
Optimization of Nonsequenced
Queries using

Log-Segmented Timestamps
Curtis Dyreson

Utah State University, Logan, Utah, USA

Outline
• Timestamp representation
• Application to nonsequenced queries
• Evaluation
• Conclusion

Timestamp Representation
• An interval/period timestamp

• Intervals are
 [0, 3]
 [5, 8]

• Features
 Just start and stop times
 Minimal information, smallest in terms of storage
 What is an alternative and why would anyone do it differently?

0 3 85

Temporal Grouping and Aggregation
• Temporal data about football players

• How many players on each team at the same time?
 Groups vary over time
 Player belongs to potentially n^2 groups
 Special aggregation techniques for temporal aggregation

timeteamplayer
[0-5]ManUWilson

[3-8]ManUArnhelm

………
………

players

0 3 85

21 1

Sequenced Aggregation in Map/Reduce
• Interval representation is bad in Map/Reduce

• Need a new kind of timestamp
• Curtis E. Dyreson: Using CouchDB to Compute Temporal

Aggregates. HPCC/SmartCity/DSS 2016: 1131-1138

Log-segmented Timestamp
• Problem: can’t shard intervals
• Introduce log-segmented timestamp
• Partition timeline into pre-defined segments

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Log-segmented label for period [8, 9] is 1100

Log-segmented Example

•7

Log-segmented label for period [5, 5] is 10101

Log Segmented Example

•8

Convert Periods to Segments
• Period [2-8] is {1001, 101, 11000}

• Compact – 2log2(n) segments can represent any period

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Log-segmented Sequenced Semantics
• Sequenced semantics for relational DBs
• Curtis E. Dyreson, M. A. Manazir Ahsan: Achieving a

Sequenced, Relational Query Language with Log-
Segmented Timestamps. TIME 2021: 14:1-14:13

Outline
• Timestamp representation
• Application to nonsequenced queries
• Evaluation
• Conclusion

Fabio Grandi E-mail

• Fabio: Interesting idea, but what about log-segmented for
nonsequenced queries, after all, nonsequenced is more
important than sequenced

• Me: Yes, nonsequenced is important, but log-segmented
timestamps don’t improve nonsequenced

Nonsequenced Semantics
• Most common temporal extension of a query language
• Nonsequenced: query has explicit temporal predicates

and constructors
• Benefit

 Temporal can be added to any DBMS
 Layer, no DBMS modification

Example Nonsequenced Join
SELECT s.dept, OVERLAPS(r, s)
FROM tesco s, walmart r
WHERE r OVERLAPS s

System Architecture

Temporal to Nontemporal
Translation Layer

Temporal SQL Query

Relational Database
Management System

SQL Query

Example Nonsequenced Join
SELECT s.dept,

GREATEST(r.time.start, s.time.start) AS start,
LEAST(r.time.stop, s.time.stop) as stop

FROM tesco s, walmart r
WHERE ((r.start <= s.start AND s.start <= r.stop)
 OR (s.start <= r.start AND r.start <= s.stop))

System Architecture

RDBMS

Temporal to Nontemporal
Translation Layer

Temporal SQL Query

SQL Query

SQL Compiler/Optimizer

Indexes
Runtime Engine

Query Execution Plan

Query Execution Plan

• Cost of query highlighted in red
• Note use of indexes highlighted in yellow
• We can lower cost of query from 30,587,076 to 1,376,011

using techniques in the paper

Segment Columns
• Try to avoid range query on index
• Keep columns for normal timestamp
• Add columns for segments

 Note at most two segments of any given length
 Column s2 – first segment of length 2
 Column s2x – other segment of length 2
 Nulls are common in segment columns

Segment Endpoint Containment
• Precompute and store segments that contain a start or

stop time
• Consider the interval [1, 11]

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Segment Endpoint Containment
• Precompute and store segments that contain a start or

stop time
• Consider the interval [1, 11]

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Segment Endpoint Containment
• Precompute and store segments that contain a start or

stop time
• Consider the interval [1, 11]

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Segment Endpoint Containment
• Precompute and store segments that contain a start or

stop time
• Consider the interval [1, 11]

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Help Determine Endpoint Containment
Add columns for segments that could contain the start and
stop points

 Prefix column p2 – What segment of length 2 contains start?
 Prefix column p2e – What segment of length 2 contains stop?

Using
• Is 2 contained in [1,11]?

Using
• Is 2 contained in [1,11]?

• Yes, p2 == s2

Using
• Is 2 contained in [1,11]?

• Yes, p2 == s2
• Is 2 contained in [5,6]?

Using
• Is 2 contained in [1,11]?

• Yes, p2 == s2
• Is 2 contained in [5,6]?

• No, no N such that sN == pN or sNx == pN

Outline
• Timestamp representation
• Application to nonsequenced queries
• Evaluation
• Conclusion

Experiment Setup
• Test machine

 Oracle Cloud Instance
 4 CPUs – 2.4 GHZ
 32GB RAM
 1 TB SSD drive
 Linux

• Test DBMS
 Postgres, version 14
 Made no adjustments to out-of-the-box settings
 EXPLAIN – optimizes and generates query execution plan
 EXPLAIN ANALYZE – runs query as well

Evaluation
• Compare timestamped vs. log-segmented
• One relation

 Timestamped

 Log-segmented

Experiment Data and Queries
• Test data

 Synthetically generated
 100 departments, 90% different names
 10K to 50K tuples
 Timeline of 2^19
 Timestamps 2^8, randomly generated

• Create indexes for everything!
• Test query

 Join of employee with itself, only on the temporal attributes
Focus on timestamps, not non-temporal columns

 Three predicates for join
u Overlaps
u Contains
u Starts

Evaluation - Overlaps Overlaps Query Execution Plan
• SQL query WHERE clause is ugly

• Query execution plan

Evaluation - Contains Disadvantages
• Starts performs worse with log-segmented

• Space cost increases (next slide)

Results – DB Size Outline
• Timestamp representation
• Application to nonsequenced queries
• Evaluation
• Conclusion

Conclusion
• Query optimization technique

u Log segmented stores both normal and log-segmented timestamps
u Run optimizer on both, choose best plan
u Downside is extra space
u Additional benefit – sequenced semantics!

• Tested only a small part of query optimization space

• Size of result, time-line size, value conditions, etc.
size of relations

tim
es

ta
m

p
de

ns
ity

in
tim

e-
lin

e

��� ��� ���

��	
��

��
��

Future Work
• Log-segmented Cypher
• New temporal hash-join technique

