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Summary

Symbolic modern artificial intelligence is based on a set of algorithms and methods that are

designed to extract knowledge from data in the form of logical formulas.

In the case of temporal

data, in particular, interval temporal logic are used to describe patterns with quite a lot of

expressive power. The most representative interval logic if Helpern and Shoham Modal Logic of

Allen’s Relations, aka HS; recently, a series of results in the fields of neuroesthetics, medicine,

physiology, neurophysiology, and mechanical engineering have been obtained based on this idea.

With the aim of improving the expressive power of the crisp version of such language(s), we

introduced a fuzzy version of HS (FHS). Because FHS is a very natural and new logic, it makes

sense to study classic problems for FHS, such as automatic reasoning with tableaux.
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Fuzzy Modal Logic (1)

What is fuzzy (or many-valued) propositional logic?

It is the generalization of propositional logic in which the

Boolean 2-valued algebra is replaced by a richer truth value algebra.

Typical choices include Heyting algebras and  Lukasiewicz algebras

What is fuzzy (or many-valued) modal logic?

It is modal logic in which the truth of

either accessibility relations, propositional letters on worlds, or both

is generalized as in the propositional case.

Many-valued modal logics have been introduced by Fitting, in 1991.
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Fuzzy Modal Logic (2)
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Fitting suggests using Heyting algebras towards a truly ’many-valued’ semantics.
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Heyting Algebras
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Fuzzy HS in a Nutshell

Interval temporal logic comes in many forms. We consider here a specific variant called Halpern

and Shoham’s Modal Logic of Allen’s Relations (HS).

It is a modal logic based on a linearly

ordered domain of which we consider every possible interval. Intervals are worlds. Such worlds

are related by several differen accessibility relations, one for each Allen’s relation (later, after,

during, overlaps, begins, ends). A valuation function assigns the truth of every propositional

letter to every interval. In its fuzzy version, FHS generalizes HS by using a finite Heyting

algebra to soften both the degree of the relation between the current interval and the accessed

one(s) and the truth value of propositional letters. Satisfiability of HS formulas is undecidable

over essentially every class of linearly ordered sets, and so is FHS.
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Crisp HS (1)

HS

⟨A⟩

⟨L⟩

⟨B⟩

⟨E⟩

⟨D⟩

⟨O⟩

Allen’s relation

[x, y]RA[x′, y′] ⇔ y = x′

[x, y]RL[x′, y′] ⇔ y < x′

[x, y]RB [x′, y′] ⇔ x = x′, y′ < y

[x, y]RE [x′, y′] ⇔ y = y′, x < x′

[x, y]RD[x′, y′] ⇔ x < x′, y′ < y

[x, y]RO[x′, y′] ⇔ x < x′ < y < y′

Graphical repr.
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

φ = p | ¬φ | φ ∧ φ | ⟨X⟩φ
X ∈ {A,L,B,E,D,O}

M = ⟨D, I(D), V ⟩

M, [x, y] ⊩ p iff p ∈ V ([x, y])

M, [x, y] ⊩ ¬φ iff M, [x, y] ̸⊩ φ

M, [x, y] ⊩ φ ∧ ψ iff M, [x, y] ⊩ φ and

M, [x, y] ⊩ ψ

M, [x, y] ⊩ ⟨X⟩φ iff for some[z, t] s.t.

[x, y]RX [z, t]

M, [z, t] ⊩ φ
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Crisp HS (2)

In crisp HS we may express sentences such as:

the fever spiked to over 39.5 during an episode of headache of level greater than 3

(head ≥ 3) ∧ ⟨D⟩(max(fever) ≥ 39.5)
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Fuzzy HS (1)

To define FHS we fix an algebra

H = (H,∩,∪, ↪→, 0, 1),

and we proceed as follows:
H :

1

0

αβ

We consider a linear order D and

we define fuzzy <̃, =̃ on top of <

with values in H
We axiomatize adequate fuzzy linear orders

We generalize the definition

of all Allen’s relations

RX

We get fuzzy relations RX̃

We generalize the definition

of interval [x, y]

using <̃

[x, y] means x<̃y

We generalize the valuation function

with values in H V (p) ∈ H
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Fuzzy HS (2)

