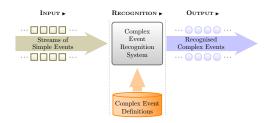
Complex Event Recognition under Uncertainty

Alexander Artikis^{1,2}

¹University of Piraeus, Athens, Greece ²National Research Centre 'Demokritos', Athens, Greece

https://cer.iit.demokritos.gr

Complex Event Recognition (Event Pattern Matching)*,^{†,‡}



^{*}Giatrakos et al, Complex event recognition in the Big Data era: A survey, VLDB Journal, 2020.

[†]Artikis et al, Dagstuhl Seminar on the Foundations of Composite Event Recognition. SIGMOD Record, 2020.

[‡]Alevizos et al, Probabilistic Complex Event Recognition: A survey, ACM Computing Surveys, 2017.

Complex Event Recognition (Event Pattern Matching)*,^{†,‡}

^{*}Giatrakos et al, Complex event recognition in the Big Data era: A survey, VLDB Journal, 2020.

[†]Artikis et al, Dagstuhl Seminar on the Foundations of Composite Event Recognition. SIGMOD Record, 2020.

[‡]Alevizos et al, Probabilistic Complex Event Recognition: A survey, ACM Computing Surveys, 2017.

Human Activity Recognition

Human Activity Recognition

https://cer.iit.demokritos.gr (activity recognition)

Event Calculus*

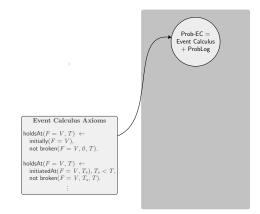
- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.

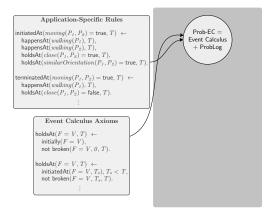
^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

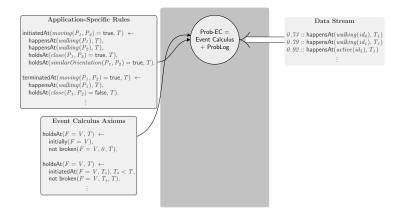
Event Calculus*

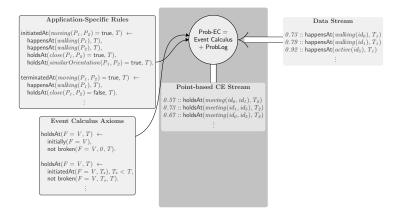
- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.
- Built-in representation of inertia:
 - F = V holds at a particular time-point if F = V has been *initiated* by an event at some earlier time-point, and not *terminated* by another event in the meantime.

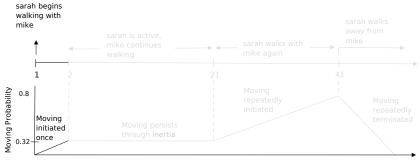
^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.





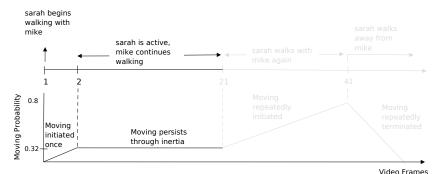






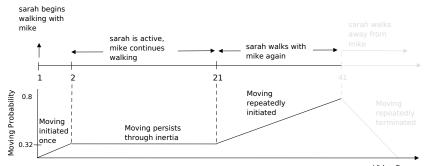
Video Frames

- initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(similarOrientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), holdsAt(close(P_1, P_2) = false, T).
- 0.70 :: happensAt(walking(mike), 1). 0.46 :: happensAt(walking(sarah), 1).



- initiatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$), happensAt($walking(P_2), T$), holdsAt($close(P_1, P_2) = true, T$), holdsAt($similarOrientation(P_1, P_2) = true, T$). terminatedAt($moving(P_1, P_2) = true, T$) \leftarrow
- happensAt($moving(P_1, P_2) = true, T$) a happensAt($walking(P_1), T$), holdsAt($close(P_1, P_2) = false, T$).

