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Abstract

Complex Event Recognition (CER) systems detect event occurrences in streaming time-stamped
input using predefined event patterns. Logic-based approaches are of special interest in CER,
since, via Statistical Relational AI, they combine uncertainty-resilient reasoning with time and
change, with machine learning, thus alleviating the cost of manual event pattern authoring. We
present a system based on Answer Set Programming (ASP), capable of probabilistic reasoning
with complex event patterns in the form of weighted rules in the Event Calculus, whose structure
and weights are learnt online. We compare our ASP-based implementation with a Markov Logic-
based one and with a number of state-of-the-art batch learning algorithms on CER data sets
for activity recognition, maritime surveillance and fleet management. Our results demonstrate
the superiority of our novel approach, both in terms of efficiency and predictive performance.
This paper is under consideration for publication in Theory and Practice of Logic Programming
(TPLP).

KEYWORDS: inductive logic programming and multi-relational data mining, knowledge repre-
sentation and nonmonotonic reasoning

1 Introduction

Complex Event Recognition (CER) systems (Cugola and Margara 2012) detect occur-

rences of complex events (CEs) in streaming input, defined as spatiotemporal combina-

tions of simple events (e.g. sensor data), using a set of CE patterns. Since such patterns

are not always known beforehand, machine learning algorithms for discovering them

from data are highly useful. Thanks to their efficiency, online learning algorithms are of

special interest. Such algorithms should be resilient to noise and uncertainty, which are

ubiquitous in temporal data streams (Alevizos et al . 2017), while taking into account

∗This paper is an extended version of Katzouris and Artikis (2020), which has been nominated as a
candidate for TPLP’s rapid publication track by KR2020’s program committee.
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commonsense phenomena (Mueller 2014), which often characterize dynamic application

domains, such as CER.

Logic-based CER systems (Artikis et al . 2012) stand up to these challenges. They

combine reasoning under uncertainty with machine learning, via Statistical Relational

AI techniques (De Raedt et al . 2016), while supporting reasoning with time and change,

via action formalisms such as the Event Calculus (Artikis et al . 2015).

We advance the state of the art in online learning for CER by proposing WOLED (Online

Learning of Weighted Event Definitions), an algorithm that learns CE patterns in the

form of weighted rules in the Event Calculus. The proposed algorithm is based entirely on

Answer Set Programming (ASP) (Lifschitz 2019), which allows to take advantage of the

grounding, solving, optimization and uncertainty modeling abilities of modern answer

set solvers, while employing structure learning techniques from non-monotonic Inductive

Logic Programming (ILP) (De Raedt 2008), which are easily implemented in ASP.

We compare WOLED’s ASP-based implementation to an Markov Logic Networks

(MLN)-based one, and to a number of state-of-the art online and batch structure and

weight learning algorithms, on three CER data sets for activity recognition, maritime

surveillance and vehicle fleet management. Our results demonstrate the superiority of

WOLED, both in terms of efficiency and predictive performance.

2 Related work

Event Calculus-based CER (Artikis et al . 2015) was combined with MLNs in

Skarlatidis et al . (2015), in order to deal with the noise and uncertainty of CER ap-

plications. An inherent limitation of this approach is the fact that the non-monotonic

semantics of the Event Calculus is incompatible with the open-world semantics of MLNs.

Therefore, performing inference with Event Calculus-based MLN theories calls for extra,

costly operations, such as computing the completion of a theory (Mueller 2014), in order

to endow MLNs’ first-order logic representations with a non-monotonic semantics. We

bridge this gap via translating probabilistic inference with MLNs into an optimization

task in ASP, which naturally supports non-monotonic and commonsense reasoning. This

also allows to delegate probabilistic temporal reasoning and machine learning tasks to

sophisticated, off-the-shelf answer set solvers.

Translating MLN inference in ASP has been put forth in Lee and Wang (2016),

Lee et al . (2017). This line of work is mostly concerned with theoretical aspects of the

translation, limiting applications to simple, proof-of-concept examples. Although we do

rely on the theoretical foundation of this work, we take a more application-oriented stand-

point and investigate the usefulness of these ideas in challenging domains, such as CER.

We also propose a methodology for online structure and the weight learning using ASP

tools.

Regarding machine learning, a number of algorithms in non-monotonic Inductive Logic

Programming (ILP), such as XHAIL (Ray 2009), TAL (Athakravi et al . 2013), and ILASP

(Law et al . 2018) are capable of learning Event Calculus theories, see Katzouris (2017)

for a comprehensive review of such approaches. These algorithms are batch learners, they

are thus poor matches to the online nature of CER applications. Moreover, they learn

crisp logical theories, thus their ability to cope with noise and uncertainty is limited.

