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ABSTRACT
Complex event recognition (CER) refers to the detection of events
in Big Data streams. The paper presents a summary of the most
prominent models and algorithms for CER, and discusses the main
conceptual links and the di�erences between them.
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1 INTRODUCTION
In a broad range of domains, contemporary applications require
processing of continuously �owing data from geographically dis-
tributed sources at extremely high and unpredictable rates to obtain
timely responses to complex queries. Complex event recognition
(CER) — event pattern matching — refers to the detection of events
in Big Data streams, thereby providing the opportunity to imple-
ment reactive and proactive measures. Example applications consist
of the recognition of human activities in video content, violations of
maritime regulations and trading opportunities in the stock market.
In each scenario, CER allows to make sense of streaming data, react
accordingly and potentially prepare for taking counter-measures.

Numerous CER systems and languages have been proposed in
the literature—see [5, 9] for two surveys. These systems have a
common goal, but di�er in their architectures, data models, pattern
languages, and processing mechanisms. Their comparative assess-
ment is further hindered by the fact that many of the techniques
have been developed in di�erent communities, each bringing in
their own terminology and view on the problem. This is then the
aim of our DEBS 2017 tutorial: to present a uni�ed view of the foun-
dations of CER, allowing for a comparison of di�erent approaches.
The focus is on the formal methods for CER as they have been devel-
oped in the database, distributed systems, and arti�cial intelligence
communities. More precisely, we review models based on automata,
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tree structures, and logic-based rules. For each of these models,
we compare the most important recognition algorithms, such as
recognition based on the creation and storage of partial automata
runs, the use of dynamic trees for storing intermediate matches, or
inference for event models based on �rst-order logic. This paper
presents a succinct summary of the di�erent models that will be
discussed during the tutorial, as well as some of the conceptual
links between them. Because of space constraints, discussion is
necessarily broad rather than deep.

Running Example. To facilitate the presentation of the reviewed
approaches, we will use a simple example. Assume that we are in-
terested in monitoring the temperature and humidity in some farm
to detect various types of hazard, such as wood �res. To this e�ect,
sensors are placed in designated areas within the farm, reporting
temperature and humidity values. Each produced sensor event con-
tains the area in which the sensor is located and a measurement
value. Certain combinations of such sensor events indicate that
with some probability there is a hazardous situation; for instance,
wood �res are likely to occur in certain areas when humidity drops
below 25% while temperature is higher than 40 degrees.

2 AUTOMATA-BASED MODELS
Many CER systems provide users with a pattern language that is
later compiled into some form of automaton. The automaton model
is generally used to provide the semantics of the language and/or
as an execution framework for pattern recognition. Examples of
automata-based CER systems include Cayuga [6], SASE [14] and
SASE+ [17] — which all use automata for both purposes — and
TESLA [7], which uses automata for pattern recognition. In this
section, we �rst discuss the kinds of automata that are typically
used in CER systems and then overview the recognition algorithms
that have been proposed for them.

Automaton Model. In line with our running example, consider
that we need to process a stream of Temp(area, tmp, ts) and
Hum(area, pct, ts) events that measure the temperature and
relative humidity in a given area at a certain timestamp ts. Fig. 1
shows a portion of such a stream, where T abbreviates Temp and H
abbreviates Hum. A crucial assumption made by virtually all CER
automata models is that the timestamps increase monotonically
with the arrival order of events, allowing the automata to treat
time simply as an extra event attribute during processing. When
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Figure 1: Example CER automaton and runs over a stream.

events can arrive out of timestamp-order, some form of bu�ering
and re-ordering outside of the automaton model is required.

To illustrate the features that are typically present in CER au-
tomaton models, suppose that we want to detect all pairs (t ,h) of
temperature and humidity events above 40 degrees and below 25%,
respectively, that report on the same area (t .area = h.area), with
h being produced at most 5 minutes after t . This complex event
pattern is naturally captured by the non-deterministic automaton
shown in Fig. 1 which intuitively operates as follows.

