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Abstract
We present an open-source system that can optimize compressed trajectory representations 
for large fleets of vessels. We take into account the type of each vessel in order to choose a 
suitable configuration that can yield improved trajectory synopses, both in terms of approx-
imation error and compression ratio. We employ a genetic algorithm that converges to a 
fine-tuned configuration per vessel type without any hyper-parameter tuning. These con-
figurations can provide synopses that retain less than 10% of the original points with less 
than 20m approximation error in a real world dataset; in another dataset with 90% less 
samples than the previous one, the synopses retain 20% of the points and achieve less than 
80m error. Additionally the level of compression can be chosen by the user, by setting the 
desired approximation error. Our system also supports incremental optimization by train-
ing in data batches, and therefore continuously improves performance. Furthermore, we 
employ a composite event recognition engine to efficiently detect complex maritime activi-
ties, such as ship-to-ship transfer and loitering; thanks to the synopses generated by the 
genetic algorithm instead of the raw trajectories, we make the recognition process faster 
while also maintaining the same level of recognition accuracy. Our extensive empirical 
study demonstrates the effectiveness of our system over large, real-world datasets.

Keywords  AIS · Genetic algorithm · Maritime data analytics · Trajectory · Event 
recognition

1  Introduction

As maritime traffic is steadily increasing to support global supply chains, merchandise 
trade and transportation, protection of the ocean environment and its resources becomes 
imperative, as well as safety and security in maritime navigation. Over the past two dec-
ades, the Automatic Identification System (AIS) has provided a powerful means to track 
vessels across the seas in real-time through data exchange with other nearby vessels, 
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coastal stations, and satellite constellations. More than 500,000 vessels worldwide can be 
tracked via AIS, thus supporting online maritime monitoring. Authorities can readily iden-
tify vessels that breach international regulations in navigation, prevent accidents, protect 
sensitive maritime zones, etc. AIS is also particularly important for shipping companies, 
enabling reduction of fuel consumption and improving vessel efficiency. The collected AIS 
raw tracking data is valuable, as it includes unique identification of vessels, their position, 
course, speed, etc. Although this data is not noise free, as AIS messages may be delayed, 
intermittent, or conflicting, it still offers capabilities for advanced processing, fusion, anal-
ysis and route scheduling by the shipping industry and maritime authorities.

However, managing in real-time the huge amounts of AIS data continuously emitted 
from numerous vessels worldwide is particularly demanding in terms of storage and pro-
cessing. Typically, stakeholders ‘decimate’ the AIS data to be stored for analysis, by selec-
tively or randomly dropping a significant percentage of the relayed AIS messages. This 
pre-processing stage ingests only a subset of the original AIS data, which can still provide 
an acceptable representation of the original trajectories of vessels without overwhelming 
the available system resources. The rationale is that successive locations emitted every few 
seconds from each vessel can hardly contribute additional knowledge about their actual 
motion patterns.

In [31], we proposed a maritime surveillance system for trajectory detection from AIS 
positions enabling online maintenance of compressed representations of their evolving 
traces. Instead of randomly discarding incoming AIS positions, this module judiciously 
picks selected critical points indicating stops, turning points, changes in speed, etc. along 
each trajectory. In contrast to typical trajectory simplification, not only can this technique 
provide compressed, lightweight trajectories for further analysis, but it also annotates 
important mobility events through those chosen critical points. The resulting trajectory 
synopses considerably reduce the data volume to be stored, with a tolerable reconstruction 
error.

Nevertheless, such trajectory compression is very sensitive to parametrization. Every 
incoming AIS position must be checked against several spatio-temporal conditions, e.g., 
to identify any significant deviations in speed, heading, acceleration, etc. with respect to 
the known motion status of the respective vessel. If threshold values for such deviations 
are not suitable for the AIS data at hand, this can deteriorate the quality of the synopses or 
increase the amount of retained critical points. In fact, AIS data exploration with the advice 
of maritime domain experts seems indispensable when selecting suitable parameter values. 
As this pre-processing strongly depends on data characteristics (e.g., frequency of posi-
tional updates, spatial extent of the monitored area, number and type of moving vessels, 
etc.), it must be repeated for each new dataset almost from scratch. Further, this trajectory 
compression used to apply the same parametrized settings for all vessels, despite their dif-
ferences in type, tonnage, length, etc., and hence in their motion patterns. Overall, choos-
ing suitable compression parameters is a painstaking, time-consuming, data-dependent, 
and error-prone process.

In this work, we present a system to automatically adapt the parameter values of trajec-
tory compression. First, we take into account the type of each vessel (passenger, cargo, fish-
ing, etc.) in order to choose a suitable configuration that can yield improved trajectory syn-
opses, both in terms of approximation error and compression ratio. Second, we employ a 
genetic algorithm that iterates over several combinations of the parameter values until con-
verging to a fine-tuned configuration per vessel type. We use an optimization function that 
does not require hyper-parameter tuning, and thus we avoid the computational overhead 
and accuracy issues of this process. Third, our system supports incremental optimization, 
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by training in data batches, and therefore continuously improves performance. Fourth, our 
system is integrated with a composite event recognition engine, to efficiently detect com-
plex maritime activities, such as ship-to-ship transfer and loitering.

We report results from a comprehensive empirical evaluation on two real-world data-
sets. The first one is a publicly available dataset concerning vessel activity for 6 months 
around Brest, France. The second dataset is proprietary and is provided by MarineTraf-
fic1, one of the largest vessel tracking companies; it contains vessel positions for 6 months 
across the entire Mediterranean Sea. Our tests confirm that compression efficiency is com-
parable or even better than the one with default parametrization, without resorting to a 
laborious data exploration. This also enhances composite event recognition, as it operates 
on fewer data points without compromising its predictive accuracy.

Our prototype system employs open-source software specialized in vessel trajectory 
summarization and composite event recognition. This efficient, flexible, and robust soft-
ware offers to AIS data stakeholders, such as vessel tracking companies, a powerful means 
to intelligently discard a large amount of originally relayed positions. Instead of the current 
practice that randomly eliminates positions to reduce the bulk of accumulated information, 
our proposed lightweight synopses can reliably reconstruct vessel trajectories with minimal 
error while keeping the least possible amount of incoming locations. Furthermore, annota-
tions at those locations are valuable for more advanced processing, particularly in compos-
ite event recognition and real-time analytics. This system can be deployed against large-
volume AIS data and fused with other sources in order to enhance Situational Awareness 
in the maritime domain, and to forecast critical events of interest in real-world conditions.

This paper is an extended and improved version of two previous works. In [11], we 
introduced a genetic algorithm that takes into account the vessel types and can provide a 
suitable configuration for the summarization parameters in order to yield improved trajec-
tory synopses. This approach was further enhanced in [12] by avoiding hyper-parameter 
tuning, while also supporting incremental optimization and facilitating composite maritime 
event recognition. In this work, we study the efficiency of our compression engine for a 
wider range of vessel types. We also demonstrate in more detail the effect of such compres-
sion on recognizing complex events, by comparing the events identified in a non-summa-
rized dataset against the events recognized from the trajectory synopses. Last, but not least, 
we introduce a new component that re-annotates the compressed trajectories according to 
user-specified values based on domain knowledge. We show that, compared with the origi-
nal annotation assigned during the compression, this new annotation yields more accurate 
results in complex event recognition.

