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1 - Communities in graphs by Clique
Percolation Method (CPM)



> Definition — Graph

Graph formalism

Examples
e Vertices: a, b, ...,g Contacts between people, link between

{a, b}, {a,c}, ...
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> Communities in graphs

Communities: sets of vertices

e Densely connected inside

e Sparsly connected outside

AT

Palla et al. 2005
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> Communities in graphs

Communities: sets of vertices
e Densely connected inside

e Sparsly connected outside

Interest:
e Locate areas of high interaction
density

e Understanding the organizational
structure of interactions

Palla et al. 2005
e Zoom in / out
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> Clique Percolation Method in graphs (CPM)

k-clique
Set of k nodes all connected
to each other.
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> Clique Percolation Method in graphs (CPM)

k-clique
Set of k nodes all connected
to each other.

Grouping rule
Two k-cliques are adjacent if they share kK — 1 nodes.
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> Clique Percolation Method in graphs (CPM)

k-clique
Set of k nodes all connected
to each other.

Grouping rule
Two k-cliques are adjacent if they share kK — 1 nodes.

Advantages of this definition of communities:
e Local definition
e Deterministic

e Communities can overlap
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2 - Temporal communities in link
streams (LSCPM)




> Definition — Link stream
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Link stream formalism

e Vertices: a, b, ..., g

e Time period: [0, 18]

e Interactions: temporal edges
e c,d linked over [1,13]
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> Definition — Link stream
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Link stream formalism

e Vertices: a, b,...,g
e Time period: [0, 18]
e Interactions: temporal edges

e c,d linked over [1,13]
e d,f linked over [4,9]

A. BAUDIN®, L. TABO R . 3 LSCPM: finding communities in link streams



tion — Link stream
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Link stream formalism

e Vertices: a, b,...,g

e Time period: [0, 18]
e Interactions: temporal edges

e c,d linked over [1,13]
e d,f linked over [4,9]
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> Definition — Link stream
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Link stream formalism

e Vertices: a,b,...,g Advantages
e Time period: [0, 18] e deals directly with the stream of
e Interactions: temporal edges interactions
e c,d linked over [1,13] e no arbitrary choice of time scale
O 7 i) ovear | €] e time is continuous
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> First extension of CPM to Temporal Graphs (DCPM)

CPM first extended to temporal graphs by Palla et al. (2007)
= CPM communities that evolve from one time step to the next

Example with k = 3:
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> First extension of CPM to Temporal Graphs (DCPM)

CPM first extended to temporal graphs by Palla et al. (2007)
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> First extension of CPM to Temporal Graphs (DCPM)

CPM first extended to temporal graphs by Palla et al. (2007)

= CPM communities that evolve from one time step to the next

Example with k = 3:
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> First extension of CPM to Temporal Graphs (DCPM)

Dynamic CPM communities (DCPM):
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Limits of DCPM algorithm:
e Computing communities at each time step: time consuming;

e Some temporal data expected to be grouped are not.
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> First extension of CPM to Temporal Graphs (DCPM)

Dynamic CPM communities (DCPM):
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Limits of DCPM algorithm:
e Computing communities at each time step: time consuming;

e Some temporal data expected to be grouped are not.
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> First extension of CPM to Temporal Graphs (DCPM)

Dynamic CPM communities (DCPM):
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Limits of DCPM algorithm:
e Computing communities at each time step: time consuming;

e Some temporal data expected to be grouped are not.
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> Our algorithm: CPM in link streams (LSCPM)
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Example with k = 3.

A. BAUDIN®, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams
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> Our algorithm: CPM in link streams (LSCPM)
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Example with k = 3.

Grouping rule

k-cliques adjacent: they share k — 1 nodes over a time interval.
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Example with k = 3.

Grouping rule

k-cliques adjacent: they share k — 1 nodes over a time interval.
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> Our algorithm: CPM in link streams (LSCPM)
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Example with k = 3.

Grouping rule
k-cliques adjacent: they share k — 1 nodes over a time interval.
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> Our algorithm: CPM in link streams (LSCPM)
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Example with k = 3.

Grouping rule
k-cliques adjacent: they share k — 1 nodes over a time interval.

Comparing to DCPM (state of the art):
e No need to compute communities at each time step

e All temporal cliques are grouped
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> Our algorithm: CPM in link streams (LSCPM)
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> Our algorithm: CPM in link streams (LSCPM)
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S sapw 0 EEa each other during a time

PR s S B/ S R .

01 3 3 4 5 6 7 8 9 101112 31415 16 17 tme interval [tO, tl]-

Example with k = 3.

Grouping rule

k-cliques adjacent: they share k — 1 nodes over a time interval.

Comparing to DCPM (state of the art):
e No need to compute communities at each time step

e All temporal cliques are grouped

’—> LSCPM communities are of DCPM communities
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3 - Experiments on real datasets




> An algorithm efficicent and consistent

Efficiency — computation times

Link stream # links
Households 2,136
Highschool 5,528

Infectious 44 658
Foursquare 268,472
Wikipedia 39,953,380
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> An algorithm efficicent and consistent

Efficiency — computation times

k=3 k=4
Link stream # links | DCPM LSCPM | DCPM LSCPM
Households 2,136 1.5s 0.1s 1.0s 0.1s
Highschool 5,528 3.6s 0.1s 1.9s 0.1s
Infectious 44,658 |10min49s 1.4s 6minl2s 3.3s
Foursquare 268,472 | 3h01lmin 9.2s  |2h28min 43s
Wikipedia 39,953,380 - 13min44s - 15min29s
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> An algorithm efficicent and consistent

Efficiency — computation times

k=3 k=4
Link stream # links | DCPM LSCPM | DCPM LSCPM
Households 2,136 1.5s 0.1s 1.0s 0.1s
Highschool 5,528 3.6s 0.1s 1.9s 0.1s

Infectious 44,658 |10min49s 1.4s 6minl2s 3.3s
Foursquare 268,472 | 3h01lmin 9.2s  |2h28min 43s
Wikipedia 39,953,380 - 13min44s - 15min29s

Consistency with metadata
Highschool: 70% of communities are within one class, 23% within
two classes, 6% within three classes, 1% within four classes.
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> Example of a LSCPM community

A highschool LSCPM community

! =
e e— S
— —

Students

8h30 9h 9h30 10h 10h30
Time
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> LSCPM communities are union of DCPM communities

A highschool LSCPM community

A Fnm

Students

8h30 oh 9h30 10h  10h30
Time

Colors = DCPM communities.

— Aggregates more information over time.
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> Insights on metadata

A highschool LSCPM community
| ——

Students

8h30 oh 9h30 10h  10h30
Time

Colors = classes.

— Interpretation with metadata.
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4 - Conclusion

— Contributions
e New definition of k-clique in link streams;
e New algorithm for k-clique enumeration;

e = apply clique percolation to get temporal communities.
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4 - Conclusion

— Contributions
e New definition of k-clique in link streams;
e New algorithm for k-clique enumeration;

e = apply clique percolation to get temporal communities.

— Communities obtained VS state of the art

e Faster computed;

o Better aggregated in time.

A. BAUDIN®, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams



LSCPM: finding communities in link streams

Thanks for your attention! Any questions?

Code available at:
https://gitlab.lip6.fr/baudin/lscpm

Alexis Baudin — alexis.baudin@lip6.fr
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