20.88,−11.90) since(340) moving(id2, id3)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

City Transport & Traffic Management

City Transport

Management

Control Centre

IRM Demonstrator

SENSOR & GEO

DATA PROCESSING

EVENT

RECOGNITION

INFORMATION

EXTRACTION

SENSOR

NETWORK
RESOURCE DATA

& DIGITAL MAPS

Data

Communication

High-Level

Events

Low-level

Events

Training/

Debriefing
Actual

Operation

Operator Operator

DriverDriver

City Transport & Traffic Management

Input Output

200 scheduled stop enter

215 late stop leave

[215, 400] abrupt acceleration

[350, 600] sharp turn

620 flow=low

density=high

City Transport & Traffic Management

Input Output

200 scheduled stop enter

215 late stop leave since(215) non-punctual

[215, 400] abrupt acceleration

[350, 600] sharp turn [215, 600] uncomfortable driving

620 flow=low

density=high since(620) congestion

City Transport & Traffic Management

Input Output

200 scheduled stop enter

215 late stop leave since(215) non-punctual

[215, 400] abrupt acceleration

[350, 600] sharp turn [215, 600] uncomfortable driving

620 flow=low

density=high since(620) congestion

700 scheduled stop enter

720 flow=low

density=average

820 scheduled stop leave

915 passenger density

change to low

City Transport & Traffic Management

Input Output

200 scheduled stop enter

215 late stop leave since(215) non-punctual

[215, 400] abrupt acceleration

[350, 600] sharp turn [215, 600] uncomfortable driving

620 flow=low

density=high since(620) congestion

700 scheduled stop enter

720 flow=low

density=average [620,720] congestion

820 scheduled stop leave [215,820] non-punctual

915 passenger density

change to low

Credit Card Fraud Recognition

SDE:

I Credit card transactions from all over the world.

CE:

I Cloned card — a credit card is being used simultaneously in
different countries.

I New high use — the card is being frequently used in
merchants or countries never used before.

I Potential batch fraud — many transactions from multiple
cards in the same point-of-sale terminal in high amounts.

Credit Card Fraud Recognition

I Fraud must be detected within 25 milliseconds.

I Fraudulent transactions: 0.1% of the total number of
transactions.

I Fraud is constantly evolving.

I Erroneous transactions, missing fields.

Credit Card Fraud Recognition

I Fraud must be detected within 25 milliseconds.

I Fraudulent transactions: 0.1% of the total number of
transactions.

I Fraud is constantly evolving.

I Erroneous transactions, missing fields.

Credit Card Fraud Recognition

I Fraud must be detected within 25 milliseconds.

I Fraudulent transactions: 0.1% of the total number of
transactions.

I Fraud is constantly evolving.

I Erroneous transactions, missing fields.

Credit Card Fraud Recognition

I Fraud must be detected within 25 milliseconds.

I Fraudulent transactions: 0.1% of the total number of
transactions.

I Fraud is constantly evolving.

I Erroneous transactions, missing fields.

Event Recognition for Maritime Surveillance

Event Recognition for Maritime Surveillance

Fast Approach

I A vessel is moving at a high speed ...

I towards other vessels.

Suspicious Delay

I A vessel fails to report position ...

I and the estimated speed during the communication gap is low.

Possible Rendezvous

I Two vessels are suspiciously delayed ...

I in the same location ...

I at the same time.

Package Picking

I A vessel stops in a location ...

I and another vessel stops in the same location ...

I in a short period of time.

Event Recognition for Maritime Surveillance

‘Sea’ of information:

I 400,000 vessels globally: 40,000 signals/sec to be processed
online.

I Position signals need to be combined with other data streams
I Weather forecasts, sea currents, etc.

I ... and static information
I NATURA areas, shallow waters, coastlines, etc.

Event Recognition for Maritime Surveillance

‘Sea’ of information:

I 400,000 vessels globally: 40,000 signals/sec to be processed
online.

I Position signals need to be combined with other data streams
I Weather forecasts, sea currents, etc.

I ... and static information
I NATURA areas, shallow waters, coastlines, etc.

Event Recognition for Maritime Surveillance

‘Sea’ of information:

I 400,000 vessels globally: 40,000 signals/sec to be processed
online.

I Position signals need to be combined with other data streams
I Weather forecasts, sea currents, etc.

I ... and static information
I NATURA areas, shallow waters, coastlines, etc.

Event Recognition for Maritime Surveillance

‘Sea’ of noisy information:

I GPS manipulation has risen 59% over the past two years.

I There is a 30% increase over the past two years of vessels
reporting a false identity.

I 27% of vessels do not report position at least 10% of the
time.

I 19% of vessels are repeat offenders.

Event Recognition for Maritime Surveillance

‘Sea’ of noisy information:

I GPS manipulation has risen 59% over the past two years.

I There is a 30% increase over the past two years of vessels
reporting a false identity.

I 27% of vessels do not report position at least 10% of the
time.

I 19% of vessels are repeat offenders.

Event Recognition for Maritime Surveillance

‘Sea’ of noisy information:

I GPS manipulation has risen 59% over the past two years.

I There is a 30% increase over the past two years of vessels
reporting a false identity.

I 27% of vessels do not report position at least 10% of the
time.

I 19% of vessels are repeat offenders.

Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

Composite Event Algebra

Core components of an event algebra with point-based semantics:

I Sequencing (SEQ) lists the required event types in temporal
order — eg SEQ(A,B,C).

I Kleene closure (+) collects a finite yet unbound number of
events of a particular type. It is used as a component of SEQ

— eg SEQ(A,B+,C).

I Negation (˜ or !) verifies the absence of certain events in a
sequence — eg SEQ(A, !B,C).

I Value predicates specify constraints on the event attributes
I Aggregate functions max , min, count, sum, avg .

Composite Event Algebra

Core components of an event algebra with point-based semantics:

I Sequencing (SEQ) lists the required event types in temporal
order — eg SEQ(A,B,C).

I Kleene closure (+) collects a finite yet unbound number of
events of a particular type. It is used as a component of SEQ

— eg SEQ(A,B+,C).

I Negation (˜ or !) verifies the absence of certain events in a
sequence — eg SEQ(A, !B,C).

I Value predicates specify constraints on the event attributes
I Aggregate functions max , min, count, sum, avg .

Composite Event Algebra

Core components of an event algebra with point-based semantics:

I Sequencing (SEQ) lists the required event types in temporal
order — eg SEQ(A,B,C).

I Kleene closure (+) collects a finite yet unbound number of
events of a particular type. It is used as a component of SEQ

— eg SEQ(A,B+,C).

I Negation (˜ or !) verifies the absence of certain events in a
sequence — eg SEQ(A, !B,C).

I Value predicates specify constraints on the event attributes
I Aggregate functions max , min, count, sum, avg .