The remainder of this paper proceeds as follows. Section 2 surveys related work. Section 3 
outlines the types of mobility events annotated in the trajectory synopses for vessels. Section 4 
analyzes the suggested methodology involving a genetic algorithm for fine-tuning the parameters 
used in trajectory compression. Section 5 reports results from a comprehensive empirical study 
against two real-world AIS datasets. Finally, Sect. 6 summarizes the paper.

2 � Related work

Trajectory Simplification Our approach on trajectory synopses over streaming AIS posi-
tions resembles well-known methods for path simplification. Clearly, offline techniques 
working in batch mode like the seminal Douglas-Peucker algorithm [9] require that the 

1  https://​www.​marin​etraf​fi c.​com/

https://www.marinetraffic.com/


	 GeoInformatica

1 3

complete trajectory be available in advance. Algorithms like [24] take several passes over 
the sequence of stored locations to select which points to keep in the compressed trajectory. 
Although this paradigm may yield a reduced approximation error, offline processing gener-
ally incurs increased cost. Other algorithms like [1] emphasize only on spatial features and 
essentially address simplification of large polylines; temporal information in trajectories is 
entirely overlooked, although it plays a significant role especially for maritime monitoring.

In contrast, when positional data is streaming (as is our case with AIS locations emitted 
from vessels), trajectory simplification algorithms must work in online mode. Such trajec-
tories are evolving and the complete motion history may be neither stored nor indexed. In 
contrast, such online techniques should examine the data in one pass, i.e., each incoming 
position must be processed as it arrives. Some online methods like STTrace [34] apply an 
upper bound on the memory footprint of the synopsis to restrict the approximation size, 
i.e., a small number k of points must be kept per moving object in an in-memory buffer. 
Initially, each fresh location is accepted in the buffer. Once its capacity is reached and a 
fresh position can no longer be accommodated, it discards from the buffer the location that 
changes the least the existing trajectory approximation, i.e., incurs the minimal error with 
respect to Synchronous Euclidean Distance (SED). Of course, samples retained in such 
synopses should keep each compressed trajectory as much closer to the original one, as in 
fitting techniques [6, 26], which minimize approximation error. The one-pass approach in 
[26] discards points buffered in a sliding window until the error exceeds a given threshold. 
The notion of safe areas in the threshold-based method suggested in [34] keeps samples 
that deviate from predefined error bounds regarding speed and direction.

Under a similar error-based principle, SQUISH-E (Spatial QUalIty Simplification 
Heuristic) [27] drops samples by employing a priority queue in order to achieve a target 
compression ratio. It supports two operation modes: SQUISH-E(�) minimizes SED error 
while targeting a compression ratio � , and SQUISH-E(�) aims to maximize compression 
ratio ( � = 1 ) while keeping SED-estimated error below an upper bound � . In empirical 
tests  [27, 44] the latter mode seems to cope better, since it can generally remove more 
redundant points as long as the increased SED does not exceed the specified error bound � . 
Dead-reckoning policies like [43] and mobility tracking protocols in [18] can also provide 
trajectory summaries with accuracy (error) bounds. However, their basic premise is that 
summarization runs locally on board of each moving object, relaying only positions that 
signify changes in their course. This can hardly be the case with AIS tracking data, as ship-
ping companies and authorities need to track the whereabouts of vessels as frequently as 
possible.

The Bounded Quadrant System (BQS) algorithm [21] maintains a rectangular bound-
ing box as well as two bounding lines for each of its quadrants using a window over the 
most recent (not yet compressed) trajectory portion. Once a new point arrives, it can be 
readily dropped or retained by checking with a given error tolerance � (in distance units) 
against convex hulls formed by this box and bounding lines. A fast, relaxed version 
(FBQS) adds a line segment to the compressed trajectory and starts a new window once 
the convex hull cannot bound all locations in the current window. Further, its amnesic 
extension (ABQS) [22] aims to maximize the trajectory information retained in a fixed 
storage space and employs varying error tolerance depending on the age of the recorded 
segments. This aging-aware scheme is similar in spirit to a time-decaying approxima-
tion of streaming trajectories developed in [35] by gradually evicting older samples and 
offer greater precision for the most recent trajectory segments.

The one-pass, error-bounded algorithm OPERB suggested in [20] applies a novel 
local distance checking method and involves several optimizations in order to achieve 
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higher compression. It approximates the buffered points with a directed line and it 
checks if a fresh location fits with this line. If it has a distance more than a given error 
bound � from the directed line, a new segment is added to the approximation and a 
new starting point for the directed line is considered. A more aggressive variant of this 
algorithm allows “patches” by interpolating new points when moving objects have sud-
den changes in their paths or relay updates intermittently. A novel spatiotemporal cone 
intersection technique involving Synchronous Euclidean Distance is applied in [19] for 
more aggressive compression.

A survey and empirical study of various trajectory simplification techniques is avail-
able in [44]. In another recent survey [25], several state-of-the-art simplification algo-
rithms are empirically compared specifically against AIS data. Although such generic 
online or offline methods can provide reliable summaries over vessel trajectories, they 
entirely lack support for mobility-annotated features in the retained sampled points.

Maritime Trajectory Synopses Going beyond trajectory simplification, the maritime surveil-
lance system presented in [31] tracks vessel trajectories and also recognizes composite events, 
such as dangerous vessel activity. Its trajectory compression module applies a sliding window 
over the streaming positions, and periodically reports annotated “critical” points (stop, turn, 
speed change, etc.) to be retained in each vessel’s synopsis. Although such synopses are lossy 
approximations of the original trajectories, they are generally of high quality, as they can recon-
struct the actual course of vessels with tolerable error comparable to that of generic online 
simplification methods  [30]. Empirical results show that less than 5% of the raw data suffice 
to offer reliable trajectory approximations. This framework has been further enhanced to run in 
cluster infrastructures against scalable streaming data [32]. This has led to the Synopses Genera-
tor framework that detects mobility events with richer semantics (multiple annotations per loca-
tion, more refined conditions) with minimal latency [42]. With additional reasoning, the reported 
mobility events may also act as triggers of more complex events  [3, 7, 13, 14], analogous to 
that of CEP-traj [39], RTEC [5, 33], Wayeb [2, 42] and situational awareness systems based on 
Markov Logic [38]. Still, all this requires careful parametrization of its various conditions, which 
we aim to fine tune in this work using a genetic algorithm.

