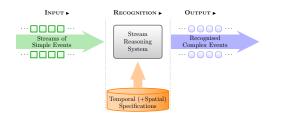
Stream Reasoning for Complex Event Recognition

Alexander Artikis


NCSR Demokritos University of Piraeus Athens, Greece

https://cer.iit.demokritos.gr

Complex Event Recognition (Event Pattern Matching)*,^{†,‡}

^{*}Giatrakos et al, Complex event recognition in the Big Data era: A survey, VLDB Journal, 2020.

[†]Artikis et al, Dagstuhl Seminar on the Foundations of Composite Event Recognition. SIGMOD Record, 2020.

[‡]Alevizos et al, Probabilistic Complex Event Recognition: A survey, ACM Computing Surveys, 2017.

Complex Event Recognition (Event Pattern Matching)*,^{†,‡}

^{*}Giatrakos et al, Complex event recognition in the Big Data era: A survey, VLDB Journal, 2020.

[†]Artikis et al, Dagstuhl Seminar on the Foundations of Composite Event Recognition. SIGMOD Record, 2020.

[‡]Alevizos et al, Probabilistic Complex Event Recognition: A survey, ACM Computing Surveys, 2017.

Event Calculus*

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.

^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

Event Calculus*

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.
- Built-in representation of inertia:
 - F = V holds at a particular time-point if F = V has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions] terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt $(F = V, T) \leftarrow$ happensAt $(E_{T_j}, T),$ [conditions]

where

. . .

conditions: $\begin{array}{ll} 0^{-K} happensAt(E_k, T), \\ 0^{-M} holdsAt(F_m = V_m, T), \\ 0^{-N} a temporal constraint_n \end{array}$

^{*}Artikis et al, An Event Calculus for Event Recognition. IEEE TKDE, 2015. https://github.com/aartikis/RTEC


initiatedAt(F = V, T) \leftarrow happensAt(E_{ln_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions]

. . .

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

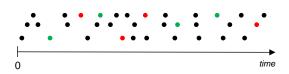
initiatedAt(F = V, T) \leftarrow happensAt(E_{ln_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions]

. . .

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]


initiatedAt(F = V, T) \leftarrow happensAt(E_{ln_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions]

. . .

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

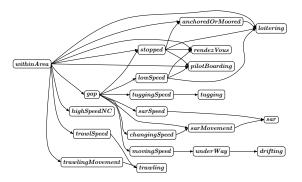
initiatedAt(F = V, T) \leftarrow happensAt(E_{In_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions] terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

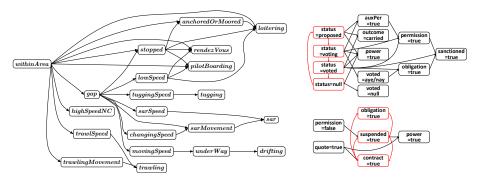
terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

. . .

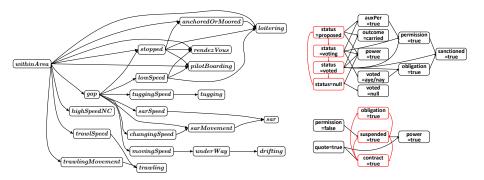
holdsFor(F = V, I)



Fleet Management



https://cer.iit.demokritos.gr (fleet management)


Semantics

Semantics

Semantics

Proposition

An event description in RTEC is a locally stratified logic program*.

^{*}Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.

Windowing.

Bottom-up caching for acyclic dependencies.

- Windowing.
- Bottom-up caching for acyclic dependencies.
- Time-based caching for cyclic dependencies*.

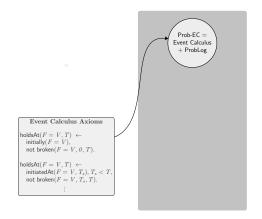

^{*}Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.

- Windowing.
- Bottom-up caching for acyclic dependencies.
- Time-based caching for cyclic dependencies*.
- Incremental reasoning for delayed events and event retractions[†].
 - Incremental maintenance of deductive databases.
 - Optimal rule rewriting.