Composite Event Algebra

Core components of an event algebra with point-based semantics:

I Sequencing (SEQ) lists the required event types in temporal
order — eg SEQ(A,B,C).

I Kleene closure (+) collects a finite yet unbound number of
events of a particular type. It is used as a component of SEQ

— eg SEQ(A,B+,C).

I Negation (˜ or !) verifies the absence of certain events in a
sequence — eg SEQ(A, !B,C).

I Value predicates specify constraints on the event attributes
I Aggregate functions max , min, count, sum, avg .

Composite Event Algebra

I Composition refers to:
I Union of constraints — eg SEQ(A,B,C) ∪ SEQ(A,D,E).
I Negation of a sequence — eg !SEQ(A,B,C).
I Kleene closure of a constraint — eg SEQ(A,B,C)+.

I Windowing (WITHIN) restricts a CE definition to a specific
time period.

Composite Event Algebra

I Composition refers to:
I Union of constraints — eg SEQ(A,B,C) ∪ SEQ(A,D,E).
I Negation of a sequence — eg !SEQ(A,B,C).
I Kleene closure of a constraint — eg SEQ(A,B,C)+.

I Windowing (WITHIN) restricts a CE definition to a specific
time period.

Event Selection Strategies

I Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

I Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

I Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. E.g. for
SEQ(A,B,C) and a1, b1, b2, c1, only a1, b1, c1 will be detected.

I Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, a1, b2, c1

will also be detected.

Event Selection Strategies

I Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

I Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

I Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. E.g. for
SEQ(A,B,C) and a1, b1, b2, c1, only a1, b1, c1 will be detected.

I Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, a1, b2, c1

will also be detected.

Event Selection Strategies

I Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

I Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

I Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. E.g. for
SEQ(A,B,C) and a1, b1, b2, c1, only a1, b1, c1 will be detected.

I Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, a1, b2, c1

will also be detected.

Event Selection Strategies

I Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

I Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

I Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. E.g. for
SEQ(A,B,C) and a1, b1, b2, c1, only a1, b1, c1 will be detected.

I Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, a1, b2, c1

will also be detected.

Example

Quickly moving away from an area of suspicious activity:

I After a communication gap, ...

I a vessel changes speed to over 30 knots.

I Partition contiguity ensures that a, b, c are contiguous and
refer to the same vessel (vesselId).

PATTERN SEQ(gapStart a, gapEnd b, speedChange c)
WHERE partition-contiguity

AND vesselId

AND c .velocity > 30

WITHIN 3600

Example

Fishing pattern:

I A vessel slows down, ...

I begins a series of turns, where, for each pair of successive
turns, their difference in heading is more than 90 degrees, ...

I and subsequently the vessel stops moving at a low speed.

PATTERN SEQ(lowSpeedStart a, turn + b, lowSpeedEnd c)
WHERE skip-till-next-match

AND vesselId

AND b[i].heading−b[i−1].heading > 90

WITHIN 21600

CE as Chronicle

A CE can be defined as a set of events interlinked by time
constraints and whose occurrence may depend on the context.

I This is the definition of a chronicle.

Chronicle recognition systems have been used in many
applications:

I Cardiac monitoring system.

I Intrusion detection in computer networks.

I Distributed diagnosis of web services.

CE as Chronicle

A CE can be defined as a set of events interlinked by time
constraints and whose occurrence may depend on the context.

I This is the definition of a chronicle.

Chronicle recognition systems have been used in many
applications:

I Cardiac monitoring system.

I Intrusion detection in computer networks.

I Distributed diagnosis of web services.

CE as Chronicle

A CE can be defined as a set of events interlinked by time
constraints and whose occurrence may depend on the context.

I This is the definition of a chronicle.

Chronicle recognition systems have been used in many
applications:

I Cardiac monitoring system.

I Intrusion detection in computer networks.

I Distributed diagnosis of web services.

Chronicle Representation Algebra

Predicate Meaning

event(E, T) Event E takes place at time T

event(F:(?V1,?V2),T) An event takes place at
time T changing the value of
property F from ?V1 to ?V2

noevent(E, (T1,T2)) Event E does not take place
between [T1,T2)

noevent(F:(?V1,?V2), No event takes place between
(T1,T2)) [T1,T2) that changes the value

of property F from ?V1 to ?V2

hold(F:?V, (T1,T2)) The value of property F is ?V
between [T1,T2)

occurs(N,M,E,(T1,T2)) Event E takes place at least
N times and at most M times
between [T1,T2)

Chronicle Representation Language

chronicle abnormal vessel movement[?id](T2) {
event(speedChange[?id], T0)

event(speedChange[?id], T1)

event(speedChange[?id], T2)

T1 > T0

T2 > T1

T2 - T0 in [1, 20000]

noevent(turn[?id], (T0+1, T2))

}

Chronicle Representation Language

I Mathematical operators in the atemporal constraints of the
language are not allowed.

I No spatial reasoning.
I No use of background knowledge.

I Universal quantification is not allowed.
I cannot express a property about all vessels in some area.

CRS is a purely temporal reasoning system.

It is also a very efficient and scalable system.

Chronicle Representation Language

I Mathematical operators in the atemporal constraints of the
language are not allowed.

I No spatial reasoning.
I No use of background knowledge.

I Universal quantification is not allowed.
I cannot express a property about all vessels in some area.

CRS is a purely temporal reasoning system.

It is also a very efficient and scalable system.

Chronicle Representation Language

I Mathematical operators in the atemporal constraints of the
language are not allowed.

I No spatial reasoning.
I No use of background knowledge.

I Universal quantification is not allowed.
I cannot express a property about all vessels in some area.

CRS is a purely temporal reasoning system.

It is also a very efficient and scalable system.

Chronicle Recognition System: Semantics

Each CE definition is represented as a Temporal Constraint
Network. Eg:

turn [?id]
speedChange

[?id]

[1,2000]

Chronicle Recognition System: Consistency Checking

Compilation stage:

I Constraint propagation in the Temporal Constraint Network.

I Consistency checking.

[2, 5]

A

CA

B

[1, 6]

[0, 10]

[0, 10]

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

A

CA

B

[0, 8]

Chronicle Recognition System: Recognition

Recognition stage:

I Partial CE instance evolution.

I Forward (predictive) recognition.

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

[0, 8]

6 98 106 16111611

A

C

B

A

A

A

B

C

C@10

→

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

time

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

timeA@1

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

timeA@1

A@1 B[2,4]

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

timeA@1

A@1 B[2,4]

A@3

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

timeA@1

A@1 B[2,4]

A@3

A@1 B[3,4]

A@3 B[4,6]

B@5

killed instance

A@3 B@5 C[5,8]

A@3 B[5,6]

duplicated

Chronicle Recognition System

Recognition stage — partial CE instance management:

I In order to manage all the partial CE instances, CRS stores
them in trees, one for each CE definition.

I Each event occurrence and each clock tick traverses these
trees in order to kill some CE instances (tree nodes) or to
develop some CE instances.