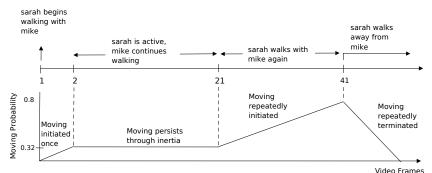
- 0.70 :: happensAt(walking(mike), 1).
- 0.46 :: happensAt(walking(sarah), 1).
- 0.73 :: happensAt(walking(mike), 2).
- 0.55 :: happensAt(active(sarah), 2). · · ·



 $\begin{array}{ll} \mbox{initiatedAt}(moving(P_1,P_2)=\mbox{true},\ T) \leftarrow & \mbox{happensAt}(walking(P_1),\ T), & \mbox{happensAt}(walking(P_2),\ T), & \mbox{holdsAt}(close(P_1,P_2)=\mbox{true},\ T), & \mbox{holdsAt}(similarOrientation(P_1,P_2)=\mbox{true},\ T). & \mbox{terminatedAt}(moving(P_1,P_2)=\mbox{true},\ T) \leftarrow & \end{array}$

happensAt(walking(P_1), T), holdsAt(close(P_1, P_2) = false, T).

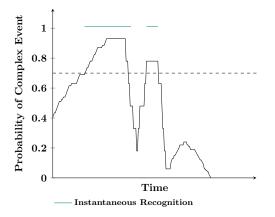
- Video Frames
- 0.70 :: happensAt(walking(mike), 1).
- 0.46 :: happensAt(walking(sarah), 1).
- 0.73 :: happensAt(walking(mike), 2).
- 0.55 :: happensAt(active(sarah), 2). · · ·
- 0.69 :: happensAt(walking(mike), 21).
- 0.58 :: happensAt(walking(sarah), 21). · · ·



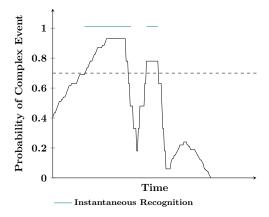
initiatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$), happensAt($walking(P_2), T$), holdsAt($close(P_1, P_2) = true, T$), holdsAt($similarOrientation(P_1, P_2) = true, T$).

terminatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$), holdsAt($close(P_1, P_2) = false, T$).

- 0.70 :: happensAt(walking(mike), 1).
- 0.46 :: happensAt(walking(sarah), 1).
- 0.73 :: happensAt(walking(mike), 2).
- 0.55 :: happensAt(active(sarah), 2). · · ·
- 0.69 :: happensAt(walking(mike), 21).
- 0.58 :: happensAt(walking(sarah), 21). ...
- 0.82 :: happensAt(inactive(mike), 41).
- 0.79 :: happensAt(walking(sarah), 41). · · ·



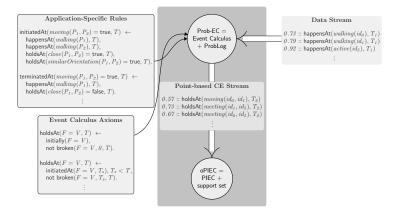
^{*}Skarlatidis et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic Programming, 2015.

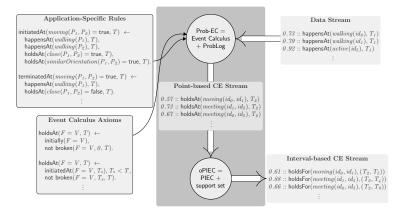


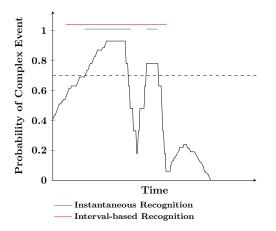
Higher accuracy than crisp reasoning in the presence of:

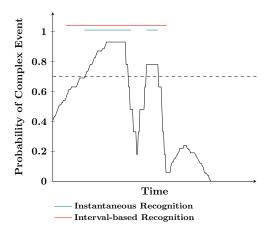
- several initiations and terminations;
- few probabilistic conjuncts.

^{*}Skarlatidis et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic Programming, 2015.