Machine Learning Approaches over AIS data Machine learning techniques have been 
applied against AIS data for various objectives. Indicatively, classifying vessels by type 
from raw AIS trajectories is suggested in [23]. Employing a recurrent neural network, the 
deep-learning scheme in [29] supports various tasks in maritime traffic surveillance, such 
as detection of abnormal behavior, trajectory reconstruction, vessel type identification, 
etc. A convolutional neural network model is employed in [4] to specifically detect fish-
ing activity from large historical datasets of vessel positions. In another direction, the tool 
proposed in [17] extracts features from large volumes of AIS data streams and employs a 
trained classifier to identify typical vessel activities related to fishing patterns (trawling, 
longlining). Furthermore, online tools based on inductive logic programming construct 
composite event patterns, that may subsequently used for recognition [16]. However, none 
of these techniques aims at online trajectory simplification as our proposed method.

3 � Online summarization of vessel trajectories

In this Section, we briefly examine the functionality of the Synopses Generator module2. 
Details about the applied trajectory summarization can be found in [31, 32].

2  https://​github.​com/​DataS​tories-​UniPi/​Traje​ctory-​Synop​ses-​Gener​ator

https://github.com/DataStories-UniPi/Trajectory-Synopses-Generator
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This module provides online, summarized representations of trajectories of vessels. 
Usually, large amounts of raw AIS positions can hardly contribute additional knowledge 
about the actual motion pattern of each vessel. Indeed, most vessels normally follow almost 
straight, predictable routes at open sea, with the exception of “emergency” circumstances 
like adverse weather conditions, accidents, etc. The Synopses Generator drops any eas-
ily predictable positions along trajectory segments of “normal” motion characteristics and 
judiciously retains only critical points that incrementally maintain lightweight synopses of 
coherent trajectory segments.

More specifically, from each fresh AIS position the Synopses Generator extracts four 
attributes: MMSI (Maritime Mobile Service Identity), which is used as vessel identifier, 
Longitude and Latitude coordinates of the reported position, as well as its Timestamp. 
Some AIS positions are discarded as noise, as raw AIS data often contain unwanted posi-
tions (such as duplicate or delayed messages, invalid coordinates, etc. [15]). For efficiency, 
this is performed with several single-pass heuristics in online fashion, which sometimes 
discard up to 20% of the original AIS positions without harming vessel monitoring and 
reconstruction of their trajectories [31].

At each given time point, the most recent noiseless positions per vessel are buffered in 
memory. These positions are used to calculate the mean velocity �m over the most recent 
portion of each evolving trajectory, as well as several derived spatiotemporal features (dis-
tance, travel time, overall change in heading, etc.). To achieve an accurate estimation of 
these features, the number of positions buffered in memory never exceeds a given param-
eter m. Another parameter, the historical timespan � is used to discard obsolete positions 
from the buffer (e.g. if � = 300 then no positions older than 300 seconds are stored in 
memory). Finally, a distance threshold D parameter tackles inherent agility of GPS posi-
tions by dropping those AIS messages less than D meters away when the vessel is stopped.

The Synopses Generator applies single-pass heuristics to detect and annotate mobility 
events with suitable parametrization (Table 1). One, two, or multiple critical points may be 
retained for each such event in the synopsis of a vessel trajectory. In particular:

–	 Stop indicates that a vessel remains stationary over a period of time. This is done by 
checking whether its instantaneous speed vnow is lower than a threshold vmin (e.g., 0.5 
knots) for every incoming AIS position. Only the first and last locations that satisfy the 
aforementioned threshold are annotated as critical points and are kept in the synopsis 
(indicating the start and the end of the event). In case a fresh location is found more 
than D meters away from the previous one, the stop event ends even if vnow < vmin.

–	 Slow motion indicates that a vessel sails at low speed for some time. This happens when 
the current speed vnow is consistently below a given threshold v� (e.g., < 5 knots) over 
a time interval. As with the previous event, the first and last point in this sub-trajectory 
are both annotated as critical.

–	 Speed change occurs when the rate of change for speed exceeds a given threshold � 
(e.g., 25%) with respect to its mean speed vm over a recent time interval. The two loca-
tions marking the duration of this event are kept as critical.

–	 Communication gaps indicate that a vessel has not reported any AIS location recently, 
e.g., in the past ΔT = 10 minutes. The locations marking loss of contact and its restora-
tion are denoted as critical.

–	 Change in Heading is detected when the current heading deviates more than an angle 
Δ� (e.g., > 4o ) from mean velocity �m . The AIS positions that satisfy this condition are 
marked as critical turning points. Since vessels generally make smooth turns, multiple 
such points may be successively issued as critical ones.
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We stress that this summarization process concerns only fresh locations actually relayed by 
the vessels; it does not make any short- or longer-term estimations about the future course 
of the vessel. All aforementioned mobility events are identified in online fashion based on 
the most recent historical portion of each trajectory, as continuously maintained and cap-
tured by its mean velocity �m . Hence, significant deviations in terms of heading or speed 
are not determined with respect to the entire trajectory, but only against its most recent 
motion segment spanning a few minutes and representing a handful of m recent locations 
per vessel. For example, a turning point is issued when the current heading differs more 
than Δ� from the known heading of velocity vector �m . Empirical evidence detailed in 
[30] indicates that the Synopses Generator yields high compression efficiency comparable 
with state-of-the-art trajectory simplification methods. Furthermore, unlike these general-
purpose algorithms, this summarization framework purposely detects mobility patterns 
specific to vessels, like smooth turns or speed changes, by judiciously annotating selected 
locations as turn, stop, gap, etc., and discarding the rest.

Figure 1 depicts the trajectory of a vessel as reconstructed from the AIS positions it 
relayed during an itinerary in the Aegean Sea between the ports of Rhodes and Herak-
lion, Crete. The critical points detected along the route are shown with different sym-
bols. Note that each such critical point is issued in real time, i.e., within milliseconds 
upon admission of a fresh AIS position. Thus, detection of mobility events keeps in pace 
with the streaming AIS data, and incrementally maintains the trajectory synopses. As 
a result, the original course of a vessel can be reliably approximated from its synopsis. 
Non-critical locations discarded from the synopsis can be estimated using a time-based 
interpolation. Overall, the Synopses Generator can compress drastically the data volume, 
sometimes keeping even less than 1% of the raw AIS positions with tolerable error in the 
resulting approximation [31].

Fig. 1   Critical points detected along a vessel trajectory



	 GeoInformatica

1 3

4 � Adapting compression parameters

Trajectory compression is very sensitive to parametrization. Table 1 lists the parameters 
that control which positions are marked as critical by the Synopses Generator. The same 
table presents their default values, which have been picked with the valuable advice of 
domain experts, specifically for an AIS dataset concerning vessel activity in Brest, 
France  [36]. Unfortunately, AIS datasets may differ in the sampling rate, the geographic 
area, the types of monitored vessels, etc., so the performance of the Synopses Generator 
with the default parameters would be far from acceptable. Additionally, using these param-
eters leads to treating all vessels uniformly, without taking into consideration their type, 
length, tonnage, etc. Because of the differences in the mobility patterns of the vessels this 
approach lacks flexibility. For example, because a larger ship takes turns more smoothly 
than a small ship (e.g. a Fishing or Tug Boat) allowing a more relaxed (i.e., greater) angle 
threshold for larger ships would not harm the quality of their synopses. On the other hand, 
having a stricter angle threshold for smaller ships would entail a more accurate approxi-
mate route.

