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Human Activity Recognition
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Event Calculus∗

• A logic programming language for representing and reasoning
about events and their effects.
• Key components:

• event (typically instantaneous).
• fluent: a property that may have different values at different

points in time.

• Built-in representation of inertia:
• F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

∗
Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.
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Online Probabilistic Interval-Based Event Calculus

Prob-EC =
Event Calculus
+ ProbLog
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Online Probabilistic Interval-Based Event Calculus

Prob-EC =
Event Calculus
+ ProbLog

Event Calculus Axioms

holdsAt(F = V ,T ) ←
initially(F = V ),
not broken(F = V , 0 ,T ).

holdsAt(F = V ,T ) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T ).

...
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Instantaneous Recognition
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initiatedAt(moving(P1 ,P2 ) = true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 ) = true, T ),
holdsAt(similarOrientation(P1 ,P2 ) = true, T ).

terminatedAt(moving(P1 ,P2 ) = true, T )←
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∗
Skarlatidis et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic

Programming, 2015.
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Higher accuracy than crisp
reasoning in the presence of:

• several initiations and
terminations;

• few probabilistic conjuncts.

∗
Skarlatidis et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic
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Instantaneous vs Interval-based Recognition
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• Interval Probability: average
probability of the
time-points it contains.

• Probabilistic Maximal
Interval:
• interval probability above

a given threshold;
• no super-interval with

probability above the
threshold.

• Probabilistic maximal
interval computation via
maximal non-negative sum
interval computation.
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Interval-based Recognition∗

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

Complexity

The computation of probabilistic maximal intervals is linear to the
dataset size.

∗
Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics

and Artificial Intelligence, 2020.
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Online Interval-based Recognition
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• Windowing.
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Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future
probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval
given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the
window and memory size.
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Bounded Online Interval-based Recognition∗
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• Complex event duration
statistics favor more recent
potential starting points.

∗
Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.
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Online Interval-based Recognition

Bounded Online Interval-based Recognition

• Complex event duration
statistics favor more recent
potential starting points.

• Comparable accuracy to
batch reasoning.

∗
Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.
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Experimental Setup

• Human Activity Recognition:
• Input: manually annotated simple activities on individual video

frames.
• Output: maximal intervals of complex activities.

• Maritime Situational Awareness:
• Input: vessel position signals from the area of Brest, France.
• Output: maximal intervals of complex vessel activities.

• https://github.com/Periklismant/oPIEC
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Experimental Results: Human Activity Recognition

Comparison against ground truth
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Experimental Results: Maritime Situational Awareness

Performance of bounded online recognition against batch
recognition
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Summary & Topics not Covered

Summary:

• Online reasoning over noisy streams.

• Optimal history compression for correct interval computation.

• Reproducible evaluation on benchmark, real data.

Topics not covered:

• Uncertainty in the event patternsSkarlatidis et al, Probabilistic Event Calculus for

Event Recognition. ACM Trans. Comput. Log., 2015..

• Automated construction of event patternsKatzouris et al, Online Learning

Probabilistic Event Calculus Theories in ASP. TPLP, 2022..

• Semi-supervised MLMichelioudakis et al, Semi-Supervised Online Structure Learning for

CER. Machine Learning, 2019..

• Complex Event ForecastingAlevizos et al, Complex Event Forecasting with Prediction

Suffix Trees. VLDB Journal, 2022..

https://cer.iit.demokritos.gr

16

https://cer.iit.demokritos.gr


Summary & Topics not Covered

Summary:

• Online reasoning over noisy streams.

• Optimal history compression for correct interval computation.

• Reproducible evaluation on benchmark, real data.

Topics not covered:

• Uncertainty in the event patterns∗.

• Automated construction of event patternsKatzouris et al, Online Learning

Probabilistic Event Calculus Theories in ASP. TPLP, 2022..

• Semi-supervised MLMichelioudakis et al, Semi-Supervised Online Structure Learning for

CER. Machine Learning, 2019..

• Complex Event ForecastingAlevizos et al, Complex Event Forecasting with Prediction

Suffix Trees. VLDB Journal, 2022..

https://cer.iit.demokritos.gr

∗
Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015. 16

https://cer.iit.demokritos.gr


Summary & Topics not Covered

Summary:

• Online reasoning over noisy streams.

• Optimal history compression for correct interval computation.

• Reproducible evaluation on benchmark, real data.

Topics not covered:

• Uncertainty in the event patterns∗.

• Automated construction of event patterns†.

• Semi-supervised MLMichelioudakis et al, Semi-Supervised Online Structure Learning for

CER. Machine Learning, 2019..

• Complex Event ForecastingAlevizos et al, Complex Event Forecasting with Prediction

Suffix Trees. VLDB Journal, 2022..

https://cer.iit.demokritos.gr

∗
Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015.

†
Katzouris et al, Online Learning Probabilistic Event Calculus Theories in ASP. TPLP, 2022.

16

https://cer.iit.demokritos.gr


Summary & Topics not Covered

Summary:

• Online reasoning over noisy streams.

• Optimal history compression for correct interval computation.

• Reproducible evaluation on benchmark, real data.

Topics not covered:

• Uncertainty in the event patterns∗.

• Automated construction of event patterns†.

• Semi-supervised ML‡.

• Complex Event ForecastingAlevizos et al, Complex Event Forecasting with Prediction

Suffix Trees. VLDB Journal, 2022..

https://cer.iit.demokritos.gr

∗
Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015.

†
Katzouris et al, Online Learning Probabilistic Event Calculus Theories in ASP. TPLP, 2022.

‡
Michelioudakis et al, Semi-Supervised Online Structure Learning for CER. Machine Learning, 2019.

16

https://cer.iit.demokritos.gr


Summary & Topics not Covered

Summary:

• Online reasoning over noisy streams.

• Optimal history compression for correct interval computation.

• Reproducible evaluation on benchmark, real data.

Topics not covered:

• Uncertainty in the event patterns∗.

• Automated construction of event patterns†.

• Semi-supervised ML‡.

• Complex Event Forecasting§.

https://cer.iit.demokritos.gr

∗
Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015.

†
Katzouris et al, Online Learning Probabilistic Event Calculus Theories in ASP. TPLP, 2022.

‡
Michelioudakis et al, Semi-Supervised Online Structure Learning for CER. Machine Learning, 2019.

§
Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022.

16

https://cer.iit.demokritos.gr


Summary & Topics not Covered

Summary:

• Online reasoning over noisy streams.

• Optimal history compression for correct interval computation.

• Reproducible evaluation on benchmark, real data.

Topics not covered:

• Uncertainty in the event patterns∗.

• Automated construction of event patterns†.

• Semi-supervised ML‡.

• Complex Event Forecasting§.

https://cer.iit.demokritos.gr

∗
Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM Trans. Comput. Log., 2015.

†
Katzouris et al, Online Learning Probabilistic Event Calculus Theories in ASP. TPLP, 2022.

‡
Michelioudakis et al, Semi-Supervised Online Structure Learning for CER. Machine Learning, 2019.

§
Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022.

16

https://cer.iit.demokritos.gr


Appendix

0



Comparison of Prob-EC implementations

Number of Events 250 500 1000 2000

Reasoning Time
ProbLog2 19 sec 50 sec 1.75 min 4 min

PITA 3 sec 6 sec 20 sec Killed at 40 sec

Memory Usage
ProbLog2 40 KB 50 KB 80 KB 90 KB

PITA 200 KB 700 KB 2 GB Killed at 3.8 GB
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