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Tutorial Resources

I Slides: https://cer.iit.demokritos.gr/blog/talks/maris25/

I Papers, code, datasets: http://cer.iit.demokritos.gr
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https://cer.iit.demokritos.gr/blog/talks/maris25/
http://cer.iit.demokritos.gr/software


Complex Event Recognition (CER)∗,†

RECOGNITION I

Complex
Event

Recognition
System

Complex Event
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. . .. . .

. . .. . .
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Complex Event Stream

. . . . . .

. . . . . .

https://rdcu.be/cNkQE

∗
Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

†
Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.
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Maritime Situational Awareness∗

http://www.marinetraffic.com

https://cer.iit.demokritos.gr (fishing vessel)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.
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Maritime Situational Awareness∗

https://cer.iit.demokritos.gr (tugging)

https://cer.iit.demokritos.gr (pilot boarding)

https://www.skylight.global (rendez-vous)

https://www.skylight.global (enter area)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.
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https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/
https://www.youtube.com/watch?v=xsATVZWcnaU&feature=emb_logo
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/
https://www.skylight.global/platform#events
https://www.skylight.global/platform#events


Data Challenges

I Velocity, Volume: Millions of position signals/day at European
scale.

I Variety: Position signals need to be combined with other data
streams
I Weather forecasts, sea currents, etc.

I ... and static information
I NATURA areas, shallow waters areas, coastlines, etc.

I Lack of Veracity: GPS manipulation, vessels reporting false
identity, communication gaps.

I Distribution: Vessels operating across the globe.
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Requirements

I Expressive representation
I to capture complex relationships between the events that

stream into the system.

I Efficient reasoning
I to support real-time decision-making in large-scale,

(geographically) distributed applications.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

I Reasoning under uncertainty
I to deal with various types of noise.

I Complex event forecasting
I to support proactive decision-making.

6 / 16



Requirements

I Expressive representation
I to capture complex relationships between the events that

stream into the system.

I Efficient reasoning
I to support real-time decision-making in large-scale,

(geographically) distributed applications.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

I Reasoning under uncertainty
I to deal with various types of noise.

I Complex event forecasting
I to support proactive decision-making.

6 / 16



Requirements

I Expressive representation
I to capture complex relationships between the events that

stream into the system.

I Efficient reasoning
I to support real-time decision-making in large-scale,

(geographically) distributed applications.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

I Reasoning under uncertainty
I to deal with various types of noise.

I Complex event forecasting
I to support proactive decision-making.

6 / 16



Requirements

I Expressive representation
I to capture complex relationships between the events that

stream into the system.

I Efficient reasoning
I to support real-time decision-making in large-scale,

(geographically) distributed applications.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

I Reasoning under uncertainty
I to deal with various types of noise.

I Complex event forecasting
I to support proactive decision-making.

6 / 16



Requirements

I Expressive representation
I to capture complex relationships between the events that

stream into the system.

I Efficient reasoning
I to support real-time decision-making in large-scale,

(geographically) distributed applications.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

I Reasoning under uncertainty
I to deal with various types of noise.

I Complex event forecasting
I to support proactive decision-making.

6 / 16



Course Structure

I Part I: Introduction to Complex Event Recognition (CER).

I Part II: A system meeting the CER requirements ...

I ... powered by Large Language/Reasoning Models
(LLMs/LRMs) — Part III.

I Part IV: Open issues & further research.

I Each of the first 3 parts is followed by tutorial questions (15’).

I The top-3 students will be announced at the end of the
course!
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Introduction to Complex Event Recognition
(CER)



Complex Event Recognition vs
DataBase Management Systems∗

Complex event recognition (CER) systems:

I Process data without storing them.

I Data are continuously updated.
I Data stream into the system in high velocity.
I Data streams are large (usually unbounded).

I No assumption can be made on data arrival order.
I Users install standing/continuous queries:

I Queries deployed once and executed continuously until
removed.

I Online reasoning.

I Latency requirements are very strict.

∗
Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing.

ACM Computing Surveys, 2012.
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Complex Event Recognition vs Deep Learning

We have Deep Learning and it seems to work. Can we go home?

CER:

I Formal semantics for trustworthy models.

I Explanation — why did we detect a complex event?
I Machine Learning is necessary. But:

I Complex events are rare.
I Supervision is scarce.