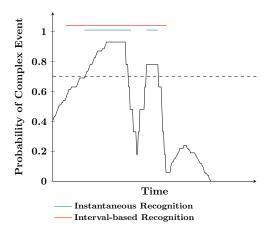




• Interval Probability: average probability of the time-points it contains.



- Interval Probability: average probability of the time-points it contains.
- Probabilistic Maximal Interval:
 - interval probability above a given threshold;
 - no super-interval with probability above the threshold.



- Interval Probability: average probability of the time-points it contains.
- Probabilistic Maximal Interval:
 - interval probability above a given threshold;
 - no super-interval with probability above the threshold.
- Probabilistic maximal interval computation via maximal non-negative sum interval computation.

Interval-based Recognition*

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

^{*}Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2020.

Interval-based Recognition*

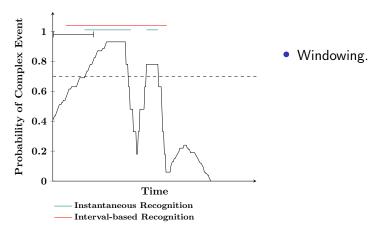
Interval Computation Correctness

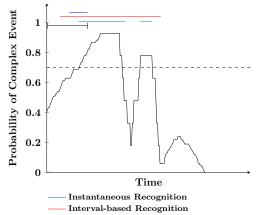
An interval is computed iff it is a probabilistic maximal interval.

Complexity

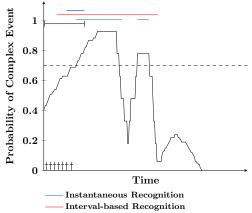
The computation of probabilistic maximal intervals is linear to the dataset size.

^{*}Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2020.

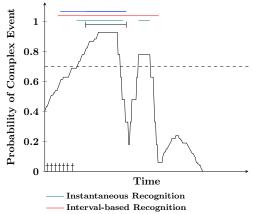




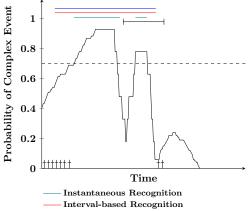
- Windowing.
- Probabilistic maximal interval computation.



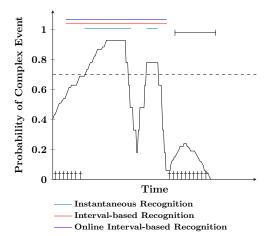
- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.



- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.



- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.



- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.

Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval given the data seen so far.

Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

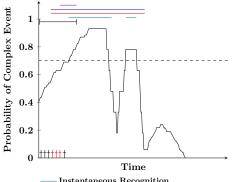
Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the window and memory size.

Bounded Online Interval-based Recognition*

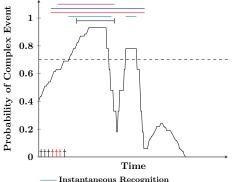


Complex event duration statistics favor more recent potential starting points.

- Instantaneous Recognition
- Interval-based Recognition
- **Online Interval-based Recognition**
- Bounded Online Interval-based Recognition

^{*}Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.

Bounded Online Interval-based Recognition*

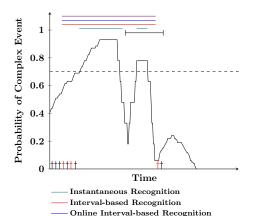


Complex event duration statistics favor more recent potential starting points.

- Instantaneous Recognition
- Interval-based Recognition
- **Online Interval-based Recognition**
- Bounded Online Interval-based Recognition

^{*}Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.

Bounded Online Interval-based Recognition*

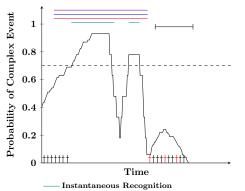


• Complex event duration statistics favor more recent potential starting points.

Bounded Online Interval-based Recognition

^{*}Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.

Bounded Online Interval-based Recognition*

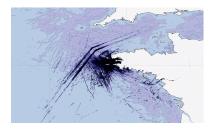


- Interval-based Recognition
- Online Interval-based Recognition
- Bounded Online Interval-based Recognition

- Complex event duration statistics favor more recent potential starting points.
- Comparable accuracy to batch reasoning.