To address these issues, we developed a system that computes, for each vessel type in 
a dataset, the optimal compression parameter values from the ranges shown in the last 
column of Table 1. Our system keeps as few AIS messages as possible, i.e., it minimizes 
the Compression Ratio, while at the same time minimizes the Approximation Error in 
the resulting trajectory synopses. The Compression Ratio is defined as the percentage of 
locations kept as critical points in the synopses over the noise-free raw locations for all 
vessels, i.e.:

The parameters that we optimize do not affect the noise reduction filters; thus, the number 
of noiseless positions is fixed for a given dataset of AIS messages. Typically, the approxi-
mation error is quantified with the Root Mean Square Error (in meters):

where H(⋅) is the Haversine distance between each original location p from its time-syn-
chronized point p′ in the synopsis.

(1)Ratio =
number of critical points for all vessels

number of noiseless points for all vessels

(2)RMSE =

�

∑

p∈noiseless points H
2(p, p�)

number of noiseless points for all vessels

Table 1   Parameters of vessel 
trajectory synopses

Symbol Parameter Default value Value range

Δ� Angle threshold ( o) 4 2… 25

m Buffer size (locations) 5 3… 50

ΔT Gap Period (seconds) 1800 200… 5000

� Historical timespan (seconds) 3600 300… 5000

v
min

No speed threshold (knots) 0.5 0.05… 2

v� Low speed threshold (knots) 5 0.05… 8

� Speed ratio 0.25 0.01… 0.8

D Distance threshold (meters) 50 2… 100
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4.1 � Genetic algorithm

Our system employs a Genetic Algorithm (GA) to optimize the trajectory compression 
parameter values per vessel type. GAs can solve maximization and minimization prob-
lems that are often intractable because of their large space of parameters and complicated 
nature of the optimization objective (non-monotone, non-convex, etc.). Through rand-
omized decisions, GAs manage to both exploit and explore the parameter space by both 
focusing on parameter values that optimize the optimization function and doing more “ran-
dom” decisions that lead to exploring the space away from values that seem to have good 
performance.

In each generation, GA keeps a population of individuals. In our case, each individual 
is a tuple of values that represents the trajectory compression parameters (see Table  1). 
The individuals of the initial population are usually picked at random, e.g. using a uniform 
distribution. After picking the individuals the fitness of each one is computed. To do this, 
the Synopses Generator (see Sect. 3) is instructed to compute the synopses of the vessels 
according to the parameter values of the individual. Then, the Compression Ratio and the 
RMSE, which are extracted from the synopses, are used for calculating the fitness of the 
individual; details about the fitness (optimization function) will be discussed in the follow-
ing section. Figure 2 illustrates our optimization process.

After calculating the fitness of all the individuals, the operators of selection, crossover, 
and mutation are successively applied. First selection is applied, where we use Tournament 
Selection. This operator repeatedly and randomly picks three individuals and selects the fit-
test, until the desired number of total individuals has been chosen. Selection is followed by 
crossover; we adopt single-point crossover, with a probability of 0.4. Finally, for the muta-
tion operator we employ Gaussian Mutation, which adds random Gaussian noise to each 
value of an individual with probability 0.5. The mutation probability is set to 0.8 since the 
Gaussian Mutation restricts mutation. The steps of generation evaluation, selection, crosso-
ver and mutation are repeated for a fixed number of times.

Fig. 2   Fine-tuning trajectory compression parameters
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4.2 � Optimization function

In our earlier work [11], we had instructed the GA to minimize the following optimization 
function, that simultaneously minimizes both RMSE and Ratio:

where r and n are hyper-parameters. The goal of this function was to make RMSE and 
Ratio approximately inversely proportional to each other. This is exactly what happens 
when r = 0 and n = 1 , in which case the optimization function considers equally good two 
summarizations with the same product of RMSE and Ratio.

In order to set values to these hyper-parameters, we had to train the GA for various com-
binations of their values and choose the combination that achieved RMSE and Ratio values 
below certain, user-specified thresholds (simply put, there is no combination of RMSE and 
Ratio that constitute an optimal synopsis but rather different applications require different 
compression levels). This hyper-parameter tuning could lead to sub-optimal values for the 
hyper-parameters, as the data used in this process may have different statistical properties 
from the remaining dataset. Moreover, choosing the two thresholds for the RMSE and Ratio 
requires knowledge of the given dataset, since there is no guarantee that these thresholds 
can both be satisfied. This especially applies to datasets that have different sampling rates, 
where drastically different RMSE and Ratio combinations may be computed. Finally, to set 
the hyper-parameters we needed to run a laborious hyper-parameter setting phase which 
led to values that were hard to understand by the user.

To avoid such issues, as well as the computational overhead required for hyper-parame-
ter tuning, we define the following optimization function:

where ReLU = max(x, 0) is the Rectified Linear Unit function and � is a threshold for 
RMSE. Intuitively, many applications require the RMSE to be below a certain threshold 
so that the synopsis can be characterized as accurate and not deviating from the original 
trajectory. This is the role that ReLU serves: if RMSE exceeds the value of � then the syn-
opsis is considered less reliable and minimizing function (4) leads to effectively minimiz-
ing RMSE, since Ratio is always less than 1 and RMSE typically takes much higher values. 
In contrast, as long as RMSE is less than the threshold � , the minimization of function (4) 
leads to the minimization of Ratio, since the RMSE term “disappears”.

Thanks to function (4), the user can set the desired value for � (whose value and purpose 
are easily interpretable), which results in computing synopses with a similar RMSE and the 
smallest possible Ratio. This process does not require any hyper-parameter training for the 
optimization function and allows the algorithm to work with different levels of compres-
sion, according to the user’s goals. Something similar happens in many trajectory simpli-
fication methods, where the resulting synopses are controlled by user specified parameters 
(see Sect. 2). In Sect. 5, we will present an empirical evaluation of the use of this function 
and comparison with our previous function, (3).

4.3 � Incremental optimization

Our system supports incremental optimization, by training in steps, where each step concerns 
a data batch. At the i-th step the data used for training the GA are the batches n to i, where 
n < i . The initial population of the i-th step consists of the best individuals of the previous 

(3)(RMSE + r)n × Ratio

(4)Ratio + ReLU(RMSE − �)



GeoInformatica	

1 3

step (for the 1st step, the population may be randomly chosen). Thus after the training of the 
i-th step, we evaluate the best individual(s) on the (unseen) (i + 1)-th data batch. Figure 3 
shows the processing flow. Incremental optimization aims to support “online” reasoning. In a 
real life system, where the Synopses Generator is used to compress the vessels’ trajectories, 
one could re-train the GA periodically (e.g. every week), to update the compression param-
eters (e.g. various ships tend to have different behavior in different seasons).