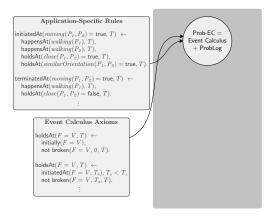
^{*}Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.

[†]Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

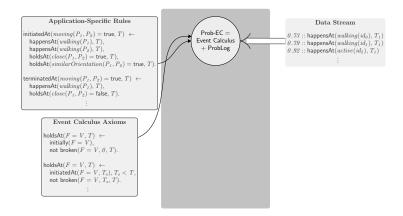
- Windowing.
- Bottom-up caching for acyclic dependencies.
- Time-based caching for cyclic dependencies*.
- Incremental reasoning for delayed events and event retractions[†].
 - Incremental maintenance of deductive databases.
 - Optimal rule rewriting.



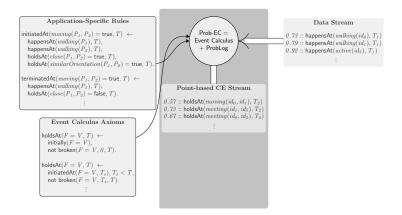
 ^{*}Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.
[†]Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.


^{*}Mantenoglou et al, Online Probabilistic Interval-based Event Calculus. European Conference on AI (ECAI), 2020. https://github.com/Periklismant/oPIEC

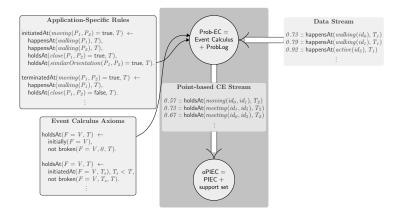
[†]Artikis et al, A Probabilistic Interval-Based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.


^{*}Mantenoglou et al, Online Probabilistic Interval-based Event Calculus. European Conference on AI (ECAI), 2020. https://github.com/Periklismant/oPIEC

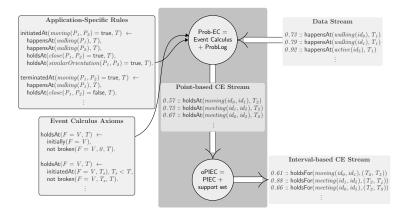
^TArtikis et al, A Probabilistic Interval-Based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.


^{*}Mantenoglou et al, Online Probabilistic Interval-based Event Calculus. European Conference on AI (ECAI), 2020. https://github.com/Periklismant/oPIEC

^TArtikis et al, A Probabilistic Interval-Based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.


^{*}Mantenoglou et al, Online Probabilistic Interval-based Event Calculus. European Conference on AI (ECAI), 2020. https://github.com/Periklismant/oPIEC

^TArtikis et al, A Probabilistic Interval-Based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.


^{*}Mantenoglou et al, Online Probabilistic Interval-based Event Calculus. European Conference on AI (ECAI), 2020. https://github.com/Periklismant/oPIEC

^TArtikis et al, A Probabilistic Interval-Based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

^{*}Mantenoglou et al, Online Probabilistic Interval-based Event Calculus. European Conference on AI (ECAI), 2020. https://github.com/Periklismant/oPIEC

^TArtikis et al, A Probabilistic Interval-Based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

^{*}Mantenoglou et al, Online Probabilistic Interval-based Event Calculus. European Conference on AI (ECAI), 2020. https://github.com/Periklismant/oPIEC

^TArtikis et al, A Probabilistic Interval-Based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

Machine Learning for Complex Event Recognition*,[†]

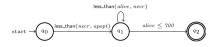
- Online structure and weight learning for Event Calculus programs.
- Non-monotonic ILP over established ASP tools.
- First-order logic graph-cut minimisation for supervision completion.
- Approximation of globally-optimal solutions from locally-optimal ones.

^{*}Katzouris et al, Online Learning Probabilistic Event Calculus Theories in Answer Set Programming. Theory and Practice of Logic Programming, 2022. https://github.com/nkatzz/ORL

[†]Michelioudakis et al, Semi-Supervised Online Structure Learning for Composite Event Recognition. Machine Learning, 2019.