^{*}Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.

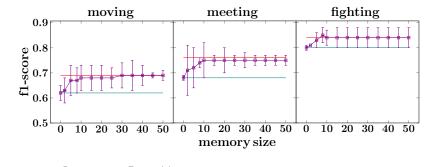
Experimental Setup



- Human Activity Recognition:
 - Input: manually annotated simple activities on individual video frames.
 - Output: maximal intervals of complex activities.
- Maritime Situational Awareness:
 - Input: vessel position signals from the area of Brest, France.
 - Output: maximal intervals of complex vessel activities.
- https://github.com/Periklismant/oPIEC

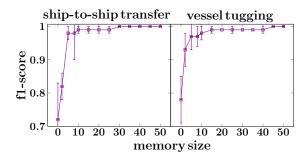
Experimental Results: Human Activity Recognition

Comparison against ground truth



Experimental Results: Maritime Situational Awareness

Performance of bounded online recognition against batch recognition



Summary:

- Online reasoning over noisy streams.
- Optimal history compression for correct interval computation.
- Reproducible evaluation on benchmark, real data.

Summary:

- Online reasoning over noisy streams.
- Optimal history compression for correct interval computation.
- Reproducible evaluation on benchmark, real data.

Topics not covered:

• Uncertainty in the event patterns*.

^{*}Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015.

Summary:

- Online reasoning over noisy streams.
- Optimal history compression for correct interval computation.
- Reproducible evaluation on benchmark, real data.

Topics not covered:

- Uncertainty in the event patterns*.
- Automated construction of event patterns[†].

^{*}Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015.

[†]Katzouris et al, Online Learning Probabilistic Event Calculus Theories in ASP. TPLP, 2022.

Summary:

- Online reasoning over noisy streams.
- Optimal history compression for correct interval computation.
- Reproducible evaluation on benchmark, real data.

Topics not covered:

- Uncertainty in the event patterns*.
- Automated construction of event patterns[†].
- Semi-supervised ML[‡].

^{*}Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015.

[†]Katzouris et al, Online Learning Probabilistic Event Calculus Theories in ASP. TPLP, 2022.

[‡]Michelioudakis et al, Semi-Supervised Online Structure Learning for CER. Machine Learning, 2019.

Summary:

- Online reasoning over noisy streams.
- Optimal history compression for correct interval computation.
- Reproducible evaluation on benchmark, real data.

Topics not covered:

- Uncertainty in the event patterns*.
- Automated construction of event patterns[†].
- Semi-supervised ML[‡].
- Complex Event Forecasting[§].

^{*}Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015. +

 $^{^\}dagger$ Katzouris et al, Online Learning Probabilistic Event Calculus Theories in ASP. TPLP, 2022.

[‡]Michelioudakis et al, Semi-Supervised Online Structure Learning for CER. Machine Learning, 2019.

[§]Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022.

Summary:

- Online reasoning over noisy streams.
- Optimal history compression for correct interval computation.
- Reproducible evaluation on benchmark, real data.

Topics not covered:

- Uncertainty in the event patterns*.
- Automated construction of event patterns[†].
- Semi-supervised ML[‡].
- Complex Event Forecasting[§].

https://cer.iit.demokritos.gr

^{*}Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015.

[†]Katzouris et al, Online Learning Probabilistic Event Calculus Theories in ASP. TPLP, 2022.

[‡]Michelioudakis et al, Semi-Supervised Online Structure Learning for CER. Machine Learning, 2019.

[§]Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022.

Appendix

Comparison of Prob-EC implementations

	Number of Events	250	500	1000	2000
Reasoning Time	ProbLog2	19 sec	50 sec	1.75 min	4 min
	PITA	3 sec	6 sec	20 sec	Killed at 40 sec
Memory Usage	ProbLog2	40 KB	50 KB	80 KB	90 KB
	PITA	200 KB	700 KB	2 GB	Killed at 3.8 GB

Experimental Results

oPIEC^b_{st} Execution Times in Maritime Situational Awareness

