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Introduction

Many real world phenomena can be seen as sequence of

events such as:

• Monitoring vital signs of a patient (healthcare).

• System log (operating system).

• Monitoring of industrial processes.

Commonly those phenomena have a normal behavior and

an abnormal one.

The ability to identify behavioral change can enable early

intervention before a critical scenario occurs.
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Alarms

• The problem we want to address is to extract

knowledge from a sequence of events.

• We will focus on binary events such as alarms.

• The goal of this work is to identify the beginning of

alarm cascades (Rapid sequence of events)

• The method we proposed is based on Continuous

Time Bayesian Network
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Outline

• Continuous Time Markov Process

• Continuous Time Bayesian Network

• Sentry State

• Synthetic Experiments
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Continuous Time Markov Process



Formal Description

A Continuous Time Markov Process (CTMP)1 is a continuous time stochastic

process:

X “ tX pti q : ti P r0,8q , ti´1 ă tiu

which satisfies the Markov Property:

X pt1q KK X pt3q|X pt2q,@t1 ă t2 ă t3

The state of a CTMP changes in continuous time and can take value over a discrete

set or domain x P ValpX q.

1C. R. Shelton and G. Ciardo, “Tutorial on structured continuous-time markov
processes,” Journal of Artificial Intelligence Research, vol. 51, pp. 725–778, 2014.
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Trajectory

A realization of the CTMP is a trajectory;

a right-continuous piece-wise constant

function over time that can be represented

as a sequence of time-indexed events:

σ “ txt0,X pt0qy, xt1,X pt1qy, ..., xtI ,X ptI qyu, t0 ă t1 ă ¨ ¨ ¨ ă tI

5/26



Parameters

A CTMP can be parameterized as follows:

• An initial distribution PpX p0qq. It describes the process at time t “ 0

• An intensity matrix QX . It models the evolution of X through time

QX “

»

—

–

´q1 q12 q13

q21 ´q2 q23

q31 q32 ´q3

fi

ffi

fl

qi ą 0, qij ě 0 @ i , j

Each row of QX sums up to 0 and models two processes:

• An exponential distribution with parameter qi P R`

• A multinomial distribution with parameters θij “
qij
qi

6/26



Parameters

A CTMP can be parameterized as follows:

• An initial distribution PpX p0qq. It describes the process at time t “ 0

• An intensity matrix QX . It models the evolution of X through time

QX “

»

—

–

´q1 q12 q13

q21 ´q2 q23

q31 q32 ´q3

fi

ffi

fl

qi ą 0, qij ě 0 @ i , j

Each row of QX sums up to 0 and models two processes:

• An exponential distribution with parameter qi P R`

• A multinomial distribution with parameters θij “
qij
qi

6/26



Parameters

A CTMP can be parameterized as follows:

• An initial distribution PpX p0qq. It describes the process at time t “ 0

• An intensity matrix QX . It models the evolution of X through time

QX “

»

—

–

´q1 q12 q13

q21 ´q2 q23

q31 q32 ´q3

fi

ffi

fl

qi ą 0, qij ě 0 @ i , j

Each row of QX sums up to 0 and models two processes:

• An exponential distribution with parameter qi P R`

• A multinomial distribution with parameters θij “
qij
qi

6/26



Parameters

A CTMP can be parameterized as follows:

• An initial distribution PpX p0qq. It describes the process at time t “ 0

• An intensity matrix QX . It models the evolution of X through time

QX “

»

—

–

´q1 q12 q13

q21 ´q2 q23

q31 q32 ´q3

fi

ffi

fl

qi ą 0, qij ě 0 @ i , j

Each row of QX sums up to 0 and models two processes:

• An exponential distribution with parameter qi P R`

• A multinomial distribution with parameters θij “
qij
qi

6/26



Parameters

A CTMP can be parameterized as follows:

• An initial distribution PpX p0qq. It describes the process at time t “ 0

• An intensity matrix QX . It models the evolution of X through time

QX “

»

—

–

´q1 q12 q13

q21 ´q2 q23

q31 q32 ´q3

fi

ffi

fl

qi ą 0, qij ě 0 @ i , j

Each row of QX sums up to 0 and models two processes:

• An exponential distribution with parameter qi P R`

• A multinomial distribution with parameters θij “
qij
qi

6/26



Parameters

A CTMP can be parameterized as follows:

• An initial distribution PpX p0qq. It describes the process at time t “ 0

• An intensity matrix QX . It models the evolution of X through time

QX “

»

—

–

´q1 q12 q13

q21 ´q2 q23

q31 q32 ´q3

fi

ffi

fl

qi ą 0, qij ě 0 @ i , j

Each row of QX sums up to 0 and models two processes:

• An exponential distribution with parameter qi P R`

• A multinomial distribution with parameters θij “
qij
qi

6/26



Parameters

A CTMP can be parameterized as follows:

• An initial distribution PpX p0qq. It describes the process at time t “ 0

• An intensity matrix QX . It models the evolution of X through time

QX “

»

—

–

´q1 q12 q13

q21 ´q2 q23

q31 q32 ´q3

fi

ffi

fl

qi ą 0, qij ě 0 @ i , j

Each row of QX sums up to 0 and models two processes:

• An exponential distribution with parameter qi P R`

• A multinomial distribution with parameters θij “
qij
qi

6/26



Parameter Learning - Maximum Likelihood Approach

The parameters can be estimated with the Maximum Likelihood Approach as follows:

q̂i ,j “
N ri , js

T ris
, q̂i “

ÿ

i‰j

N ri , js

T ris

where N and T are the two sufficient statistics:

• N ri , js: number of transitions from state i to state j .

• T ris: time spent in state i
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Continuous Time Bayesian Network



Formal Description

A Continuous Time Bayesian Network (CTBN)2 is an extension of CTMP capable of

dealing with a factored state space:

N “ xP0,X,G,QXy

• An initial distribution P0.

• A set of L variables X “ tX1,X2, . . . ,XLu

• Each varible Xi P X changes in continuous time and can take value over a discrete

set or domain x P ValpXi q.

• ValpXq “ ValpX1q ˆ ValpX2q ˆ ¨ ¨ ¨ ˆ ValpXLq

• A directed, possibly cyclic, graph G.
• A set of Conditional Intensity Matrices (CIM) QX.

2U. D. Nodelman, “Continuous time bayesian networks,” Ph.D. dissertation,

Stanford University, 2007.
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CTBN - Example

Dependency Graph State space graph Trajectory

A B C

A=0,B=0,C=0

A=0,B=0,C=1 A=0,B=1,C=0 A=1,B=0,C=0

A=0,B=1,C=1 A=1,B=0,C=1 A=1,B=1,C=0

A=1,B=1,C=1

t
A
B
C

It represents the structure of

the network with 3 nodes

(G).

It describes the state space

and all the possible

transitions from one state to

another (Gs).

It is an example of trajectory

for the network; the white

spaces indicate a variable in

state 0 and coloured spaces

indicate a variable in state 1.
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Parameter Learning - Maximum Likelihood Approach

The parameters for a variable Xk P X with a specific configuration of the parent-set u

can be estimated with the Maximum Likelihood Approach as follows:

q̂i ,j |u “
N ri , j |us

T ri |us
, q̂i |u “

ÿ

i‰j

N ri , j |us

T ri |us

where N and T are the two sufficient statistics:

• N ri , j |us: number of transitions from state i to state j given the parent-set.

• T ri |us: time spent in state i given the parent-set.

10/26



Structure Learning

There are two main approaches to learn the structure of a CTBN:

• Score Based Approach: a Bayesian score is used to evaluate and compare

different candidate structures, a search algorithm is used to find the structure that

achieves the highest score3.

• Constraint Based Approach: a set of hypothesis is formulated and specific tests

are applied to assess the independence between variables, then an algorithm is

developed to efficiently apply Hypothesis Testing4.
3U. D. Nodelman, “Continuous time bayesian networks,” Ph.D. dissertation,

Stanford University, 2007.
4A. Bregoli, M. Scutari, and F. Stella, “A constraint-based algorithm for the
structural learning of continuous-time bayesian networks,” International Journal of

Approximate Reasoning, vol. 138, pp. 105–122, 2021.
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Reward Function

A reward function is a function that maps values of one or more variables onto a real

number. Such a function can be introduced for both CTMPs and CTBNs. Intuitively,

the reward function represents two quantities:

• Rpxq : ValpXq Ñ R; the instantaneous reward of state x

• Cpx , x 1q : ValpXq ˆ ValpXq Ñ R; the lump sum reward when X transitions from

state x to state x 1.