I To deal with out-of-order SDE streams, CRS keeps in memory
partial CE instances longer.

Chronicle Recognition System

Recognition stage — partial CE instance management:

I In order to manage all the partial CE instances, CRS stores
them in trees, one for each CE definition.

I Each event occurrence and each clock tick traverses these
trees in order to kill some CE instances (tree nodes) or to
develop some CE instances.

I To deal with out-of-order SDE streams, CRS keeps in memory
partial CE instances longer.

Chronicle Recognition System

Recognition stage — partial CE instance management:

I In order to manage all the partial CE instances, CRS stores
them in trees, one for each CE definition.

I Each event occurrence and each clock tick traverses these
trees in order to kill some CE instances (tree nodes) or to
develop some CE instances.

I To deal with out-of-order SDE streams, CRS keeps in memory
partial CE instances longer.

Chronicle Recognition System: Optimisation

Several techniques have been developed for improving efficiency.
Eg, temporal focusing:

I Distinguish between rare events and frequent events.

I If, according to a CE definition, a rare event should take place
after a frequent event, store the incoming frequent events,
and start recognition only upon the arrival of the rare events.

I The number of partial CE instances is significantly reduced.

I Example:

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

Chronicle Recognition System: Optimisation

Several techniques have been developed for improving efficiency.
Eg, temporal focusing:

I Distinguish between rare events and frequent events.

I If, according to a CE definition, a rare event should take place
after a frequent event, store the incoming frequent events,
and start recognition only upon the arrival of the rare events.

I The number of partial CE instances is significantly reduced.

I Example:

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

Chronicle Recognition System: Optimisation

Several techniques have been developed for improving efficiency.
Eg, temporal focusing:

I Distinguish between rare events and frequent events.

I If, according to a CE definition, a rare event should take place
after a frequent event, store the incoming frequent events,
and start recognition only upon the arrival of the rare events.

I The number of partial CE instances is significantly reduced.

I Example:

A B C
[1,3] [0,3]

A: speedChange

B: turn

C: stop

Chronicle Recognition System: Summary

I One of the earliest and most successful formal event
processing systems.

I Many of its features appear in modern event processing
systems.

I Very efficient and scalable event recognition.

I But:
I It is a purely temporal reasoning system.
I It does not handle uncertainty.

Chronicle Recognition System: Summary

I One of the earliest and most successful formal event
processing systems.

I Many of its features appear in modern event processing
systems.

I Very efficient and scalable event recognition.
I But:

I It is a purely temporal reasoning system.
I It does not handle uncertainty.

Event Calculus

I A logic programming language for representing and reasoning
about events and their effects.

I Key components:
I event (typically instantaneous).
I fluent: a property that may have different values at different

points in time.

I Built-in representation of inertia:
I F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

Event Calculus

I A logic programming language for representing and reasoning
about events and their effects.

I Key components:
I event (typically instantaneous).
I fluent: a property that may have different values at different

points in time.

I Built-in representation of inertia:
I F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

Run-Time Event Calculus (RTEC)

Predicate Meaning

happensAt(E ,T) Event E occurs at time T

initiatedAt(F =V ,T) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T) At time T a period of time for which
F =V is terminated

holdsFor(F =V , I) I is the list of the maximal intervals
for which F =V holds continuously

holdsAt(F =V ,T) The value of fluent F is V at time T

union all([J1 , . . . , Jn], I) I =(J1 ∪ . . . ∪ Jn)

intersect all([J1 , . . . , Jn], I) I =(J1 ∩ . . . ∩ Jn)

relative complement all I = I ′ \ (J1 ∪ . . . ∪ Jn)
(I ′, [J1 , . . . , Jn], I)

Run-Time Event Calculus (RTEC)

Predicate Meaning

happensAt(E ,T) Event E occurs at time T

initiatedAt(F =V ,T) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T) At time T a period of time for which
F =V is terminated

holdsFor(F =V , I) I is the list of the maximal intervals
for which F =V holds continuously

holdsAt(F =V ,T) The value of fluent F is V at time T

union all([J1 , . . . , Jn], I) I =(J1 ∪ . . . ∪ Jn)

intersect all([J1 , . . . , Jn], I) I =(J1 ∩ . . . ∩ Jn)

relative complement all I = I ′ \ (J1 ∪ . . . ∪ Jn)
(I ′, [J1 , . . . , Jn], I)

CE Definitions in the Run-Time Event Calculus:
Simple Fluents

CE definition:

initiatedAt(CE , T)← terminatedAt(CE , T)←
happensAt(EIn1 , T), happensAt(ET1 , T),
[conditions] [conditions]

.
initiatedAt(CE , T)← terminatedAt(CE , T)←

happensAt(EIni , T), happensAt(ETj
, T),

[conditions] [conditions]

where

conditions: 0−KhappensAt(Ek , T),
0−MholdsAt(Fm, T),
0−Natemporal-constraintn

CE Definitions in the Run-Time Event Calculus:
Simple Fluents

CE definition:

initiatedAt(CE , T)← terminatedAt(CE , T)←
happensAt(EIn1 , T), happensAt(ET1 , T),
[conditions] [conditions]

.
initiatedAt(CE , T)← terminatedAt(CE , T)←

happensAt(EIni , T), happensAt(ETj
, T),

[conditions] [conditions]

CE recognition:

time

0

CE Definitions in the Run-Time Event Calculus:
Simple Fluents

CE definition:

initiatedAt(CE , T)← terminatedAt(CE , T)←
happensAt(EIn1 , T), happensAt(ET1 , T),
[conditions] [conditions]

.
initiatedAt(CE , T)← terminatedAt(CE , T)←

happensAt(EIni , T), happensAt(ETj
, T),

[conditions] [conditions]

CE recognition:

time

0

CE Definitions in the Run-Time Event Calculus:
Simple Fluents

CE definition:

initiatedAt(CE , T)← terminatedAt(CE , T)←
happensAt(EIn1 , T), happensAt(ET1 , T),
[conditions] [conditions]

.
initiatedAt(CE , T)← terminatedAt(CE , T)←

happensAt(EIni , T), happensAt(ETj
, T),

[conditions] [conditions]

CE recognition:

time

0

CE Definitions in the Run-Time Event Calculus:
Simple Fluents

CE definition:

initiatedAt(CE , T)← terminatedAt(CE , T)←
happensAt(EIn1 , T), happensAt(ET1 , T),
[conditions] [conditions]

.
initiatedAt(CE , T)← terminatedAt(CE , T)←

happensAt(EIni , T), happensAt(ETj
, T),

[conditions] [conditions]

CE recognition: holdsFor(CE , I)

time

0

CE Definitions in the Run-Time Event Calculus:
Simple Fluents

CE definition:

initiatedAt(leaving object(P,Obj) = true, T)←
happensAt(appear(Obj), T),
holdsAt(inactive(Obj) = true, T),
holdsAt(close(P,Obj) = true, T),
holdsAt(person(P) = true, T)

terminatedAt(leaving object(P,Obj) = true, T)←
happensAt(disappear(Obj), T)

