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Qualitative Spatial & Temporal Reasoning

m A major field of study in KR, and Symbolic Al in general®
m Abstracts from numerical quantities of space & time

m Grounded on physics and human cognition
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Figure: Abstraction of a spatial configuration (left), temporal constraint network of

three variables (right); ? denotes complete uncertainty

1G. Ligozat.: Qualitative Spatial and Temporal Reasoning. ISTE Series. Wiley,
2011
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Figure: The base relations of RCC8; -i denotes the inverse of -
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Figure: The base relations of Interval Algebra; inverses are omitted in the figure
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m Abundance of calculi dealing with trajectories, occlusion, intervals,

and so on?

m Translating terminological knowledge into region spaces, e.g.,
document PO paper®

2F. Dylla et al.: A Survey of Qualitative Spatial and Temporal Calculi: Algebraic
and Computational Properties. ACM Comput. Surv. 50 (2017)

3Z. Bouraoui et al.: Region-Based Merging of Open-Domain Terminological
Knowledge. In: KR 2022



Applications:
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Figure: A semantic referee reasons about the mistakes made by the classifier based on

ontological concepts and provides additional information back to the classifier that
prevents the classifier from making the same misclassifications®

4M. Alirezaie et al.: Semantic referee: A neural-symbolic framework for enhancing
geospatial semantic segmentation. Semantic Web 10 (2019)
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Inaccurate classifiers

m Human error

m Multi-source information

m Vagueness

m Noisy data
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Figure: A decomposition of an inconsistent QCN into consistent components
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Complexity

We can obtain the following results

Theorem

For every QSTR formalism F, if SAT(F) is NP-hard, then deciding if a
QCN of F is decomposable into o components is also NP-hard

Corollary

Deciding if a QCN of RCC8 or Interval Algebra is decomposable into «
components is NP-complete
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Complexity: Necessity of Constraints

A set of constraints /| may be necessary, i.e., required to be satisfied by all
components

Theorem

Deciding if a QCN of Point Algebra is decomposable into o components
in the presence of a set of necessary constraints | is NP-complete

The above theorem may be applied to other polynomial (fragments of)
calculi that embed Point Algebra
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Optimization Versions

For a QCN NV = (V, C) we consider two optimization problems

m Minimize number of components: A maximum of [|V/|/2]
components are needed (proof via the Nash-Williams formula)

m Maximize similarity among components: A minimum of v(G(N))
common constraints can be secured (proof via maximum matching)

We implement greedy constraint methods and optimal Partial MaxSAT
encodings to solve these problems
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For decomposing a QCN N

we create a new component of A by considering a (differentiated)
spanning tree of the original QCN

we consistently saturate the component with as many of the
remaining constraints as possible

we rinse and repeat
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Optimal Partial MaxSAT Encodings: Exhaustive Search

All necessary constraints in | must be satisfied by all the components

A AV oA

(ij)el I=1  beC(iy)

Each constraint must occur (be satisfied) in at least one component
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All components must be consistent (atomic + algebraically closed)
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Results: Optimal Partial MaxSAT encodings

d PMaxSAT min PMaxSAT max <
0.95
4 2| 0.55 o 0.01s 2]0.95 e 0.02s N
0.97
6 2|0.45 e 0.02s 2.0(3)|0.97 e 0.125
1.0 (2)
0.97
8  2|0.47 e 0.04s 2.1(4)|0.97 e 37.64s
1.3 (4)
0.97
10 2(042 e 0.0d4s 2.4 (4)]0.96 e 131.41s (15)
2.5 (9)
0.96
122|037 e 0.03s 2.6 (5)|0.96 e 446.67s (65) ————
4.4 (10)
0.93
14 2]0.30 e 0.03s 7|7|7 e inf (100)
8.9 (15)

Table: Assessing the performance of our Partial MaxSAT encodings with Interval
Algebra network instances of model A(n = 20,d,/ = 6.5); the format is avg. (max)

# of components | avg. similarity @ avg. SAT solving time (# of timeouts), plus, in

theoretical maximum similarity attainable
avg. (max) # of repairs needed (MAX_QCN)

the last column, we present
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Results: Greedy Constraint Methods

Evaluation with IA networks of model A(n=20,d,|=6.5)
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Figure: Assessing the performance of our greedy constraint methods with Interval
Algebra network instances of model A(n = 20,d,/ = 6.5) (same as before)

Note: the greedy methods are significantly faster, but lose up to 20% of
similarity between components
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For a QCN NV = (V, C) we define two inconsistency measures

m Z;(N') = minimum number of components for N

m 2r(N) = maximum similarity among components for N’

7, and 7, are similar to Zps° and Z,,..% respectively, satisfying many
common postulates

5M. Thimm: On the expressivity of inconsistency measures. Artif. Intell. 234
(2016)

5M. Ammoura et al.: On an MCS-based inconsistency measure. Int. J. Approx.
Reasoning 80 (2017)



m Need of inconsistency-tolerant Hybrid Al systems

m Ranking of different configurations becomes possible via
inconsistency measures

m Number of solutions and/or unspecified constraints in a component
may be considered

m Tolerating inconsistent components in a decomposition can be
explored
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Thank you for your interest and attention!

http://msioutis.gitlab.io
The purpose of abstraction is not to be vague, but to create a

new semantic level in which one can be absolutely precise
Dijkstra
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