Machine Learning for Complex Event Recognition*,[†]

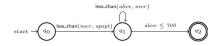
- Online structure and weight learning for Event Calculus programs.
- Non-monotonic ILP over established ASP tools.
- First-order logic graph-cut minimisation for supervision completion.
- Approximation of globally-optimal solutions from locally-optimal ones.


https://cer.iit.demokritos.gr (activity recognition)

^{*}Katzouris et al, Online Learning Probabilistic Event Calculus Theories in Answer Set Programming. Theory and Practice of Logic Programming, 2022. https://github.com/nkatzz/ORL

[†]Michelioudakis et al, Semi-Supervised Online Structure Learning for Composite Event Recognition. Machine Learning, 2019.

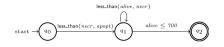
Complex Event Forecasting*


- Forecast the occurrence of a complex event.
- Symbolic automata for complex event patterns
 - Closure properties.
 - Formal compositional semantics.

^{*}Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022. https://github.com/ElAlev/Wayeb

Complex Event Forecasting*

- Forecast the occurrence of a complex event.
- Symbolic automata for complex event patterns
 - Closure properties.
 - Formal compositional semantics.



- Prediction suffix trees for long-term dependencies
 - Higher accuracy.
 - Comparable training time and acceptable throughput.

^{*}Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022. https://github.com/ElAlev/Wayeb

Complex Event Forecasting*

- Forecast the occurrence of a complex event.
- Symbolic automata for complex event patterns
 - Closure properties.
 - Formal compositional semantics.

- Prediction suffix trees for long-term dependencies
 - Higher accuracy.
 - Comparable training time and acceptable throughput.

- Symbolic Register Automata:
 - Symbolic automata with 'memory'.
 - Express *n*-ary relations between events.

https://cer.iit.demokritos.gr (maritime-forecasting)

^{*}Alevizos et al, Complex Event Forecasting with Prediction Suffix Trees. VLDB Journal, 2022. https://github.com/ElAlev/Wayeb

Funding & Further Work

Reasoning over Web-scale, inconsistent knowledge graphs*. Use cases: business software services; geospatial intelligence;

data-driven brand communication.

^{*}ENEXA: Efficient Explainable Learning on Knowledge Graphs. Topic: HORIZON-CL4-2021-HUMAN-01-01.

Funding & Further Work

Reasoning over Web-scale, inconsistent knowledge graphs*. Use cases: business software services; geospatial intelligence; data-driven brand communication.

Robust neuro-symbolic learning for complex event forecasting[†]. Use cases: oncological forecasting in precision medicine; autonomous robot navigation in smart factories; life cycle assessment of critical infrastructure.

^{*}ENEXA: Efficient Explainable Learning on Knowledge Graphs. Topic: HORIZON-CL4-2021-HUMAN-01-01.

^TEVENFLOW: Robust Learning and Reasoning for Complex Event Forecasting. Topic: HORIZON-CL4-2021-HUMAN-01-01.

Funding & Further Work

Reasoning over Web-scale, inconsistent knowledge graphs*. Use cases: business software services; geospatial intelligence; data-driven brand communication.

Robust neuro-symbolic learning for complex event forecasting[†]. Use cases: oncological forecasting in precision medicine; autonomous robot navigation in smart factories; life cycle assessment of critical infrastructure.

Multi-resolution complex event forecasting[‡].

Use cases: hazardous maritime situation forecasting; weather emergency management; pandemic management.

[†]EVENFLOW: Robust Learning and Reasoning for Complex Event Forecasting. Topic: HORIZON-CL4-2021-HUMAN-01-01.

^{*}ENEXA: Efficient Explainable Learning on Knowledge Graphs. Topic: HORIZON-CL4-2021-HUMAN-01-01.

[‡]CREXDATA: Critical Action Planning over Extreme-Scale Data. Topic: HORIZON-CL4-2022-DATA-01-01.