CE recognition: holdsFor(leaving object(P,Obj) = true, I)

CE Definitions in the Run-Time Event Calculus:
Statically Determined Fluents

holdsFor(CE , I) ←
holdsFor(F1, IF1),
. . . ,
holdsFor(Ff , IFf

),
interval manipulation1 (Iα, . . . , Iω),
. . . ,
interval manipulationk (IA, . . . , IΩ)

where

interval manipulation(I1, . . . , In, I) :
union([I1 , . . . , In], I)
intersection([I1 , . . . , In], I)
relative complement(I1 , [I2 , . . . , In], I)

Interval Manipulation: Union

time

union([I1,I2], I)

I1
I2

Interval Manipulation: Intersection

time

intersection([I1,I2], I)

I1
I2

Interval Manipulation: Relative Complement

time

relative_complement

(I1, [I2], I)

I1
I2

CE Definitions in the Run-Time Event Calculus:
Statically Determined Fluents

CE definition:

holdsFor(abnormal(Vessel) = true, I) ←
holdsFor(slowMotion(Vessel) = true, I1),
holdsFor(gap(Vessel) = true, I2),
holdsFor(stop(Vessel) = true, I3),
union([I1 , I2 , I3], I)

Shorthand:

abnormal(Vessel) iff
slowMotion(Vessel) or
gap(Vessel) or
idle(Vessel)

CE Definitions in the Run-Time Event Calculus:
Statically Determined Fluents

CE definition:

holdsFor(abnormal(Vessel) = true, I) ←
holdsFor(slowMotion(Vessel) = true, I1),
holdsFor(gap(Vessel) = true, I2),
holdsFor(stop(Vessel) = true, I3),
union([I1 , I2 , I3], I)

Shorthand:

abnormal(Vessel) iff
slowMotion(Vessel) or
gap(Vessel) or
idle(Vessel)

CE Definitions in the Run-Time Event Calculus:
Statically Determined Fluents

Shorthand:

suspicious(Vessel1 ,Vessel2) iff
abnormal(Vessel1),
abnormal(Vessel2),
close(Vessel1 ,Vessel2),
not (in(Vessel1 ,Area) or in(Vessel2 ,Area))

CE definition:
holdsFor(suspicious(Vessel1 ,Vessel2) = true, I) ←

holdsFor(abnormal(Vessel1) = true, I1),
holdsFor(abnormal(Vessel2) = true, I2),
holdsFor(close(Vessel1 ,Vessel2) = true, I3),
holdsFor(in(Vessel1 ,Area) = true, I4),
holdsFor(in(Vessel2 ,Area) = true, I5),
intersection([I1 , I2 , I3], I6),
relative complement(I6 , [I4 , I5], I)

CE Definitions in the Run-Time Event Calculus:
Statically Determined Fluents

Shorthand:

suspicious(Vessel1 ,Vessel2) iff
abnormal(Vessel1),
abnormal(Vessel2),
close(Vessel1 ,Vessel2),
not (in(Vessel1 ,Area) or in(Vessel2 ,Area))

CE definition:
holdsFor(suspicious(Vessel1 ,Vessel2) = true, I) ←

holdsFor(abnormal(Vessel1) = true, I1),
holdsFor(abnormal(Vessel2) = true, I2),
holdsFor(close(Vessel1 ,Vessel2) = true, I3),
holdsFor(in(Vessel1 ,Area) = true, I4),
holdsFor(in(Vessel2 ,Area) = true, I5),
intersection([I1 , I2 , I3], I6),
relative complement(I6 , [I4 , I5], I)

CE Hierarchies

CE Hierarchies

CE Hierarchies: Caching

CE Hierarchies: Caching

CE Hierarchies: Caching

CE Hierarchies: Caching

Run-Time Event Recognition

Real-time decision-support in the presence of:

I Very large SDE streams.

I Non-sorted SDE streams.

I SDE revision.

I Very large CE numbers.

Run-Time Event Calculus: Windowing

time

Q178 Q182Q181Q180Q179Q177

Working Memory

Run-Time Event Calculus: Windowing

time

Q178 Q182Q181Q180Q179Q177

Working Memory

time

Q178 Q182Q181Q180Q179Q177

Working Memory

Run-Time Event Calculus: Windowing

time

Q178 Q182Q181Q180Q179Q177

Working Memory

time

Q178 Q182Q181Q180Q179Q177

Working Memory

time

Q178 Q182Q181Q180Q179Q177

Working Memory

Run-Time Event Calculus: Summary

I Representation of complex temporal phenomena.
I Succinct representation → code maintenance.
I Intuitive representation → domain experts unfamiliar with

programming into the loop.

I The full power of logic programming is available.
I Complex atemporal computations.
I Combination of events streams with static knowledge.

I Very efficient reasoning.
I Even when event streams arrive with a delay.
I Even in the presence of large specifications.

I But:
I The Event Calculus does not deal with uncertainty.

Run-Time Event Calculus: Summary

I Representation of complex temporal phenomena.
I Succinct representation → code maintenance.
I Intuitive representation → domain experts unfamiliar with

programming into the loop.

I The full power of logic programming is available.
I Complex atemporal computations.
I Combination of events streams with static knowledge.

I Very efficient reasoning.
I Even when event streams arrive with a delay.
I Even in the presence of large specifications.

I But:
I The Event Calculus does not deal with uncertainty.

Run-Time Event Calculus: Summary

I Representation of complex temporal phenomena.
I Succinct representation → code maintenance.
I Intuitive representation → domain experts unfamiliar with

programming into the loop.

I The full power of logic programming is available.
I Complex atemporal computations.
I Combination of events streams with static knowledge.

I Very efficient reasoning.
I Even when event streams arrive with a delay.
I Even in the presence of large specifications.

I But:
I The Event Calculus does not deal with uncertainty.

Run-Time Event Calculus: Summary

I Representation of complex temporal phenomena.
I Succinct representation → code maintenance.
I Intuitive representation → domain experts unfamiliar with

programming into the loop.

I The full power of logic programming is available.
I Complex atemporal computations.
I Combination of events streams with static knowledge.

I Very efficient reasoning.
I Even when event streams arrive with a delay.
I Even in the presence of large specifications.

I But:
I The Event Calculus does not deal with uncertainty.

Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

Common Problems of Event Recognition

I Limited dictionary of SDE and context variables.
I No explicit representation of oil spillage.

I Incomplete SDE stream.
I Sharp turn was not detected.

I Erroneous SDE detection.
I Slow motion was classified as stop.

I Inconsistent ground truth (CE & SDE annotation).
I Disagreement between (human) annotators.

