Optimization of Nonsequenced
Queries using
Log-Segmented Timestamps

Curtis Dyreson
Utah State University, Logan, Utah, USA

AU UtahState
1TiR~_University

Outline

* Timestamp representation

* Application to nonsequenced queries
» Evaluation

» Conclusion

Timestamp Representation

* An interval/period timestamp

* Intervals are
= [0, 3]
= [5,8]
» Features
= Just start and stop times
= Minimal information, smallest in terms of storage
= What is an alternative and why would anyone do it differently?

Temporal Grouping and Aggregation

» Temporal data about football players

players
’ player | team | time ‘
Wilson | ManU | [0-5] 1 2 1

Arnhelm | ManU | [3-8]

* How many players on each team at the same time?
= Groups vary over time
= Player belongs to potentially n*2 groups
= Special aggregation techniques for temporal aggregation

Sequenced Aggregation in Map/Reduce

* Interval representation is bad in Map/Reduce

Input Split Map Phase Shuffle and Reduce
Sort Phase

A1l —— A1
B, 1

ABR R1 Al
B, 1
G1
ABR G0 B, 1
cCcRr CCR

R1

ACB
G1
(51t
, (e
ACB : R, 1

* Need a new kind of timestamp

* Curtis E. Dyreson: Using CouchDB to Compute Temporal
Aggregates. HPCC/SmartCity/DSS 2016: 1131-1138

2 me>
Now R

= Mol
o

Log-segmented Timestamp

* Problem: can’t shard intervals
* Introduce log-segmented timestamp
» Partition timeline into pre-defined segments

o — L

VN VN VN N
ANV ANV ALV AN VAR VAL VACIVA
I N N N [D D N D [D [N D e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Log-segmented Example

@ =
_— Q@
LN NS O N

0 1 0 1 1] 1 0 10 1 0 1 0 1 0 1
ASNANIVANSVANNASIVANRVASS/AS
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Log-segmented label for period [8, 9] is 1100

Log Segmented Example

N OANENIVAN LN

0 o AL 0 AQ o 0N 0 A1 0 0
A AN AASNTAST AN
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Log-segmented label for period [5, 5] is 10101

Convert Periods to Segments

- Period [2-8] is {1001, 101, 11000}

e

[

0 1 0 1 0 1 0 1
N 0N N N
S S SASIANIANIVAN
0 1 2 3 4 5 6 7 T 9 10 1 12 13 14 15

+ Compact — 2log,(n) segments can represent any period

Log-segmented Sequenced Semantics

» Sequenced semantics for relational DBs
* Curtis E. Dyreson, M. A. Manazir Ahsan: Achieving a

Sequenced, Relational Query Language with Log-
Segmented Timestamps. TIME 2021: 14:1-14:13

Outline

+ Timestamp representation

» Application to nonsequenced queries
» Evaluation

» Conclusion

Fabio Grandi E-mail

« Fabio: Interesting idea, but what about log-segmented for
nonsequenced queries, after all, nonsequenced is more
important than sequenced

* Me: Yes, nonsequenced is important, but log-segmented
timestamps don’t improve nonsequenced

Nonsequenced Semantics

* Most common temporal extension of a query

language

* Nonsequenced: query has explicit temporal predicates

and constructors

* Benefit
= Temporal can be added to any DBMS
= Layer, no DBMS modification

Example Nonsequenced Join

SELECT s.dept, OVERLAPS(r, s)
FROM tesco s, walmart r
WHERE r OVERLAPS s

Data Time Metadata Data Time Metadata

Dept “ Start ‘ Stop Dept H Start ‘ Stop

Shoe [[1 | 5 Shoe ‘ 2 ‘ 3
Shoe 5 6

(a) Relation Tesco (b) Relation Walmart
Data Time Metadata
Dept || Start | Stop
Shoe 2 3
Shoe 5 5

(c) Result of the nonsequenced evaluation of the query in Figure 1.

System Architecture

Temporal SQL Query

Temporal to Nontemporal
Translation Layer

SQL Query

l

Relational Database

Management System

Example Nonsequenced Join

SELECT s.dept,
GREATEST (r.time.start, s.time.start) AS start,
LEAST (r.time.stop, s.time.stop) as stop
FROM tesco s, walmart r
WHERE ((r.start <= s.start AND s.start <= r.stop)
OR (s.start <= r.start AND r.start <= s.stop))

Data Time Metadata Data Time Metadata

Dept “ Start ‘ Stop Dept H Start ‘ Stop

Shoe [[1 | 5 Shoe ‘ 2 ‘ 3
Shoe 5 6

(a) Relation Tesco (b) Relation Walmart

Data Time Metadata
Dept || Start | Stop

Shoe‘2‘3

Shoe 5 5

(c) Result of the nonsequenced evaluation of the query in Figure 1.