4.4 � Composite event recognition

Composite event recognition engines [3, 7, 13, 14] are an integral part of maritime moni-
toring systems aiming to support safe shipping via online detection of events, like ship-to-
ship transfer, loitering and tugging. These composite events are defined using spatiotem-
poral patterns that are continuously matched on AIS data streams and static information, 
like protected zones and port areas. In order to achieve online performance, composite 
event recognition engines rely heavily on trajectory summarization. Our system uses the 
‘Run-Time Event Calculus’ (RTEC), an open-source3 composite event recognition engine 
with formal, declarative semantics, successfully deployed in the maritime domain [5, 33]. 
As will be shown in our empirical analysis, when RTEC operates on compressed trajec-
tories generated by the GA optimization, it performs more efficient maritime event rec-
ognition, compared to consuming compressed trajectories generated under the default 
parametrization.

4.5 � Relabeling of critical points

The GA summarizes the trajectories of the vessels using as less positions as possible, while 
at the same time keeping the reconstruction error bounded. To achieve this, the GA picks 
a set of parameter values that may be used to annotate the retained vessel positions (e.g., 
label them as stop, turn, gap). The positions that have one or more such labels are consid-
ered critical (as listed in Sect. 3) and are used in the synopsis maintained per vessel. Using 
such synopses and this labeling, RTEC detects composite maritime events.

Consider, for example, that the GA sets the value for angle threshold to Δ� = 20o ; then, 
all positions where the vessel turns more than 20o will be labeled as turning points. The 

Fig. 3   Incremental Optimization

3  https://​github.​com/​aarti​kis/​RTEC

https://github.com/aartikis/RTEC
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value of 20o for angle threshold might be good to effectively summarize a vessel’s trajec-
tory, but it might not accurately represent all turning points. Since the range in param-
eter values is quite large (Table 1), the GA may pick values that compromise the predic-
tive accuracy of composite event recognition. For instance, labeling as turning points only 
those with turning angle greater than 20o may lead to false negatives in event recognition.

To address this issue, we designed a re-labeling scheme: Given that the points (and not 
the labels) picked by the GA summarize the original trajectories effectively, we change 
some of their labels. More specifically, we change the following annotations that are par-
ticularly important in recognizing certain complex events:

–	 Stop annotations, as these are important for recognizing anchored or moored, pilot-
ing, rendezvous, and loitering events. The relevant parameters that control the stopping 
labels are the speed threshold and distance threshold.

–	 Change in heading annotations, as these are important for recognizing trawling and 
search and rescue events. The relevant parameter that controls the turning labels is the 
angle threshold.

–	 Change in speed annotations, as these are important for recognizing search and rescue 
events. The relevant parameter that controls the acceleration labels is the speed threshold.

All other annotations assigned by the GA remain unchanged, as they have small impact on 
composite event recognition and their number is much smaller.

In order for the relabelling process to be successful, we need values for the four param-
eters specified above which accurately represent real world events. To do so, one needs 
domain knowledge and experts’ advice. The other option is to have a ground truth that con-
tains information about where turn, stop and acceleration events actually occur — using 
this we could automatically calibrate suitable parameter values for the relabeling process. 
Unfortunately, such ground truth is difficult to obtain even for a small number of trajecto-
ries, as it requires complete and accurate information in the raw AIS data and then meticu-
lous inspection by experts. For this reason, we used parameter values that were chosen by 
domain experts (the corresponding experiments are presented in Sect. 5.6).

After specifying values for the parameters, the relabeling is done using the vessels’ syn-
opses. Note that since this process examines only critical points, it can be applied in online 
fashion by simply checking the mobility status (speed, turn, etc.) of each one and readily 
determining its new annotations. For example, if the new value for angle threshold is 4 
degrees, then every critical point at which a turn of more that 4 degrees was recorded is 
labeled with a change in heading annotation, while critical points with a turn of less than 
4 degrees have their change in heading annotation removed (if they had one). It should be 
noted that in the uncompressed trajectories there might have been points in which the ves-
sel turned more than 4 degrees; if these points are not present in the GA’s synopses, then 
they are also absent after the relabeling process. A similar process is followed for relabe-
ling the other two annotations and is based on the respective rules outlined in Sect. 3 and 
discussed in detail in [32].

The relabeling process results in trajectories that contain the same positions as the synopses 
computed by the GA, but with different labels. Therefore, we retain the good summarization of 
the original trajectories, while at the same time aiding composite event recognition.
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5 � Empirical analysis

5.1 � Experimental setup

We used two real-world AIS datasets to evaluate our system. The first one is a public data-
set [36] covering the area of Brest, France (hereafter called the ‘BR dataset’), which spans 
a time period of 6 months (October 2015 to March 2016). The second dataset also spans 6 
months (March to August 2016), with vessel positions from the Mediterranean Sea (here-
after ‘MS dataset’), given to us by MarineTraffic, who is our partner in the INFORE pro-
ject, and also owner of the largest network of AIS base stations globally. Table 2 displays 
the number of AIS messages and vessels for the six vessel types with the most messages. 
In our analysis, we will mostly focus on these six vessel types.

As already mentioned, AIS data stakeholders, like MarineTraffic, discard a large 
amount of originally relayed vessel positions to reduce the stored information. This is the 
case with the MS dataset, which has an average sampling rate ten times lower than that 
of the BR dataset. Thus, the Ratio and RMSE values of the MS dataset are expected to be 
much higher, since many critical points containing significant information may have been 
discarded by the data provider.

Our system is open-source software4 built using Python, Scala and Prolog. The GA is 
implemented in Python 3 using the Deap framework5, the Synopses Generator in Scala 
on top of Apache Flink6, and RTEC was written in Prolog and tested under YAP7 and 
SWI Prolog8. Our experiments were conducted on a Linux server with Intel® Xeon® CPU 
E5-2630 v2 @ 2.60GHz and 256GB RAM.

Table 2   AIS Datasets

Brest (BR) Dataset Mediterranean Sea (MS) Dataset

Vessel type AIS Messages Vessels Vessel type AIS Messages Ves-
sels

Passenger Ships 4,792,487 17 Cargo Vessels 48,646,162 5,804
Unknown 3,466,765 115 Fishing Boats 36,696,167 3,634
Fishing Boats 3,288,577 161 Pleasure Crafts 18,157,399 6,057
Tug Boats 1,411,761 15 Sailing Vessels 18,157,399 8,062
Cargo Vessels 1,198,228 184 Passenger Ships 16,250,325 1,424
Military 802,045 12 Tankers 14,466,046 1,747
Entire dataset 19,035,631 5,055 Entire dataset 221,772,127 35,546

4  https://​github.​com/​Giann​isFik​ioris/​Genet​ic-​Algor​ithm-​for-​Synop​ses-​Gener​ator
5  https://​deap.​readt​hedocs.​io
6  https://​flink.​apache.​org/
8  https://​www.​swi-​prolog.​org/
7  https://​en.​wikip​edia.​org/​wiki/​YAP_​(Prolog)

https://github.com/GiannisFikioris/Genetic-Algorithm-for-Synopses-Generator
https://deap.readthedocs.io
https://flink.apache.org/
https://www.swi-prolog.org/
https://en.wikipedia.org/wiki/YAP_%28Prolog)
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5.2 � Genetic algorithm

We present the RMSE and Ratio values achieved by training the GA for various values of � , 
i.e. the threshold for RMSE in the optimization function (see Eq. (4)). For comparison, we 
also present the RMSE and Ratio values for synopses produced under the default compres-
sion parameter values as specified in the last column of Table 1, which were picked with 
the help of domain experts for the BR dataset. Moreover, we present the RMSE and Ratio 
values of the synopses generated by our earlier optimization function, i.e. Eq. (3).