Therefore, an adequate treatment of uncertainty is required.

Common Problems of Event Recognition

I Limited dictionary of SDE and context variables.
I No explicit representation of oil spillage.

I Incomplete SDE stream.
I Sharp turn was not detected.

I Erroneous SDE detection.
I Slow motion was classified as stop.

I Inconsistent ground truth (CE & SDE annotation).
I Disagreement between (human) annotators.

Therefore, an adequate treatment of uncertainty is required.

Common Problems of Event Recognition

I Limited dictionary of SDE and context variables.
I No explicit representation of oil spillage.

I Incomplete SDE stream.
I Sharp turn was not detected.

I Erroneous SDE detection.
I Slow motion was classified as stop.

I Inconsistent ground truth (CE & SDE annotation).
I Disagreement between (human) annotators.

Therefore, an adequate treatment of uncertainty is required.

Common Problems of Event Recognition

I Limited dictionary of SDE and context variables.
I No explicit representation of oil spillage.

I Incomplete SDE stream.
I Sharp turn was not detected.

I Erroneous SDE detection.
I Slow motion was classified as stop.

I Inconsistent ground truth (CE & SDE annotation).
I Disagreement between (human) annotators.

Therefore, an adequate treatment of uncertainty is required.

Statistical Relational Learning

LOGIC

Formal and
declarative
relational
representation

LEARNING

Improving performance
through experience

PROBABILITIES
Sound mathematical
foundation for
reasoning under
uncertainty

ProbLog

I A probabilistic logic programming language.
I Allows for independent probabilistic facts prob::fact.

I prob indicates the probability that fact is part of a possible
world.

I Rules are written as in classic Prolog.

I The probability of a query q imposed on a ProbLog database
(success probability) is computed by the following formula:

Ps(q) = P(
∨

e∈Proofs(q)

∧
fi∈e

fi)

ProbLog

I A probabilistic logic programming language.
I Allows for independent probabilistic facts prob::fact.

I prob indicates the probability that fact is part of a possible
world.

I Rules are written as in classic Prolog.

I The probability of a query q imposed on a ProbLog database
(success probability) is computed by the following formula:

Ps(q) = P(
∨

e∈Proofs(q)

∧
fi∈e

fi)

ProbLog

I A probabilistic logic programming language.
I Allows for independent probabilistic facts prob::fact.

I prob indicates the probability that fact is part of a possible
world.

I Rules are written as in classic Prolog.

I The probability of a query q imposed on a ProbLog database
(success probability) is computed by the following formula:

Ps(q) = P(
∨

e∈Proofs(q)

∧
fi∈e

fi)

Event Recognition using ProbLog

Input Output

340 0.45 :: inactive(id0) 340 0.41 :: left object(id1, id0)

340 0.80 :: p(id0) =(20.88,−11.90) 340 0.55 :: moving(id2, id3)

340 0.55 :: appear(id0)

340 0.15 :: walking(id2)

340 0.80 :: p(id2) =(25.88,−19.80)

340 0.25 :: active(id1)

340 0.66 :: p(id1) =(20.88,−11.90)

340 0.70 :: walking(id3)

340 0.46 :: p(id3) =(24.78,−18.77)

Event Calculus in ProbLog

timeI0 1 2 21 41
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
E

Pr
ob

ab
ili

ty

initiation inertia
continuous

initiations

continuous

terminations

Event Calculus in ProbLog

0 5 10 15 20 25 30 35 40 45 50 55

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time

Pr
ob

ab
ili

ty

Probability
Threshold

Markov Logic Networks (MLN)

Syntax: weighted first-order logic formulas (wi ,Fi)

When input events SDEA and SDEB occur at T ,

then the output event CE is initiated:

3.18 happensAt(SDEA, T) ∧ happensAt(SDEB , T)⇒ initiatedAt(CE , T)

Semantics: (wi ,Fi) represents a probability distribution over possible
worlds

P(Y=y |X=x) =
1

Z (x)
exp

(∑
i

wi ni(x, y)

)

A world violating formulas becomes less probable, but not
impossible!

Possible world: CEs

SDEs weight of the i-th formula

Partition function number of satisfied groundings

Markov Logic Networks (MLN)

Syntax: weighted first-order logic formulas (wi ,Fi)

When input events SDEA and SDEB occur at T ,

then the output event CE is initiated:

3.18 happensAt(SDEA, T) ∧ happensAt(SDEB , T)⇒ initiatedAt(CE , T)

Semantics: (wi ,Fi) represents a probability distribution over possible
worlds

P(Y=y |X=x) =
1

Z (x)
exp

(∑
i

wi ni(x, y)

)

A world violating formulas becomes less probable, but not
impossible!

Possible world: CEs

SDEs weight of the i-th formula

Partition function number of satisfied groundings

Event Calculus in Markov Logic Networks (MLN-EC)

INPUT I TRANSFORMATION I INFERENCE I OUTPUT �

Compact
Knowledge

Base

Composite
Event

Definitions

Event
Calculus
Axioms

Simple,
Derived
Event

Stream

Recognised
Composite

Events

Markov Logic Networks

MLN-EC: Probabilistic Inference

Marginal Inference:

I For all time points T, calculate the probability of each CE
being true (recognised), given all input SDEs (evidence)

P(holdsAt(CE , T)=true|SDEs)

I Marginal inference is #P-complete → approximate inference

I MC-SAT algorithm (Markov Chain Monte Carlo techniques
with SAT solver)

MLN-EC: Probabilistic Inference

Maximum a Posteriori (MAP) Inference:

I Find the world with the highest probability

I Input: truth values for all input SDEs (evidence)

I Output: truth values of the output CEs that maximise the
probability (recognition)

argmax
holdsAt(CE ,T)

(
P(holdsAt(CE , T)|SDEs)

)

I MAP Inference is NP-hard → approximate inference

I Various methods: local search, linear programming, etc.