System Architecture

Temporal SQL Query
v

Temporal to Nontemporal
Translation Layer

¥
SQL Query

‘ T
S

RDBMS |

SQL Compiler/Optimizer

-~ l Query Execut
Indexes

Runtime Engine

on Plan

Query Execution Plan

Nested Loop (cost=228.08.M0w5=524691358 width=20)

-> Seq Scan on empt r (cost=0.00..1662.00 rows=50000 width=20)
-> Bitmap Heap Scan on empt s (cost=228.08..454.30 rows=10494 width=8)
Recheck Cond: (((r.start <= start) AND (start <= r.stop))
OR ((start <= r.start) AND (r.start <= stop)))
-> BitmapOr (cost=228.08..228.08 rows=11111 width=0)
-> Bitmap Index Scan on foostart (cost=0.00..55.86 rows=5556 width=0)
Index Cond: ((start >= r.start) AND (start <= r.stop))
-> Bitmap Index Scan on foostartstop (cost=0.00..166.97 rows=5556 width=0)
Index Cond: ((start <= r.start) AND (stop >= r.start))

+ Cost of query highlighted in red
* Note use of indexes highlighted in yellow

» We can lower cost of query from 30,587,076 to 1,376,011
using techniques in the paper

Segment Columns

« Try to avoid range query on index
» Keep columns for normal timestamp
* Add columns for segments
= Note at most two segments of any given length
= Column s2 — first segment of length 2
= Column s2x — other segment of length 2
= Nulls are common in segment columns

Segment Endpoint Containment

Data Time Metadata
Dept || Start Stop I | s2 | s4 | s8 | slx | s2x | sdx | s8x
10001 | 1001 | 101 110

1001

BHHE

10101 10110

* Precompute and store segments that contain a start or
stop time

» Consider the interval [1, 11]

o — 1

ASNANIANKANASNANNANNAS

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

Segment Endpoint Containment

» Precompute and store segments that contain a start or
stop time

» Consider the interval [1, 11]

o —

VN VN VN N
AN ANV AN ILVAC VAN LV ALV AN
I [N N D D D D D (N D [N D e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Segment Endpoint Containment

* Precompute and store segments that contain a start or
stop time

» Consider the interval [1, 11]

o — 1

VN N NI N
AN ANV AN ILVAC VALV ALV AN
I N D D [D D N N [N [T N D e e
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Segment Endpoint Containment

* Precompute and store segments that contain a start or
stop time

» Consider the interval [1, 11]

o —

S
0 1 0 1 0 1 0 1
NN O BN N SN 0N S
[) [[[I [I [[[T) [e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Help Determine Endpoint Containment

Add columns for segments that could contain the start and
stop points

= Prefix column p2 — What segment of length 2 contains start?

= Prefix column p2e — What segment of length 2 contains stop?

Data 717718 Metadata
Dept || Start | Stop pl | p2 | p4 | p8 | ple | p2e | pde | p8e
11 10001 | 1000 | 100 | 10 | 11011 | 1101 110 11
H ‘ 10010 | 1001 | 100 | 10 | 10011 | 1001 | 100 10

10101 | 1010 | 101 | 10 | 10110 | 1011 | 101 10

Using

* Is 2 contained in [1,11]?

Dept || Start ‘ Stop ‘ pl l p2 | p4 | p8 | ple | p2e 1 pde l p8e

Using

2| | 10010 | 1001 | 100 | 10 | | |
Dept || Start ‘ Stop | sl | s2 | s4 | s8 | slx | s2x ‘ sdx ‘ s8x
1 | 11 [10001 | 1001 [101 | | | [110]

* Is 2 contained in [1,11]?

Dept || Start ‘ Stop ‘ pl l p2 | p4 | p8 | ple | p2e 1 pde l p8e

2| | 10010 | 1001 | 100 | 10 |
Dept || Start ‘ Stop | sl | s2 | s4 | s8 | slx | s2x ‘ sdx ‘ s8x
1 | 11 [10001 | 1001 [101 | | | [110]

* Yes, p2==s2

Using

* Is 2 contained in [1,11]?

Dept || Start ‘ Stop ‘ pl l p2 | p4 | p8 | ple | p2e 1 pde l p8e

Using

2| | 10010 | 1001 | 100 | 10 | | |
Dept || Start ‘ Stop | sl | s2 | s4 | s8 | slx | s2x ‘ sdx ‘ s8x
1 | 11 [10001 | 1001 [101 | | | [110]

* Yes, p2==s2
* Is 2 contained in [5,6]?

Dept || Start | Stop | pl | p2 | p4 l p8 ‘ ple ‘ p2e ‘ pde | p8e

2 | | 10010 | 1001 | 100 | 10 | | |

Dept || Start | Stop | s1 [s2 | s4 |58 | six | s2x | sax [s8x
s | e [1o101 | [| [10110] |

* Is 2 contained in [1,11]?

Dept || Start ‘ Stop ‘ pl l p2 | p4 | p8 | ple | p2e 1 pde l p8e

2| | 10010 | 1001 | 100 | 10 |
Dept || Start ‘ Stop | sl | s2 | s4 | s8 | slx | s2x ‘ sdx ‘ s8x
1 | 11 [10001 | 1001 [101 | | | [110]

* Yes, p2==s2
 Is 2 contained in [5,6]?