We performed 6-fold cross validation on the six months of the BR dataset (approx. 14M 
AIS messages), and on two months of the MS dataset, March and June (approx.  53M 
AIS messages for both), in order to compare seasonal variations. Figures 4 and 5 display 
the results. To facilitate understanding, we omitted the results achieved using the default 
parameter values on the MS dataset. As default parameter values increase RMSE signifi-
cantly, we report these results only in Table 3. Concerning the use of the earlier optimiza-
tion function, i.e.  Eq.  (3), hyper-parameter tuning in the BR dataset was constrained to 
achieve an RMSE value between 15m–30m and a Ratio value between 10%– 30%. In the 
more challenging MS dataset, with the sparser update frequency of vessels, hyper-parame-
ter tuning was performed by constraining RMSE to 80m and Ratio to 50%.

For the BR dataset, Fig. 4 shows that the results of the default parameters are satisfac-
tory. However, as expected, using different parameter values for each ship type yields bet-
ter results. In all plots, picking the desired value for � yields better results, both in terms 
of RMSE and Ratio. The only exception are Tug Boats, where the RMSE is too low; by 
increasing the RMSE by a small value, which makes no practical difference in the approxi-
mation error, we manage to achieve half the value for Ratio.

For the MS dataset, the results from the default parameters in Table 3 immediately show 
that their performance is unsatisfactory; RMSE values of over 300m lead to huge inaccu-
racies between the original trajectories and their synopses, with the exception of Fishing 

Fig. 4   BR dataset: RMSE (red lines) and Ratio (blue lines) for different values of � . Horizontal dashed (con-
tinuous) lines concern the use of the default parameter values (earlier optimization function Eq. (3))
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Boats which obtain tolerable RMSE values. However, with a proper choice for � , the GA 
can give a similar RMSE and a lower Ratio.

Additionally, in Figs. 4 and 5, when the GA minimizes the earlier optimization func-
tion (Eq. (3)), performance is good but unpredictable. The resulting synopses are always 
close to satisfying the thresholds set during hyper-parameter tuning, but the final RMSE 
and Ratio are not always what we would prefer. This can be seen for Tug Boats in the BR 

Fig. 5   MS dataset: RMSE (red lines) and Ratio (blue lines) for different values of � . Top six figures: March; 
bottom six figures: June. Horizontal continuous lines concern the use of the earlier optimization function 
Eq. (3)
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dataset (Fig. 4), where although the result is more than acceptable, its RMSE is a lot less 
than the threshold value. Instead, the synopses generated by function (4) manage to keep 
an acceptable error and a lower Ratio. In the MS dataset (Fig. 5), where the same thresh-
olds were used for all vessel types to tune the hyper-parameters of our earlier methodology, 
we also see unpredictability: although the threshold values are the same, the results for 
each ship type are different, because the hyper-parameters were computed on a different set 
of data. In contrast, when the GA minimizes function (4), the RMSE is almost always close 
to the value of � , and given that, the Ratio takes the best possible value.

Figures 4 and 5 illustrate for which vessel type the trajectory compression is more or 
less efficient. For example, in the MS dataset, while the RMSE curve is (with some excep-
tions) an almost straight line that satisfies the thresholds set by � , the Ratio curve is similar 
in all diagrams, but shifted upwards or downwards — vessel types where the Ratio curve is 
higher correspond to less efficient trajectory compression. Interestingly, the Ratio curve is 
in similar position for both March and June for each vessel type.

The vessel types in the MS dataset where the RMSE curve is not a straight line that sat-
isfies the thresholds set by � , are Cargo Vessels and Pleasure Crafts. For Cargo Vessels, the 
only irregularity is in Fig. 5a, where for � = 120m the RMSE is very high — this is most 
likely caused because the parameters picked by the GA during the training phase were not 
appropriate to summarize the dataset in one of the test datasets. Pleasure Crafts exhibit a 
different behavior. In Fig. 5c the RMSE values are much higher than the specified threshold 
� . This is not due to erroneous training, as in that phase synopses with the desired error 
were found. Instead, Pleasure Crafts tend to exhibit higher RMSE values in the test sets, 
most likely due to variance in mobility patterns. Something similar happens in Fig. 5i (dif-
ferent season), although at a much smaller scale.

5.3 � Comparison with online trajectory simplification methods

Next, we compare GA with several state-of-the-art trajectory simplification methods. In 
particular, we conducted a qualitative analysis regarding the effects of simplification 
over vessel trajectories, primarily in terms of compression efficiency (average Ratio over 
all vessels) and approximation quality (the average RMSE over all vessel trajectories). 
We consider several trajectory simplification algorithms: SQUISH-E  [27], OPERB  [20], 
FBQS [21], and STTrace [34], and we simulate their execution in online mode over the BR 
dataset using the implementations offered in [44]. Over the same data, we also apply GA, 
which apart from identifying critical points online, it also annotates them (as turns, stops, 
etc.), something that no simplification method inherently supports. Each method’s settings 

Table 3   Results with default 
parametrization on MS dataset

RMSE Ratio

Vessel type March June March June

Cargo Vessels 1,099m 728m 15% 18%
Fishing Boats 107m 79m 52% 53%
Pleasure Crafts 367m 220m 29% 21%
Sailing Vessels 318m 188m 36% 31%
Passenger Ships 710m 662m 42% 43%
Tankers 846m 567m 19% 23%
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and the corresponding results are listed in Table 4. Since a detailed empirical comparison 
is beyond the scope of this paper, we stress that parametrization of each method is not fine-
tuned, hence these results can only be seen as indicative.

From the results in Table 4, it is clear that all methods tend to drop many original loca-
tions in order to yield a simplified trajectory, although at a different compression ratio 
depending on the specifications of each algorithm and its objectives. Therefore, they also 
differ in approximation quality. Of all tested methods, SQUISH-E seems to offer supreme 
quality with minimal RMSE in the resulting synopses. Yet, in order to achieve such accu-
racy it has to retain many more locations compared to OPERB, FBQS, and SSTrace, hence 
its compression efficiency (Ratio) is the worst.

If substantial data reduction is the principal objective, OPERB and FBQS are more 
suitable and competitive to each other both in terms of quality and compression. OPERB 
seems to preserve more locations along turns as those points exceed the specified error 
bound � with respect to the directed line constructed from the recent motion history. Still, 
both algorithms seem to yield increased approximation error as only a 10% of the original 
locations is retained, hence the compressed trajectories may deviate significantly from the 
original ones. Although this may be a side effect of the ad-hoc parameter settings applied 
in this test, it clearly shows the trade-off between data reduction and approximation quality.