When in state 1 and observing any event (be it Temp or Hum,
represented by ∗), the automaton may non-deterministically choose
to stay in state 1, taking the self-loop and discarding the observed
event. Alternatively, if the event is a Temp event t with t .tmp > 40,
the automaton can traverse the edge between state 1 and 2. In
this case, t ’s area and timestamp are temporarily stored in internal
registers x andy, respectively. In addition, the event itself is bu�ered
so that it can be output later, should a matching Hum event be
recognized. The self-loop on state 2 indicates that, when in state 2
and observing any event whose timestamp is not 5 minutes greater
than the the timestamp of the �rst matched Temp event (stored in
register y) the automaton may choose to ignore and discard the
event. Alternatively, if the observed event is a Hum eventh occurring
at most 5 minutes later than the timestamp stored in register y, in
the area stored in register x and with h.pct ≤ 25, the automaton
can traverse the edge from state 2 to state 3. State 3 is a �nal state.
At this point the automaton can conclude that recognition was
successful and output the pair (t ,h). Finally, when in state 2 and
observing an event whose timestamp is more than 5 minutes later
than the �rst Temp event, the automaton must traverse the edge
from state 2 to state ⊥. State ⊥ is a failure state of the automaton,
which allows the automaton to conclude that no matter what event
comes next, this run can never be successfully completed.

Fig. 1 illustrates four di�erent runs of an automaton on a stream,
based on di�erent non-deterministic choices being made. Note that
each successful run (i.e., each run which reaches a �nal state) out-
puts a new (t ,h) pair. Run 4 is a non-successful run. It is important
to stress that CER automata, such as the one in Fig. 1, are more
powerful than the traditional �nite state automata studied in formal
language theory:
- They operate on events drawn from an in�nite universe of possi-

ble events, rather than letters from a �nite alphabet. Therefore,

the conditions that specify when an edge can be traversed are
formulas (e.g., Temp t, t.tmp> 40) rather than simple letters.
Automata in CER systems are hence symbolic automata [15] in
the sense formal language theory.

- They need to be able to compare data in the attributes of the
current event with data of previously observed events. This is
required in particular to check timing constraints. Therefore,
CER automata are equipped with a �nite number of registers
that can be used to store values when edges are traversed and
whose content can be inspected in edge formulas. Automata in
CER systems are hence register automata in the sense of formal
language theory.

- They produce output rather than deciding whether a string is
matched or not. In Fig. 1 this is indicated by the output directive
on transitions. CER automata are hence transducers.
All of these features combined make CER automata an excellent

formalism to represent combinations of frequently used operators
expressible in many complex event languages such as: sequences (as
illustrated in Fig. 1) but also co-occurrence, iteration (also known
as Kleene closure), and the usual boolean connectives (conjunction,
union and bounded forms of negation).

Recognition. CER automata are inherently non-deterministic. As
illustrated in Fig. 1, di�erent non-deterministic choices such as
ignoring or consuming an event might result in di�erent outputs.
To process an event stream, however, we must use a deterministic
strategy. Therefore, when using CER automata we must maintain
at runtime the set of all possible candidate runs. Each run is char-
acterized by its current state, the content of the registers, and the
(partial) output that will be generated if it reaches a �nal state.
When processing starts, this set contains only one candidate run
(in the initial state, with empty registers and output). When a new
event arrives, the set of candidate runs is updated to re�ect all
the possible transitions. Runs that reach a �nal state generate the
corresponding output and are removed from the set of active runs;
runs that have reached a failure state are simply removed without
generating output.

It is not hard to see that the set of runs may rapidly become very
large [17]: polynomial or even exponential in the amount of events
in the time window under consideration. Since each candidate run
needs to be inspected and updated for each new event, an explicit
representation of all candidate runs may therefore be ine�cient.
For this reason, numerous systems store the set of candidate runs
in a compressed form. Whenever a candidate run reaches a �nal
state, this representation is partially decompressed to construct the
output. Multiple forms of compression have been investigated in
the literature. For example, SASE [14] factorizes commonalities be-
tween runs that originated from the same ancestor run. SASE+ [17],
in contrast, only stores so-called maximal runs from which other
runs can be e�ciently computed. Even when representing can-
didate runs in compressed form, however, one risks generating
(and updating) many candidate runs that are afterwards discarded
without generating output. This may be circumvented by delaying
recognition using so-called lazy automata [11].
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3 TREE-BASED MODELS
While automata-based models have seen wide-spread uptake, some
CER systems also employ tree-based models. Again, tree-based
formalisms are used for both modelling and recognition, i.e., they
may describe the complex event patterns to be recognized as well
as the applied recognition algorithm.
Tree-based Event Patterns. In essence, tree-based models for the
speci�cation of complex event patterns de�ne a tree of event op-
erators. These operators connect primitive or complex events to
form new complex events. A realisation of such a model to pattern
speci�cation has been presented in ZStream [13]. Here, the set of
supported event operators includes sequencing, negation, conjunc-
tion, disjunction, and Kleene closure. Operators may further be
assigned constraints (times windows, value predicates), which shall
be satis�ed when matching events to the children of an operator.
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Figure 2: Tree-based models for our running example.