FHS

⟨A⟩

⟨L⟩

⟨B⟩

⟨E⟩

⟨D⟩

⟨O⟩

Allen’s relation

[x, y]R̃A[x′, y′] ⇔ y=̃x′

[x, y]R̃L[x′, y′] ⇔ y<̃x′

[x, y]R̃B [x′, y′] ⇔ x=̃x′, y′<̃y

[x, y]R̃E [x′, y′] ⇔ y=̃y′, x<̃x′

[x, y]R̃D[x′, y′] ⇔ x<̃x′, y′<̃y

[x, y]R̃O[x′, y′] ⇔ x<̃x′<̃y<̃y′

φ ::= α | p | φ ∨ ψ | φ ∧ ψ
| φ → ψ | ⟨X⟩φ | [X]φ

X ∈ {A,L,B,E,D,O}

M̃ = ⟨I(D̃), Ṽ ⟩
Ṽ : P × I(D̃) 7→ H

Ṽ (α, [x, y]) = α,

Ṽ (φ ∧ ψ, [x, y]) = Ṽ (φ, [x, y]) ∩ Ṽ (ψ, [x, y]),

Ṽ (φ ∨ ψ, [x, y]) = Ṽ (φ, [x, y]) ∪ Ṽ (ψ, [x, y]),

Ṽ (φ → ψ, [x, y]) = Ṽ (φ, [x, y]) ↪→ Ṽ (ψ, [x, y]),

Ṽ (⟨X⟩φ, [x, y]) =
⋃
{R̃X([x, y], [z, t]) ∩ Ṽ (φ, [z, t])},

Ṽ ([X]φ, [x, y]) =
⋂
{R̃X([x, y], [z, t]) ↪→ Ṽ (φ, [z, t])}.
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M̃ = ⟨I(D̃), Ṽ ⟩
Ṽ : P × I(D̃) 7→ H

Ṽ (α, [x, y]) = α,

Ṽ (φ ∧ ψ, [x, y]) = Ṽ (φ, [x, y]) ∩ Ṽ (ψ, [x, y]),

Ṽ (φ ∨ ψ, [x, y]) = Ṽ (φ, [x, y]) ∪ Ṽ (ψ, [x, y]),

Ṽ (φ → ψ, [x, y]) = Ṽ (φ, [x, y]) ↪→ Ṽ (ψ, [x, y]),

Ṽ (⟨X⟩φ, [x, y]) =
⋃
{R̃X([x, y], [z, t]) ∩ Ṽ (φ, [z, t])},

Ṽ ([X]φ, [x, y]) =
⋂
{R̃X([x, y], [z, t]) ↪→ Ṽ (φ, [z, t])}.



Fuzzy HS (4)

In FHS we ask questions such as:

how true is that

the fever spiked to a pretty high value more or less during an episode of severe headache?

(head ≥ 3) ∧ ⟨D⟩(max(fever) ≥ 39.5)

The satisfiability problem for FHS is stated as follows:

given a formula φ, is there a model M̃ and an interval [x, y] such that Ṽ (φ, [x, y]) ≻ 0?
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A Tableau System for FHS: Overview

We designed a tableau system for FHS to answer the more general question: given φ and α, is

there a model M̃ such that Ṽ (φ, [x, y]) ⪰ α for some interval [x, y]?

We focus on finite Heyting

algebras. As a classic tableau system, in this case too we explore all consequences of asserting

something in a generic linear model and over a generic interval. Unlike classic tableau system,

however, such consequences have to take into account all possible combination of values of the

algebra, and all possible placing for points on the (tentative) linear model. Alongside the

logical part of the tableau, we have to maintain a algebraic one, in particular for exploring how

points can be placed with respect to one another.
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A Tableau System for FHS: Rules (1)

A rule can be of one of four types:

� T (α → φ, [x, y]) (it is true that in the tentative model φ is evaluated more than or equal

to α on the interval [x, y]),

� F (α → φ, [x, y]) (it is false that in the tentative model φ is evaluated more than or equal

to α on the interval [x, y]),

� T (φ → α, [x, y]) (it is true that in the tentative model φ is evaluated less than or equal to

α on the interval [x, y]), and

� F (φ → α, [x, y]) (it is false that in the tentative model φ is evaluated less than or equal to

α on the interval [x, y]).

The judgments T and F are not symmetric, because a finite algebra may not be linearly

ordered. Applying a rule entails taking into account the fuzzy linear order on which the

tentative model is based. At the beginning, we have only two points that form only one

interval: x<̃y. As the tableau grows, every branch is associated to a partially specified fuzzy

linear order.
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A Tableau System for FHS: Rules (2)

T (α → ψ, [x, y], C)
(T ⪰)

F (ψ → γ, [x, y], c(B))

where α ̸= 0 and γ is any maximal

element not above α, i.e., γ ̸⪰ α

F (α → ψ, [x, y], C)
(F ⪰)

T (ψ → βi, [x, y], c(B)) | . . . | T (ψ → βn, [x, y], c(B))

where α ̸= 0 and β1, . . . , βn are all maximal

elements not above α, i.e., β1, . . . , βn ̸⪰ α

(a) Reverse rules (examples).

T (α → (ψ ∧ ξ), [x, y], C)
(T∧)

T (α → ψ, [x, y], c(B))

T (α → ξ, [x, y], c(B))

where α ̸= 0

F (α → (ψ ∧ ξ), [x, y], C)
(F∧)

F (α → ψ, [x, y], c(B)) | F (α → ξ, [x, y], c(B))

where α ̸= 0

(b) Propositional rules (examples).