STTrace accurately matches the target compression ratio (20% in this example), as it 
parsimoniously preserves “good” locations that incur minimal error in the resulting trajec-
tory approximation. Unlike uniform sampling, it tends to keep more points along turns, so 
as to closely maintain the shape of each path. Since the buffer capacity is set to 20% of the 
original locations per trajectory, longer trajectories are not oversimplified and their approx-
imations retain more samples compared to shorter ones.

GA generally yields acceptable compression efficiency as the amount of retained critical 
points is comparable with the aforementioned state-of-the-art methods. Its parameter set-
tings are according to the values that GA found as optimal in the experiments in Sect. 5.2. 
Specifically tailored for maritime trajectories, it purposely detects mobility patterns of 
vessels, like smooth turns or speed changes, so it may preserve the involved locations in 
the resulting synopses. Most importantly, its added value is that each judiciously retained 
critical point also carries annotations, e.g., turn, stop, gap. etc., not available from any of 
the general-purpose simplification methods. Obviously, such filtering greatly depends on 
proper choice of parameter values, which is a trade-off between reduction efficiency and 
approximation accuracy. Overall, GA seems to have a very balanced behavior, as it accom-
plishes a very low approximation error (only SQUISH-E fares marginally better in terms of 
quality) at the expense of a fair compression ratio. With a more relaxed setting (e.g., � = 5o 

Table 4   Comparison of simplification algorithms over the BR dataset. Values in bold indicate the algo-
rithms that achieve the best performance in average Ratio or RMSE

Algorithm Parametrization Avg. Ratio Avg. RMSE 
(m)

SQUISH-E [27] Target Ratio = 1 , � = 0.0002 0.347 21.29
OPERB [20] Error bound � = 0.0002 0.104 206.39
FBQS [21] Error tolerance � = 0.0002 0.0996 187.54
STTrace [34] Target Ratio = 0.2 0.1996 31.64
GA Target RMSE � = 15o 0.245 22.04
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instead of � = 15o ) more locations could qualify as critical points (e.g., turns), capturing 
slighter changes along each trajectory.

5.4 � Incremental optimization

We evaluated the process of incremental optimization, as described in Sect. 4.3. We used 
only the MS dataset, since this has enough data to create substantially large data batches. 
We set the threshold � , which controls the desired RMSE (Eq. (4)), to 60m. We split the 
MS dataset into six disjoint data batches, where each batch had a month of AIS messages. 
Consequently, the system performed five training steps: in the first step, the GA was trained 
on the AIS messages of March and the resulting parameter values where evaluated on the 
data of April. In the second step, the initial population of the GA was set to the best indi-
viduals of the previous training step; the training data consisted of the AIS messages of 
March and April. Then, the evaluation was carried out on the data of May. The following 
three steps were performed in a similar way. We should note that the first training step 
includes 15 generations of individuals, while the remaining four training steps include only 
10 generations. We made this choice because in all training steps, except the first one, the 
starting population is set to the best individuals of the previous step. In contrast, in the first 
training step the initial population is randomly chosen, requiring a larger number of gen-
erations to reach acceptable results.

In Fig. 6 we present the performance of incremental optimization during train-
ing: we report the RMSE and Ratio values of the synopses produced using the best 
individual, i.e.  the compression parameter values that minimized Eq.  (4), of each 
generation. Overall, there is continuity across the training phases; both the RMSE 
and Ratio values of the last generation of a training phase are very close to the cor-
responding values of the first generation of the following phase. Pleasure Crafts 
exhibit slightly different behavior: their RMSE value is higher than the threshold of 
60m in the first generation of some training phases. This is caused by the fact that 

Fig. 6   Performance of Incremental Optimization on the training sets over generations for the MS dataset. 
RMSE (red) and Ratio (blue) are shown for the best individuals (parameter values). The vertical lines sepa-
rate the training steps and the horizontal line indicates the RMSE threshold � . For tankers, we omitted the 
first RMSE value to avoid re-scaling the plot
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Pleasure Crafts have different behaviour in different months (recall that the train-
ing data spans from March to July). Additionally, Fig. 6 shows that finding param-
eter values that satisfy the RMSE threshold of � = 60 m is easy, as these values 
are computed quite early during the training phase. Finally, the fluctuations that 
appear in some of the graphs in Fig. 6 are not troubling since the initial population 
of the i-th step is chosen as the best individuals from the entire training phase of 
the (i − 1)-th step.

Figure 7 presents the performance of incremental optimization on the test sets. For 
example, the displayed RMSE and Ratio values of July concern the trajectory compres-
sion of the AIS messages of July, using the parameter values that minimized the optimi-
zation function on all the previous months (March to June). We can immediately notice 
that the good results observed during training carry over to the testing. For all but one 
vessel types, the attained RMSE is close to the threshold of 60m, whereas the Ratio 
values do not deviate from the values achieved during training. The exception is Sailing 
Vessels (Figs. 6f and 7f), where the compression ratio is higher for the summer months. 
This makes sense, since mobility during this period is increased and in order to main-
tain an acceptable trajectory reconstruction error we need to keep more of the original 
data points.

Concerning Pleasure Crafts, we notice a behavior similar to that of Sailing Vessels, 
where the values of Ratio increase as more months are examined (Figs. 6e and 7e). The 
performance during the training phase is more than satisfactory, where we observe the 
lowest Ratio values across all ship types (Fig. 6e). However, in the early testing phases 
we notice an unusually high value of RMSE (Fig. 7e). This behaviour is consistent with 
the findings reported in Sect.  5.2. The more training data consumed by the GA, the 
closer the RMSE becomes to the desired value of � (see, again, Fig. 7e).

5.5 � Composite event recognition

Next, we assess the effects of trajectory compression under GA optimization, on composite 
maritime event recognition as performed by RTEC. The complex events that we examine 
require spatial information that cannot be extracted directly from the vessels’ trajectories. 

Fig. 7   Performance of Incremental Optimization on the test sets for the MS dataset
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For this reason, the data used as input for RTEC is enhanced with information about the 
location of the vessels, such as proximity to a port or other vessels. This is done by means 
of spatio-temporal link discovery [33, 37]. Furthermore, additional data are required, such 
as protected areas (Natura 2000 areas9) and anchorage areas. Table 5 summarises the data 
sources used for composite maritime event recognition.

In the first column of Table 6 we present the composite events under investigation, all 
of which are durative. ‘Ship-to-ship transfer’, for example, is said to take place when two 
ships are stopped in the open sea, closely to each other for a duration longer than a certain 
threshold value. In order to recognize such events, we must fuse the trajectories of differ-
ent vessels, as well as compute some spatiotemporal relationships between them (for more 
information see [33]).