Taking up the above example, the complex event pattern de�ned
in Fig. 1 can also be represented as a tree-based model, see Fig. 2a.
That is, the leaf nodes of this tree denote temperature and humidity
events above 40 degrees and below 25%, respectively. They are
combined by the root of the tree, a sequence operator requiring
that the high temperature event is followed by a low humidity event
within a window of 5 minutes.

We further note that the general idea of a hierarchical nesting
of event operators as put forward by tree-based models for event
pattern speci�cation resembles notions of dependency graphs for
event patterns. In the E-Cube model [12], for example, such a depen-
dency graph models re�nement hierarchies between event patterns,
thereby enabling sharing of intermediate results.
Tree-based Recognition. Tree-based models play an important
role in recognition algorithms for complex event patterns. They
may be used in combination with automata-based models to re-
alise a hybrid processing strategy. Then, automata are used for
basic sequence recognition and sets of candidate runs are further
pruned using algebraic operators. The initial recognition algorithm
of SASE [16] is one example of this, as it �rst performs the detection
of candidate sequences of events before �ltering them based on
correlation predicates, negation operators, or a time window.

However, it has been argued that such a hybrid approach still
su�ers from the major drawbacks of an automata-based model,
see [13]. That is, automata-based models assume that the order of
events in the de�nition of a complex event pattern (pattern order)
is also followed in the recognition procedure (recognition order).
Yet, a recognition order that deviates from the pattern order may
enable more e�cient event processing, especially if there are large
di�erences in the frequencies of matching events.

Furthermore, the aforementioned approach to model negation in
automata-based models by means of failure states, as outlined in Fig.

1, is limited. Transitions to failure states may only be conditioned
over data of already observed events, but cannot refer to data of
future events. As an example, consider a simple sequence pattern of
the form (A,¬B,C) with a correlation predicate B.x = C .x . For this
pattern, the construction of a failure state is not possible. Therefore,
event recognition needs to rely on a hybrid strategy that �lters the
candidate sequences of events once they have been detected using
an automata-based model.

Against this background, systems such as ZStream [13] and
Esper [1] ground their recognition algorithms in trees of event
operators. Then, all nodes of this tree are assigned bu�ers. For leaf
nodes, these bu�ers store the input events as they arrive, whereas
the bu�ers of non-leaf nodes store intermediate results that are
assembled from sub-tree bu�ers. The nesting of operators in the
tree then determines the recognition order. For example, the tree of
an extended version of our pattern, see Fig. 2b, represents a recog-
nition order, in which sequences of two low humidity events are
constructed before identifying matching low temperature events.

According to this model, recognition happens by (i) loading a
batch of events into the bu�ers assigned to leaf nodes, immediately
evaluating any potential condition over their associated data values;
(ii) computing time constraints based on events that are candidates
for the last event of a pattern match; (iii) propagating and verifying
these constraints at all bu�ers at leaf nodes; (iv) assembling match
results in bottom-up manner based on the semantics of the event
operators in the tree.

It is worth to note that the idea of decoupling of pattern order
and recognition order as provided by tree-based models can also be
incorporated directly in automata-based models. Speci�cally, tree-
structured automata explicitly enumerate all possible recognition
orders [11], whereas only one of them, as determined by a cost
model, is used for recognition at a any point in time.

4 LOGIC-BASED MODELS
Logic-based CER systems are characterized by a formal semantics
expressed in some form of logic, in contrast to other types of CER
systems that often present an informal or procedural semantics [5].
In some cases, logic-based CER systems encode rules using logic
programming and use inference to detect complex events. For in-
stance, ETALIS [3] builds on the Prolog language and inference
mechanism. In other cases, CER rules are converted to other forms
to make event recognition more e�cient. For instance, T-Rex [7]
translates rules into automata.