It is possible to adapt the reward function for evaluating the evolution of the process.

Specifically, we use the lump sum reward function as an indicator of transitions:

Cpx , x 1q “

$

&

%

1 if x ‰ x 1

0 otherwise
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Reward Evaluation

Two options are available for computing the expected reward:

• finite-horizon expected reward:

VtI pxq “ E

«

I´1
ÿ

i“0

C pXpti q,Xpti`1qq `

ż ti`1

ti

RpXpti qqdt

ff

• infinite-horizon expected discounted reward:

Vαpxq “ E

«

8
ÿ

i“0

e´αtiXpX pti q,Xpti`1qq `

ż ti`1

ti

e´αtRpXpti qqdt

ff
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Sentry State



Description

We informally defined a sentry state as a state of

the CTBN which triggers a ripple effect , i.e., it

triggers a fast sequence of events to occur due to

fast and subsequent state changes.

• This informal definition does not allow us to

classify a state as sentry state.

• The best we can do with this definition is to

order the states from the most likely sentry

state to the less likely sentry state.

t
A
B
C
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Cascade identification - Naive Approach

A cascade of events is a fast sequence of transitions, where fast is relative to the

rest of the transitions observed.

Cascade identification can be carried out with the following naive approach:

• Identify λft : determines when a transition is considered fast.

• Identify λmcl : the minimum cascade length determines the minimum number of

successive fast events to be considered a cascade.

• Identifying in the trajectory subsets of consecutive transitions with length at least

λmcl and with a transition time between each pair of consecutive events of less

than λft .
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Sentry State - Naive Approach

The cascade identification can also be used to recognize sentry state.

Once a cascade of events has been identified, the sentry state is the state from which

the cascade begins.

To order the states from the most probable sentry state to the least probable sentry

state, two quantities were defined:

• Naive Count: the number of times a state starts a cascade.

• Naive Score: the fraction of times that observing a specific state coincides with

the start of a cascade.

The main limitation of this approach is the difficulty of identifying the correct

parameters as it requires knowing in advance common durations and sizes of event

cascades.
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Expected Discounted Number of Transitions

• Our goal consists in identifying a sentry state overcoming the limitations of the

naive approach.

• Starting from the informal definition in the previous slide we want to define a

heuristic to discover sentry states.

• The simplest heuristic is the Expected Discounted Number of Transitions

estimated for each state.

EDNTαpxq “ E

«

8
ÿ

i“0

e´αtiC pXpti q,Xpti`1qq

ff
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Relative Expected Discounted Number of Transitions

• The EDNT is capable of identifying states with a high number of expected

transitions.

• However, the EDNT is not capable of identifying a sentry state.

• For this reason we introduced the Relative Expected Discounted Number of

Transitions REDNT capable of taking into account the number of transitions for

the neighborhood of a state.

REDNTαpxq “ max
x 1PNeGs pxq

EDNTαpxq

EDNTαpx 1q
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Synthetic experiments



Introduction

• In this section we present some synthetic experiments.

• Each experiment contains one sentry state.

• We distinguish between slow nodes and fast nodes.

• We will take into account only the most likely sentry

state identified by REDNT.
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Comparison between Naive approach and REDNT: Jaccard similarity

• Since the experiments are synthetic,

the parameters λft and λmcl were

easily identified.

• We used the Naive Score to order the

states for the naive approach.

• We compared the Naive Score with

the REDNT.

• We used the Jaccard similarity to

compare the two approaches.
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Conclusions

The REDNT is capable of finding sentry states in all the synthetic examples.

Pros

• Simple implementation

• Interaction with expert knowledge

• Easier hyper-parameter selection

(compared the the naive approach)

Cons

• It requires us to explore the entire

state space

• Hyper-parameter tuning

• Difficult to identify Sentry states with

a small change in speed.
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Future work

The proposed approach can be extended in many ways:

• Identify the subset of nodes that causes the ripple effect in a sentry state.

• Define new metrics that do not require us to explore the entire state space.
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