MLN-EC: Inertia

time I0 3 10 20

0

0.5

1
ECcrisp

initiation initiation termination

∞ holdsAt(CE, T+1)⇐[
Initiation Conditions

]
∞ ¬holdsAt(CE, T+1)⇐

¬holdsAt(CE), T) ∧
¬
[
Initiation Conditions

]

∞ ¬holdsAt(CE, T+1)⇐[
Termination Conditions

]
∞ holdsAt(CE, T+1)⇐

holdsAt(CE, T) ∧
¬
[
Termination Conditions

]

MLN-EC: Inertia

time I0 3 10 20

0

0.5

1
ECcrisp

MLN−EC

initiation initiation termination

1.2 holdsAt(CE, T+1)⇐[
Initiation Conditions

]
∞ ¬holdsAt(CE, T+1)⇐

¬holdsAt(CE), T) ∧
¬
[
Initiation Conditions

]

0.7 ¬holdsAt(CE, T+1)⇐[
Termination Conditions

]
∞ holdsAt(CE, T+1)⇐

holdsAt(CE, T) ∧
¬
[
Termination Conditions

]

MLN-EC: Inertia

time I0 3 10 20

0

0.5

1
ECcrisp

MLN−EC

initiation initiation termination

1.2 holdsAt(CE, T+1)⇐[
Initiation Conditions

]
2.3 ¬holdsAt(CE, T+1)⇐

¬holdsAt(CE), T) ∧
¬
[
Initiation Conditions

]

0.7 ¬holdsAt(CE, T+1)⇐[
Termination Conditions

]
∞ holdsAt(CE, T+1)⇐

holdsAt(CE, T) ∧
¬
[
Termination Conditions

]

MLN-EC: Inertia

time I0 3 10 20

0

0.5

1
ECcrisp

MLN−EC

initiation initiation termination

1.2 holdsAt(CE, T+1)⇐[
Initiation Conditions

]
∞ ¬holdsAt(CE, T+1)⇐

¬holdsAt(CE), T) ∧
¬
[
Initiation Conditions

]

0.7 ¬holdsAt(CE, T+1)⇐[
Termination Conditions

]
2.3 holdsAt(CE, T+1)⇐

holdsAt(CE, T) ∧
¬
[
Termination Conditions

]

MLN-EC: Inertia

time I0 3 10 20

0

0.5

1
ECcrisp

MLN−EC

initiation initiation termination

1.2 holdsAt(CE, T+1)⇐[
Initiation Conditions

]
∞ ¬holdsAt(CE, T+1)⇐

¬holdsAt(CE), T) ∧
¬
[
Initiation Conditions

]

0.7 ¬holdsAt(CE, T+1)⇐[
Termination Conditions

]
0.6 holdsAt(CE, T+1)⇐

holdsAt(CE, T) ∧
¬
[
Termination Conditions

]

MLN-EC: Complete Data

moving meeting

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold

F
1

sc
or

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold
F
1

sc
or

e

ECcrisp : Crisp Event Calculus
l−CRF : Linear-chain Conditional Random Field
MLN−ECHI : Hard-constrained inertia
MLN−ECSIT : Soft-constrained termination inertial rules
MLN−ECSI : Soft-constrained inertial rules

MLN-EC: Incomplete Data

moving meeting

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold

F
1

sc
or

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold
F
1

sc
or

e

ECcrisp : Crisp Event Calculus
l−CRF : Linear-chain Conditional Random Field
MLN−ECSIT : Soft-constrained termination inertial rules

MLN-EC: Summary

I We can deal with both:
I Uncertainty in the CE definitions, and
I uncertainty in the input data streams.

I Customisable inertia behaviour to meet the requirements of
different applications.

But:

I There is room for improvement with respect to efficiency.

MLN-EC: Summary

I We can deal with both:
I Uncertainty in the CE definitions, and
I uncertainty in the input data streams.

I Customisable inertia behaviour to meet the requirements of
different applications.

But:

I There is room for improvement with respect to efficiency.

Event Recognition

Requirements:
I Efficient reasoning

I to support real-time decision-making in large-scale,
(geographically) distributed applications.

I Reasoning under uncertainty
I to deal with various types of noise.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

Machine Learning for Event Recognition

Manual development of CE definitions:

I Time consuming.

I Error-prone.

Automated construction for CE definitions:
I Learn complex definitions

I Structure learning.

I Learn from noisy data
I Weight learning.

I Learn with incomplete or missing annotation
I Semi-supervised, unsupervised learning.

I Learn from large amounts of (streaming) data
I Incremental learning, online learning.

Machine Learning for Event Recognition

Manual development of CE definitions:

I Time consuming.

I Error-prone.

Automated construction for CE definitions:
I Learn complex definitions

I Structure learning.

I Learn from noisy data
I Weight learning.

I Learn with incomplete or missing annotation
I Semi-supervised, unsupervised learning.

I Learn from large amounts of (streaming) data
I Incremental learning, online learning.

Machine Learning for Event Recognition

Manual development of CE definitions:

I Time consuming.

I Error-prone.

Automated construction for CE definitions:
I Learn complex definitions

I Structure learning.

I Learn from noisy data
I Weight learning.

I Learn with incomplete or missing annotation
I Semi-supervised, unsupervised learning.

I Learn from large amounts of (streaming) data
I Incremental learning, online learning.

Machine Learning for Event Recognition

Manual development of CE definitions:

I Time consuming.

I Error-prone.

Automated construction for CE definitions:
I Learn complex definitions

I Structure learning.

I Learn from noisy data
I Weight learning.

I Learn with incomplete or missing annotation
I Semi-supervised, unsupervised learning.

I Learn from large amounts of (streaming) data
I Incremental learning, online learning.

Machine Learning for Event Recognition

Manual development of CE definitions:

I Time consuming.

I Error-prone.

Automated construction for CE definitions:
I Learn complex definitions

I Structure learning.

I Learn from noisy data
I Weight learning.

I Learn with incomplete or missing annotation
I Semi-supervised, unsupervised learning.

I Learn from large amounts of (streaming) data
I Incremental learning, online learning.

Machine Learning for Event Recognition

INPUT I CE DEFINITION CONSTRUCTION J INPUT

Machine
Learning
System

CE Definitions

Streams of SDEs

.

.

Annotated CEs

.

.

Structure Learning with ILP

Inductive Logic Programming (ILP):

I Input: SDE streams annotated with CE
I Positive (E+) and negative (E−) examples.

I Event recognition engine
I Background knowledge B.

I Syntax of event recognition language
I Language bias M.

I Output: A set of CE definitions
I A hypothesis H in the language of M, such that:

maximize
e+∈E+

B ∪H � e+ and minimize
e−∈E−

B ∪H � e−

A Generic ILP Algorithm
H = ∅ (Begin)

Positives
not covered by H?Return H

Select a positive example:
holdsAt(moving(id1, id2), 10),
happensAt(walking(id1), 9),
happensAt(walking(id2), 9),
holdsAt(close(id1 , id2 , 34), 9),
holdsAt(orientation(id1 , id2 , 45), 9)

Construct a Bottom Clause BC :
initiatedAt(moving(X ,Y),T)←

happensAt(walking(X),T),
happensAt(walking(Y),T),
holdsAt(close(X ,Y , 34),T),
holdsAt(orientation(X ,Y , 45),T).

Find a “good” clause r:
• SearchSpace: Clauses that θ-subsume BC. e.g.:

initiatedAt(moving(X ,Y),T)←
happensAt(walking(X),T),
holdsAt(close(X ,Y , 34),T).

• score(r): A clause evaluation function, e.g.:
score(r) = rP − rN − |r |, (compression).

• Return: r ∈ SearhSpace with the best score

H = H ∪ r

Covering step:
Remove all positives covered by H

No Yes

Online Learning

w1

ok!

w1

ok!

.