Dept || Start | Stop | pl | p2 | p4 l p8 ‘ ple ‘ p2e ‘ pde | p8e
2| | 10010 | 1001 | 100 | 10 | | | |

Dept || Start | Stop | s1 [s2 | s4 | s8 | six | s2x | sax [s8x
s | 6 [10101| [| [10110] | |

* No, no N such that sN == pN or sNx == pN

Outline

+ Timestamp representation

» Application to nonsequenced queries
» Evaluation

» Conclusion

Experiment Setup

» Test machine
= Oracle Cloud Instance
» 4 CPUs-24GHz
=« 32GB RAM
« 1TB SSD drive
= Linux

» Test DBMS
= Postgres, version 14
= Made no adjustments to out-of-the-box settings
= EXPLAIN — optimizes and generates query execution plan
= EXPLAIN ANALYZE - runs query as well

Evaluation

» Compare timestamped vs. log-segmented
* One relation
= Timestamped
Employees(id, name, department, start, stop)
= Log-segmented

Employees(id, name, department, start, stop,
8l 82 ¢u5 819 BIX; 82X, :::3..819%;
pl, p2, ..., p19, ple, p2e, ..., pl9e)

Experiment Data and Queries

» Test data
= Synthetically generated
= 100 departments, 90% different names
= 10K to 50K tuples
= Timeline of 29
= Timestamps 2”8, randomly generated
* Create indexes for everything!
« Test query
= Join of employee with itself, only on the temporal attributes
Focus on timestamps, not non-temporal columns
= Three predicates for join
. Overlaps
. Contains
. Starts

Evaluation - Overlaps

Overlaps Query Execution Plan

3000000

2000000

50

1000000

0 e ———w—— 0 - "

10K 20K 30K 40K 50K 10K 20K 30K 10K 50K

—e— periodStamped —e— periodStamped
—=— segmentStamped —=— segmentStamped

+ SQL query WHERE clause is ugly

WHERE ...
(x.s1 = y.pl OR r.s2 = y.p2 OR ... OR x.s19 = y.pl19
OR x.s1 = y.ple OR r.s2 = y.p2e OR ... OR x.s19 = y.p19e
OR y.s1 = x.p1 OR y.s2 = x.p2 OR ... OR y.s19 = x.p19
OR y.s1 = x.ple OR y.s2 = x.p2e OR .. OR y.s19 = x.p19e)

* Query execution plan

Nested Loop (cost=12.13..102716.47 rows=120094 width=20)
-> Seq Scan on empt r (cost=0.00..417.00 rows=10000 width=176)
-> Bitmap Heap Scan on empt s (cost=12.13..18.11 rows=18 width=84)
Recheck Cond: ((s1 = r.p1) OR (s2 = r.p2) ... OR (s262144 = r.p262144x) OR (s524288 = r.p524288x))
-> BitmapOr (cost=12.13..12.13 rows=18 width=0)
-> Bitmap Index Scan on foosl (cost=0.00..0.30 rows=1 width=0)
Index Cond: (s1 = r.p1)
-> Bitmap Index Scan on foos2 (cost=0.00..0.30 rows=1 width=0)
Index Cond: (s2 = r.p2)
-> Bitmap Index Scan on foos4 (cost=0.00..0.30 rows=1 width=0)

-> Bitmap Index Scan on f00s524288x (cost=0.00..0.30 rows=1 width=0)
Index Cond: (s524288 = s_1.p524288)

Evaluation - Contains

Disadvantages

1200000

1000000

50

seconds

500000

0 e = 0 = R———N

K 20K 30K 20K 50K 10K 20K 30K 40K 50K

—e— periodStamped —e— periodStamped
—=— segmentStamped —=— segmentStamped

+ Starts performs worse with log-segmented

8000 |~

6000

4000

seconds

2000 -05

" 0
10K 20K 30K 40K 50K 10K 20K 30K 10K 50K

—e— periodStamped —e— periodStamped
—=— segmentStamped —m— segmentStamped

» Space cost increases (next slide)

Results — DB Size

Outline

» Timestamp representation

» Application to nonsequenced queries
* Evaluation
10
) + Conclusion
f 20 I I
10K 20K 30K 10K 50K
o periodStamped table
0o periodStamped table and indexes
0o segmentStamped table
BB segnentStamped table and indexes
Conclusion Future Work

* Query optimization technique
. Log segmented stores both normal and log-segmented timestamps
« Run optimizer on both, choose best plan
. Downside is extra space
. Additional benefit — sequenced semantics!

+ Tested only a small part of query optimization space

in time-line %

timestamp density

=

PEv JEv WV

size of relations

» Size of result, time-line size, value conditions, etc.

» Log-segmented Cypher
* New temporal hash-join technique

That's All
Folks!

4
i

R