In the remainder of this section, we �rst present some logic-based
approaches to model CER and then we discuss possible detection
methods.

Logic-based Modeling. Several types of logic-based formalisms
have been adopted to model CER. Here, we focus on two prominent
approaches that we believe are good representatives of logic-based
modeling: chronicle recognition [10] and event calculus [4].

Chronicle recognition. Chronicle recognition relies on temporal logic
and encodes event occurrences using logic predicates that de�ne
the time of occurrence and the content of each event. Complex
events are de�ned starting from primitive ones linked together
with contextual and temporal constraints.
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An example of CER language that builds on a chronicle recog-
nition formalism is TESLA [7]. For instance, the following TESLA
Rule R de�nes a complex event WoodFire when there is a humid-
ity lower than 25% in a certain area and the last measurement of
temperature in the same area is higher than 40 degrees.

Rule R
define WoodFire(area: string, temp: double)
from Humidity(percentage < 25 and area = $a) and

last Temp(value > 40 and area = $a)
within 5 min from Humidity

where area = Temp.area, temp = Temp.value

The rule predicates on the occurrence of two events —Humidity
and Temp—, on their content —the percentage of Humidity must
be lower than 25, the value of Temp must be greater than 40, and
they must share the same value of area—, and on temporal rela-
tions —Temp must occur in a window of 5 minutes before Humidity.
The rule further indicates that a WoodFire event contains two at-
tributes and binds their values to the attributes of the Temp event
that triggered the occurrence.

TESLA translates the constraints expressed in the rules into �rst-
order metric temporal logic formulas that indicate the conditions
necessary for the detection of a given composite event. In addition
to the types of constraints presented in the previous Rule R, TESLA
also o�ers abstractions to predicate on the absence of events —
negations— and on aggregate data.

The logic foundation enables a formal speci�cation of the seman-
tics of processing, including selection and consumption policies.
Selection refers to the set of events to consider when many of them
satisfy the rule constraints. For instance, in the previous Rule R, if
multiple Temp events with a value greater then 40 are followed by a
Humidity event, the rule triggers a single occurrence of WoodFire,
using the last occurred Temp event. Other possibilities include se-
lecting the �rst occurrent Temp event, or even all the available Temp
events to trigger a di�erent WoodFire for each of them. Consump-
tion refers to the possibility to re-use the same primitive events for
further triggering of the same rule or other rule. TESLA o�ers an
explicit consuming clause to indicate all the events that are invali-
dated after a detection and cannot take part in other detections.

Other prominent examples of languages that build on chronicle
recognition logic-based formalisms are Amit [2] and ETALIS [3].
Di�erently from TESLA, these systems adopt an interval semantics
where events have a duration.

Event calculus. Event calculus builds on �uents, which are proper-
ties that hold di�erent values at di�erent points in time. In event
calculus, an event description includes rules that de�ne the event
occurrences, the e�ects of events, and the values of �uents [5].

For instance, a CER that builds on event calculus can de�ne
WoodFire starting from two �uents that encode the current value
of temperature and humidity in a given area. The value of these
�uents is updated with the arrival of events. WoodFire holds when
the the value of the humidity �uent is lower than 25% and at the
same time the value of the temperature �uent is greater than 40
degrees.

Notably, approaches based on the event calculus formalism can
update the recognized events when new information arrives with a
delay or old information is revised by the input sources [5].

Logic-based Recognition. Several approaches have been pro-
posed for event recognition in logic-based systems. In the domain
of chronicle recognition, a straightforward approach is the use of
logic inference mechanisms. For instance, ETALIS translates CER
rules in Prolog and uses the Prolog engine for recognition [3]. Other
systems translate rules into more e�cient structures to perform
incremental recognition as new events become available: exam-
ples include temporal constraint networks [5] and automata [7].
Besides improving e�ciency, incremental recognition enables the
CER system to output partially recognized events.

Non-incremental approaches accumulate events and defer their
processing as much as possible to optimize memory usage and
allow for parallelization [8].

Recognition in event calculus is often performed at query time:
events are logged and reasoning is performed on the log when
a query is submitted. To overcome this limitation, Artikis et al.
propose a windowing mechanism that limits the scope of the in-
ference to improve e�ciency and scalability [4]. In this context,
re-computation from scratch has been proved more e�cient than
incremental computation, due to the high computational cost of
retracting some �ndings when they are no longer valid.
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