T (α → [X]ψ, [x, y], C)
(T□)

T ((α ∩ β1) → ψ, [z1, t1], c(B))
. . .

T ((α ∩ βn) → ψ, [zn, tn], c(B))

T (α → [X]ψ, [x, y], c(B))

where βi = RX ([x, y], [zi, ti]), [zi, ti] ∈ o(c(B)),

βi ≻ 0, and α ∩ βi ̸= 0

T (⟨X⟩ψ → α, [x, y], C)
(T♢)

T ((ψ → (β1 ↪→ α), [z1, t1], c(B))
. . .

T (ψ → (βn ↪→ α), [zn, tn], c(B))

T (⟨X⟩ψ → α, [x, y], c(B))

where βi = RX ([x, y], [zi, ti]), [zi, ti] ∈ o(c(B)),

βi ≻ 0, and βi ↪→ α ̸= 1

(c) Temporal rules (examples).
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A Tableau System for FHS: Tableau (1)

Given an FHS formula φ and a finite Heyting algebra H, the tableau τ for φ and α ∈ H is an

object of the type

τ = (V, E, d, f, c),

where (V, E) is a tree with vertices (or nodes) in V and edges in E.

The nodes in τ are partially

ordered by the relation ◁ (induced by the edges) and whose set of branches is denoted by B,

d : V → D,

is a node labeling function, which associates a decoration Q(ψ → α, [x, y], C) or

Q(α → ψ, [x, y], C) to any node ν, where ψ ∈ sub(φ) and x, y ∈ C, and

f : V → {0, 1}

is a node flag function, which determines which nodes have been already expanded,

c : B → C

is a branch labeling function, which associates every branch to the constraint system in the

decoration of its leaf, and it has been obtained starting from the initial tableau τ0

({ν0}, ∅, {(ν0, T (α → φ, [x, y], {x, y, <̃(x, y) ≻ 0}))}, {(ν0, 0)}, {(ν0, {x, y, <̃(x, y) ≻ 0})})

by iteratively applying the branch expansion rule to the closest-to-the-root node ν such that

f(ν) = 0 and every leaf ν′ such that ν ◁ ν′, until no further application is possible or all

branches have been closed. The tableau is closed (resp., open) if all its branches (resp., at least

one of its branches) are (resp., is) closed ✗ by some condition (resp., open ✓).
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A Tableau System for FHS: Tableau (2)

Lemma 1 (soundness).

Let φ be an FHS formula and α ∈ H a constant of a finite Heyting algebra. Then, if φ is

α-satisfiable, then the tableau τ for φ and α is open.

Lemma 2 (completeness).

Let φ be an FHS formula and α ∈ H a constant of a finite Heyting algebra. If τ is an open

tableau for φ and α, then φ is α-satisfiable.

Theorem 3 (semi-decision procedure).

The tableau system for FHS is sound and complete. Moreover, it is also a semi-decision

procedure in the case of finite domains.
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A Tableau System for FHS: Example

ν0 : T (1 → ⟨A⟩p ∧ [A](p → 0)), [x, y], C) C = {<̃(x, y) ≻ 0}

1
2

1

0

H :

ν1 : T (1 → ⟨A⟩p), [x, y], C)

ν2 : T (1 → [A](p → 0), [x, y], C)

ν3 : F (⟨A⟩p → 1
2
, [x, y], C)

ν4 : T (1 → [A](p → 0), [x, y], C)

ν5 : F (p → (1 ↪→ 1), [z, t], C′) C′ = C ∪ {=̃(x, y) = 0, <̃(z, t) ≻ 0, =̃(y, z) = 1}

ν6 : T ((1 ∩ 1) → (p → 0), [z, t], C′)

ν7 : T (1 → [A](p → 0), [x, y], C′)

ν8 : T ( 1
2

→ p, [z, t], C′)

ν9 : F ( 1
2

→ p, [z, t], C′) ν10 : T ( 1
2

→ 0, [z, t], C′)

✗ ✗

(T∧)

(T∧)

(T ≥)

(T□)

(F♢)

(T□)

(T□)

(F ≤)

(✗5)

(✗5) (✗1)
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Conclusions

Tableau systems for many valued modal logics were introduced by Fitting, and we adapted the

original proposal to the case of FHS.

Even in the crisp case, implementations of tableau systems

for interval temporal logics, especially HS-like, are virtually non-existing. Experiments have

shown that most clever solutions that have been applied for modal logics and even for

point-based temporal logic may not be effective in the interval case

.

As part of a larger project

focused on modal symbolic learning, especially with (variants of) HS from real-world data, our

exploration of a fuzzy counterpart of our solutions led us to introduce FHS and, now, study

deduction systems such as tableaux. In the future, we plan to incorporate FHS in our general

purpose learning systems for non-tabular data, and for temporal data in particular, and this

will include a realization of an efficient implementation of the tableau system.
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