I More often than not, background knowledge is available —
let’s use it!
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Complex Event Recognition vs
Large Language/Reasoning Models

I LLMs/LRMs cannot be used (yet) for CER∗,†.

I But they may support it — see Part III of the course!

∗
Ishay and Lee, LLM+AL: Bridging Large Language Models and Action Languages for Complex Reasoning

About Actions. AAAI 2025.
†

Shojaee et al, The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models
via the Lens of Problem Complexity. https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf, 2025.

10 / 16

https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf


Complex Event Recognition vs
Large Language/Reasoning Models

I LLMs/LRMs cannot be used (yet) for CER∗,†.

I But they may support it — see Part III of the course!

∗
Ishay and Lee, LLM+AL: Bridging Large Language Models and Action Languages for Complex Reasoning

About Actions. AAAI 2025.
†

Shojaee et al, The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models
via the Lens of Problem Complexity. https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf, 2025.

10 / 16

https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf


A Simple Unifying Event Algebra

ce ::= se |
ce1 ; ce2 | Sequence
ce1 ∨ ce2 | Disjunction
ce∗ | Iteration
¬ ce | Negation
σθ(ce) | Selection
πm(ce) | Projection
[ce]T2

T1
Windowing (from T1 to T2)

I Sequence: Two events following each other in time.

I Disjunction: Either of two events occurring, regardless of
temporal relations.

I The combination of Sequence and Disjunction expresses
Conjunction (both events occurring).
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ce1 ∨ ce2 | Disjunction
ce∗ | Iteration
¬ ce | Negation
σθ(ce) | Selection
πm(ce) | Projection
[ce]T2

T1
Windowing (from T1 to T2)

I Iteration: An event occurring N times in sequence, where
N ≥ 0. This operation is similar to the Kleene star operation
in regular expressions, the difference being that Kleene star is
unbounded.
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Processing Model

Selection strategies filter the set of matched patterns.

I Assume the pattern α;β and the stream (α, 1), (α, 2), (β, 3).

I The multiple selection strategy produces (α, 1), (β, 3) and
(α, 2), (β, 3).

I The single selection strategy produces either (α, 1), (β, 3) or
(α, 2), (β, 3).

I The single selection strategy represents a family of strategies,
depending on the matches actually chosen among all possible
ones.
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Instantaneous vs Interval-based Reasoning∗,†

Consider:

I the pattern β; (α; γ)

I and the stream (α, 1), (β, 2), (γ, 3).

Does the stream match the pattern?

∗
Paschke, ECA-LP / ECA-RuleML: A Homogeneous Event-Condition-Action Logic Programming Language.

RuleML, 2006.
†

White et al, What is “Next” in Event Processing?, PODS, 2007.
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SASE∗: Example (1)

PATTERN SEQ(gapStart a, gapEnd b, speedChange c)
WHERE partition-contiguity

AND vesselId

AND c .velocity > 20

WITHIN 3600

Quickly moving away from an area of suspicious activity:

I After a communication gap, ...

I a vessel changes speed to over 20 knots.

I Partition contiguity ensures that a, b, c refer to the same
vessel (vesselId) and are contiguous with respect to that
vessel.

∗
Zhang et al. On complexity and optimization of expensive queries in complex event processing. SIGMOD

2014.
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SASE∗: Example (2)

PATTERN SEQ(lowSpeedStart a, turn + b, lowSpeedEnd c)
WHERE skip-till-next-match

AND vesselId

AND b[i ].heading−b[i−1 ].heading > 90

WITHIN 21600

Fishing pattern:

I A vessel slows down, ...

I begins a series of turns, where, for each pair of successive
turns, their difference in heading is more than 90 degrees, ...

I and subsequently the vessel stops moving at a low speed.

∗
Zhang et al. On complexity and optimization of expensive queries in complex event processing. SIGMOD

2014.
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Summary

What we’ve seen so far:
I Complex Event Recognition (CER) for Maritime Situational

Awareness.
I Related research.
I Event algebras for CER.

I Requirements:
I Expressive representation.
I Efficient reasoning.
I Automated knowledge construction.
I Reasoning under uncertainty.
I Complex event forecasting.

Next: A system addressing the CER requirements.
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