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

not ok!

initiatedAt(moving(X ,Y),T)←
happensAt(walking(X),T),
happensAt(walking(Y),T),
holdsAt(close(X ,Y , 34),T).

H :

Online Learning
Goal:

I Revise H to an H ′ that accounts for (all) the examples.

w1

ok!

w1

ok!

.

Historical Memory E

wn−2

ok!

wn−1

ok!

wn

ok!

initiatedAt(moving(X ,Y),T)←
happensAt(walking(X),T),
happensAt(walking(Y),T),
holdsAt(close(X ,Y , 34),T),
holdsAt(orientation(X ,Y , 45),T).

terminatedAt(moving(X ,Y),T)←
happensAt(inactive(X),T),
not holdsAt(close(X ,Y , 34),T).

H ′ :

Online Learning

ok!

1

ok! ok!

... ...

ok! ok! not ok!

?

2

? ?

... ...

? ? ok!

?

3

? ?

... ...

? ok! ok!

?

4

? ?

... ...

ok! ok! ok!

?

5

? not ok!

... ...

ok! ok! ok!

?

6

? ok!

... ...

? ? ?

We must start all over again

Online Learning

ok!

1

ok! ok!

... ...

ok! ok! not ok!

?

2

? ?

... ...

? ? ok!

?

3

? ?

... ...

? ok! ok!

?

4

? ?

... ...

ok! ok! ok!

?

5

? not ok!

... ...

ok! ok! ok!

?

6

? ok!

... ...

? ? ?

We must start all over again

Online Learning

ok!

1

ok! ok!

... ...

ok! ok! not ok!

?

2

? ?

... ...

? ? ok!

?

3

? ?

... ...

? ok! ok!

?

4

? ?

... ...

ok! ok! ok!

?

5

? not ok!

... ...

ok! ok! ok!

?

6

? ok!

... ...

? ? ?

We must start all over again

Online Learning

ok!

1

ok! ok!

... ...

ok! ok! not ok!

?

2

? ?

... ...

? ? ok!

?

3

? ?

... ...

? ok! ok!

?

4

? ?

... ...

ok! ok! ok!

?

5

? not ok!

... ...

ok! ok! ok!

?

6

? ok!

... ...

? ? ?

We must start all over again

Online Learning

ok!

1

ok! ok!

... ...

ok! ok! not ok!

?

2

? ?

... ...

? ? ok!

?

3

? ?

... ...

? ok! ok!

?

4

? ?

... ...

ok! ok! ok!

?

5

? not ok!

... ...

ok! ok! ok!

?

6

? ok!

... ...

? ? ?

We must start all over again

Online Learning

ok!

1

ok! ok!

... ...

ok! ok! not ok!

?

2

? ?

... ...

? ? ok!

?

3

? ?

... ...

? ok! ok!

?

4

? ?

... ...

ok! ok! ok!

?

5

? not ok!

... ...

ok! ok! ok!

?

6

? ok!

... ...

? ? ?

We must start all over again

Online Learning

ok!

1

ok! ok!

... ...

ok! ok! not ok!

?

2

? ?

... ...

? ? ok!

?

3

? ?

... ...

? ok! ok!

?

4

? ?

... ...

ok! ok! ok!

?

5

? not ok!

... ...

ok! ok! ok!

?

6

? ok!

... ...

? ? ?

We must start all over again

Markov Logic Networks: Online Structure Learning using
background knowledge Axiomatization (OSLα)

Learnt Hypothesis Ht:

0.51 HoldsAt(move(id1, id2), t+1)⇐
HappensAt(walking(id1), t)∧
HappensAt(walking(id2), t)

+

MLN−EC Axioms:
HoldsAt(f, t+1)⇐

InitiatedAt(f, t)

HoldsAt(f, t+1)⇐
HoldsAt(f, t) ∧
¬TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
¬HoldsAt(f, t) ∧
¬InitiatedAt(f, t)

OSLα

Micro-Batch Dt

HappensAt(walking(ID1), 99)
HappensAt(walking(ID2), 99)
OrientationMove(ID1, ID2, 99)
Close(ID1, ID2, 34, 99)
Next(99, 100)
HoldsAt(move(ID1, ID2), 100)
. . .

Micro-Batch Dt+1

HappensAt(exit(ID1), 200)
HappensAt(walking(ID2), 200)
¬OrientationMove(ID1, ID2, 200)
¬Close(ID1, ID2, 34, 200)
Next(200, 201)
¬HoldsAt(move(ID1, ID2), 201)
. . .

. . .

. . .

. . .

Data Stream/Training Examples

Inference Hypergraph

Paths to
Clauses

Clause
Evaluation

Weight
Learning

Training Example (Micro-Batch)

Simple Derived Events Complex Event Annotation

.

HappensAt(walking(ID1), 99)

HappensAt(walking(ID2), 99)

OrientationMove(ID1, ID2, 99) HoldsAt(move(ID1, ID2), 100)

Close(ID1, ID2, 34, 99)

Next(99, 100)

.

Hypergraph

WalkingID1

WalkingID2

99

100

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt

Hypergraph and Relational Pathfinding

yPt =
(
¬HoldsAt(MoveID1ID2, 100)

)
{HoldsAt(MoveID1ID2, 100),

WalkingID1

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt

100

99

WalkingID2

Relational Pathfinding

yPt =
(
¬HoldsAt(MoveID1ID2, 100)

)
{HoldsAt(MoveID1ID2, 100), Next(99, 100),

WalkingID1

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt

100

99

WalkingID2

Relational Pathfinding

yPt =
(
¬HoldsAt(MoveID1ID2, 100)

)
{HoldsAt(MoveID1ID2, 100), Next(99, 100),

HappensAt(WalkingID1, 99),

WalkingID1

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt

100

99

WalkingID2

Relational Pathfinding

yPt =
(
¬HoldsAt(MoveID1ID2, 100)

)
{HoldsAt(MoveID1ID2, 100), Next(99, 100),

HappensAt(WalkingID1, 99),

HappensAt(WalkingID2, 99)}

WalkingID1

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt

100

99

WalkingID2

Template-Guided Search

Wrongly predicted atom:

¬HoldsAt(MoveID1ID2, 100)

HoldsAt(f , t1)⇐
InitiatedAt(f , t0)∧
Next(t0, t1)

HoldsAt(MoveID1ID2, 100)⇐
InitiatedAt(MoveID1ID2, t0)∧
Next(t0, 100)

InitiatedAt(MoveID1ID2, 99)

Template-Guided Search

Wrongly predicted atom:

¬HoldsAt(MoveID1ID2, 100)

HoldsAt(f , t1)⇐
InitiatedAt(f , t0)∧
Next(t0, t1)

HoldsAt(MoveID1ID2, 100)⇐
InitiatedAt(MoveID1ID2, t0)∧
Next(t0, 100)

InitiatedAt(MoveID1ID2, 99)

Template-Guided Search

Wrongly predicted atom:

¬HoldsAt(MoveID1ID2, 100)

HoldsAt(f , t1)⇐
InitiatedAt(f , t0)∧
Next(t0, t1)

HoldsAt(MoveID1ID2, 100)⇐
InitiatedAt(MoveID1ID2, t0)∧
Next(t0, 100)

InitiatedAt(MoveID1ID2, 99)

Reduced Hypergraph

WalkingID1

WalkingID2

99

100

ID1

ID2

MoveID1ID2

34

HappensAt

HappensAt

Close

AUXWalking

AUXWalking

OrientationMove

AUXMove

Next

HoldsAt

Clause Creation, Clause Evaluation and Weight Learning

Clause creation:

I Generalize each path into a definite clause

InitiatedAt(move(id1, id2), t)⇐
HappensAt(walking(id1), t)∧
HappensAt(walking(id2), t)

Clause evaluation:

I Keep clauses whose coverage of the annotation is significantly
greater than that of the clauses already learnt.