Unlike our previous experiments, the event patterns are not restricted to the 6 vessel 
types with the most data points. In the composite event recognition tests, we used all vessel 
types available in the dataset. We restricted attention to the BR dataset, since in this dataset 
it is possible to achieve an accurate summarization of the entire dataset by using the opti-
mized parameter values of the top-6 vessel types. Some of the vessel types that are not in 
the top-6 have very similar moving behaviour to a type that is in the top-6; in these cases, 
we used the GA’s optimal parameter values of the latter for compressing the trajectories of 

Table 5   Dataset sources for 
composite maritime event 
recognition

Attribute Brest Source(s)

Position signals 19M [36]
Spatio-temporal events 374K [33]
Fishing areas 263 [28, 41]
Natura 2000 areas 1.2K [40]
Anchorage areas 9 [8]
Near coast areas 197 [10]
Ports 222 [36]

Table 6   Accuracy of Composite 
Event Recognition

Composite Event Precision Recall F
1
-score

Anchored or Moored Vessel 1.0 1.0 1.0
Drifting Vessel 0.88 0.99 0.93
High Speed Near Coast 0.97 0.96 0.96
Search & rescue operations 0.97 1.0 0.99
Loitering 1.0 1.0 1.0
Piloting 1.0 1.0 1.0
Ship-to-ship transfer 1.0 1.0 1.0
Trawling 1.0 1.0 1.0
Tugging 0.99 1.0 1.0
Vessel under way 0.99 1.0 0.99

9  https://​ec.​europa.​eu/​envir​onment/​nature/​natur​a2000/​index_​en.​htm

https://ec.europa.eu/environment/nature/natura2000/index_en.htm
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the former. Less than 8% of the dataset includes vessel types with movement patterns that 
differ from those in the top-6. For this small part of the dataset, we used the default com-
pression parameter values. Finally, in the optimization function of the GA (Eq.  (4)), the 
RMSE threshold � was set to 15m.

Table  6 presents the predictive accuracy of RTEC when consuming the compressed 
dataset which was generated as described above. The ground truth, according to which we 
calculated predictive accuracy, consists of the composite event intervals computed when 
RTEC consumes the original uncompressed dataset. For example, the number of False Pos-
itives (resp. False Negatives) expresses the seconds in which a composite event is recog-
nized when consuming the compressed (resp. uncompressed) dataset but not detected when 
consuming the uncompressed (resp. compressed) dataset. Table 6 shows that our system 
achieves perfect scores for most composite events. For the remaining ones, the recognition 
scores are very close to optimal.

To support online recognition, RTEC operates using a sliding window [5]. Table  7 
shows the time required to recognize all events displayed in Table 6, when RTEC oper-
ates using a 24-hour sliding window, over different inputs: the original (uncompressed) BR 
dataset, its synopses under default parameterization (‘BR synopses [Def]’), and those opti-
mized by the GA (‘BR synopses [GA]’). As expected, operating on compressed trajectories 
offers very significant performance gains. Additionally, the synopses derived using the GA 
are more succinct and thus lead to more efficient composite event recognition, as opposed 
to those produced under the default parameter values.

5.6 � Critical point relabeling

Finally, we evaluated the process of critical point relabeling, as described in Sect. 4.5. 
We used the BR dataset and relabeled the synopses generated by the GA. The parame-
ter values used for the relabeling were the default parameters (see Table 1) since these 
values were manually chosen using experts’ advice and thus represent real-world 
events more accurately. Table 8 presents the number of critical points before and after 

Table 7   Efficiency of Composite Event Recognition

RTEC Input Average Recognition Time Standard Deviation Worst Time
per Window (sec) (sec) (sec)

BR dataset 3.54 6.28 28.09
BR synopses [Def] 1.62 2.06 14.46
BR synopses [GA] 1.05 1.02 7.85

Table 8   Number of Annotations 
before and after relabeling

Label Before Relabeling After Relabe-
ling

Stop 281,312 219,884
Change in heading 1,548,168 1,966,807
Change in speed 889,219 323,113
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this relabeling. We observe an increase of 27% in turning points as we intended (the 
value picked by GA for angle threshold was too high), as well as a 22% drop in the 
stop events. There is also a sharp reduction by 64% in the ‘change in speed’ events. 
Since the default parameters were picked by experts, and thus the relabeled dataset 
represents simple events more accurately, the significant differences between the two 
summarizations indicate that before relabeling, the representation of simple events 
was far from accurate. This is to be expected, since GA is geared towards optimiz-
ing summarization performance, and thus picks parameter values that may not be the 
most suitable in recognizing real world events.

To measure the effect of relabeling on composite event recognition, we considered 
as ground truth the composite event intervals recognized by RTEC when consuming the 
uncompressed dataset, where the critical points were labeled according to the default 
parameters. Then we compared the ground truth with the following two datasets: 

1.	 The composite event intervals produced by RTEC when consuming the compressed 
dataset, both summarized and labeled with critical points according to the GA’s param-
eters.

2.	 The composite event intervals produced when consuming the compressed dataset, sum-
marized according to the GA’s parameters, but relabeled according to the default param-
eters.

Table 9 presents the F1-score percentage difference of each composite event for both data-
sets. The second column presents how better percentage-wise the relabeled dataset is. The 
two approaches have similar performance. The notable exception is the Trawling event, 
in which using relabeling led to a vastly better performance. This is due to the fact that 
Trawling heavily depends on ‘change in heading’ critical points, controlled by the angle 
threshold compression parameter, that takes extremely high values in the parameters gener-
ated by the GA. This issue is addressed by the relabeling process that manages to capture 
many more turning points along trajectories (i.e., the mobility events concerning changes 
in heading in Table 8), leading to much better predictive accuracy.

Table 9   Effects of Critical Point 
Relabeling

Composite Event Performance 
change with respect 
to GA

Anchored or Moored Vessel -16%
Drifting Vessel 0%
High Speed Near Coast 0%
Search & rescue operations 0%
Loitering -1%
Piloting 6%
Ship-to-ship transfer -4%
Trawling 425%
Tugging 0%
Vessel under way -1%
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6 � Summary and future work

Maritime monitoring systems rely heavily on vessel trajectory summarization tech-
niques, in order to effectively support online analytics. We presented an open-source 
system optimizing vessel trajectory compression, producing trajectory synopses mini-
mizing the approximation error and the compression ratio. Furthermore, it supports 
incremental optimization and does not rely on expert knowledge; in contrast, the only 
user input required is the desired approximation error in the resulting synopses. The 
synopses produced can be used for composite maritime event recognition, allowing 
for effective maritime situational awareness; this can be improved by the process of 
relabelling, which requires some expert knowledge to describe simple events such as 
turning events. A comprehensive empirical evaluation on two real-world AIS data-
sets confirmed that compression efficiency is at least as good as the one with default 
parametrization, without relying on laborious data exploration. The resulting more 
succinct synopses also improve the recognition of composite maritime events without 
compromising predictive accuracy. In future work, we plan evaluate our system on 
composite maritime event forecasting, i.e.  the detection of future events before they 
occur, in order to support proactive decision-making.
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