Weight learning:

I Extended clauses inherit initially the weights of their ancestors.

I Optimize the weights of all clauses.

Clause Creation, Clause Evaluation and Weight Learning

Clause creation:

I Generalize each path into a definite clause

InitiatedAt(move(id1, id2), t)⇐
HappensAt(walking(id1), t)∧
HappensAt(walking(id2), t)

Clause evaluation:

I Keep clauses whose coverage of the annotation is significantly
greater than that of the clauses already learnt.

Weight learning:

I Extended clauses inherit initially the weights of their ancestors.

I Optimize the weights of all clauses.

Clause Creation, Clause Evaluation and Weight Learning

Clause creation:

I Generalize each path into a definite clause

InitiatedAt(move(id1, id2), t)⇐
HappensAt(walking(id1), t)∧
HappensAt(walking(id2), t)

Clause evaluation:

I Keep clauses whose coverage of the annotation is significantly
greater than that of the clauses already learnt.

Weight learning:

I Extended clauses inherit initially the weights of their ancestors.

I Optimize the weights of all clauses.

Machine Learning for Event Recognition: Summary

I CE definition construction
I using large (streaming) data;
I tolerant to noise.

I Acceptable predictive accuracy.

I But:
I Constructed CE definitions tend to overfit the data.
I There is room for improvement with respect to efficiency.

Machine Learning for Event Recognition: Summary

I CE definition construction
I using large (streaming) data;
I tolerant to noise.

I Acceptable predictive accuracy.
I But:

I Constructed CE definitions tend to overfit the data.
I There is room for improvement with respect to efficiency.

Open Issues

Issue (1): Real-time Probabilistic Event Recognition

Types of uncertainty:

I Noisy input stream.

I Imprecise CE definitions.

Existing solution:

I Probabilistic graphical models & logic-based approaches.

Major drawback:

I Large overhead that does not allow for real-time performance.

Issue (1): Real-time Probabilistic Event Recognition

Types of uncertainty:

I Noisy input stream.

I Imprecise CE definitions.

Existing solution:

I Probabilistic graphical models & logic-based approaches.

Major drawback:

I Large overhead that does not allow for real-time performance.

Issue (2): Distributed Recognition

Distribution of CE recognition among multiple nodes:

I Data distribution.

I Distribution of CE (sub-)definitions.

But, virtually no work on distributing probabilistic CE recognition.

Interplay with communication efficiency:
I Reduce communication by decomposing recognition in set of

local constraints at event sources
I By sketching.
I By geometric models.

I Limited to particular types of CE: functions over aggregate
values.

Issue (2): Distributed Recognition

Distribution of CE recognition among multiple nodes:

I Data distribution.

I Distribution of CE (sub-)definitions.

But, virtually no work on distributing probabilistic CE recognition.

Interplay with communication efficiency:
I Reduce communication by decomposing recognition in set of

local constraints at event sources
I By sketching.
I By geometric models.

I Limited to particular types of CE: functions over aggregate
values.

Issue (2): Distributed Recognition

Distribution of CE recognition among multiple nodes:

I Data distribution.

I Distribution of CE (sub-)definitions.

But, virtually no work on distributing probabilistic CE recognition.

Interplay with communication efficiency:
I Reduce communication by decomposing recognition in set of

local constraints at event sources
I By sketching.
I By geometric models.

I Limited to particular types of CE: functions over aggregate
values.

Issue (3): Multi-scale Temporal Aggregation of Events

CE evolve over multiple scales of time and
space:

I SDE streams.

I Context information, e.g. historic data.

The recognition system should be adaptable,
computing dynamically the appropriate scales

I Appropriate lengths of multi-granular
windows.

I Appropriate slice of context information.

Semantics and processing guarantees, despite
adaptation.

Issue (3): Multi-scale Temporal Aggregation of Events

CE evolve over multiple scales of time and
space:

I SDE streams.

I Context information, e.g. historic data.

The recognition system should be adaptable,
computing dynamically the appropriate scales

I Appropriate lengths of multi-granular
windows.

I Appropriate slice of context information.

Semantics and processing guarantees, despite
adaptation.

Issue (3): Multi-scale Temporal Aggregation of Events

CE evolve over multiple scales of time and
space:

I SDE streams.

I Context information, e.g. historic data.

The recognition system should be adaptable,
computing dynamically the appropriate scales

I Appropriate lengths of multi-granular
windows.

I Appropriate slice of context information.

Semantics and processing guarantees, despite
adaptation.

Issue (4): Event Forecasting

Current work focuses on

I Present (monitoring).

I Past (post mortem analysis).

Stream processing will focus on future

I Predictive analysis.

I Trend detection.

The earlier the better

I Time to react to an anticipated
situation.

I Avoidance of situation or
initialisation of counter measures.

Issue (4): Event Forecasting

Current work focuses on

I Present (monitoring).

I Past (post mortem analysis).

Stream processing will focus on future

I Predictive analysis.

I Trend detection.

The earlier the better

I Time to react to an anticipated
situation.

I Avoidance of situation or
initialisation of counter measures.

Issue (4): Event Forecasting

Current work focuses on

I Present (monitoring).

I Past (post mortem analysis).

Stream processing will focus on future

I Predictive analysis.

I Trend detection.

The earlier the better

I Time to react to an anticipated
situation.

I Avoidance of situation or
initialisation of counter measures.

Resources

I Tutorial paper: A. Artikis, A. Skarlatidis, F. Portet, G.
Paliouras: Logic-based event recognition. Knowledge
Engineering Review 27(4): 469-506 (2012)

I Slides, complex event recognition software, datasets:
http://cer.iit.demokritos.gr

http://cer.iit.demokritos.gr

Acknowledgements

I Marek Sergot, Imperial College London

I Anastasios Skarlatidis, Pollfish

I Matthias Weidlich, Humboldt-Universität zu Berlin