Existing online learning algorithms are either crisp learners (Katzouris et al . 2019), or
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they rely on MLNs (Katzouris et al . 2018; Michelioudakis et al . 2016), so they suffer from

the same limitations discussed earlier in this section. A recent online learner based on

probabilistic theory revision (Guimarães et al . 2019) is limited to Horn logic and cannot

handle Event Calculus reasoning.

3 Background

Answer Set Programming. In what follows a rule r is an expression of the form

α← δ1, . . . , δn, where α is an atom, called the head of r, δ′is are literals (possibly negated

atoms), which collectively form the body of r and commas in the bodies of rules denote

conjunction. A rule is ground if it contains no variables and a grounding of a rule r is

called an instance of r. A (Herbrand) interpretation is a collection of true ground facts.

An interpretation I satisfies an atom α iff α ∈ I. I satisfies a ground rule iff satisfying

each literal in the body implies that the head atom is also satisfied and it satisfies a

non-ground rule r if it satisfies all ground instances of r. An interpretation I is a model

of a logic program Π (collection of rules) if it satisfies every rule in Π and it is a minimal

model if no strict subset of I has this property. An interpretation I is an answer set of Π if

it is a minimal model of the reduct of Π, that is, the negation-free, ground program that

results by removing from the ground version of Π all rules with a negated body literal

not satisfied by I and removing all negated literals from the bodies of the remaining

rules.

A choice rule is an expression of the form {α} ← δ1, . . . , δn with the intuitive mean-

ing that whenever the body δ1, . . . , δn is satisfied by an answer set I of a program that

includes the choice rule, instances of the head α are arbitrarily included in I (satisfied)

as well. A weak constraint is an expression of the form : � δ1, . . . , δn.[w], where δi’s

are literals and w is an integer. The intuitive meaning of a weak constraint c is that

the satisfaction of the conjunction δ1, . . . , δn by an answer set I of a program that in-

cludes c incurs a cost of w for I. Inclusion of weak constraints in a program triggers an

optimization process that yields answer sets of minimum cost.

The Event Calculus is a temporal logic for reasoning about events and their effects.

Its ontology comprises time points (integers), fluents, that is, properties which have

certain values in time, and events, that is, occurrences in time that may affect fluents

and alter their value. Its axioms incorporate the commonsense law of inertia, according to

which fluents persist over time, unless they are affected by an event. Its basic predicates

and axioms are presented in Table 1(a), (b). Axiom (1) states that a fluent F holds at

time T if it has been initiated at the previous time point, while Axiom (2) states that

F continues to hold unless it is terminated. Definitions of initiatedAt/2 and terminatedAt/2

predicates are provided in an application-specific manner.

Using the Event Calculus in a CER context allows to reason with CEs that have

duration in time and are subject to commonsense phenomena, via associating CEs to

fluents. In this case, a set of CE patterns is a set of initiatedAt/2 and terminatedAt/2 rules.

As an example we use the task of activity recognition, as defined in the CAVIAR

project1. The CAVIAR data set consists of videos of a public space, where actors per-

1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Table 1. (a), (b) The basic predicates and the Event Calculus axioms. (c) Example

CAVIAR data. At time point 1 person with id1 is walking, her (X,Y ) coordinates are

(201, 454) and her direction is 270◦. The target CE atoms (true state – supervision) for

time point 1 state that persons id1 and id2 are moving together at the next time point. (d)

An example of two domain-specific axioms in the EC. For example, the first rule dictates

that moving together between two persons X and Y is initiated at time T if both X and

Y are walking at time T , their euclidean distance is less than 25 pixel positions and their

difference in direction is less than 45◦. The second rule dictates that moving together

between X and Y is terminated at time T if one of them is standing still at time T and

their euclidean distance at T is greater than 30

(a)
Predicate: Meaning:
happensAt(E, T ) Event E occurs at time T .
initiatedAt(F, T ) At time T , a period of time for which fluent F holds is initiated.
terminatedAt(F, T ) At time T , a period of time for which fluent F holds is terminated.
holdsAt(F, T ) Fluent F holds at time T .

(b) Axioms of the Event Calculus
holdsAt(F, T + 1)← initiatedAt(F, T ). (1)
holdsAt(F, T + 1)← holdsAt(F, T ), not terminatedAt(F, T ). (2)

(c)
Observations I1 at time 1: Target CE instances at time 1:
{happensAt(walk(id1), 1), happensAt(walk(id2), 1) {holdsAt(move(id1, id2), 2),

coords(id1, 201, 454, 1),coords(id2, 230, 440, 1), holdsAt(move(id2, id1), 2)}
direction(id1, 270, 1), direction(id2, 270, 1)}

(d) Weighted CE patterns:
1.283 initiatedAt(move(X,Y ), T )← happensAt(walk(X), T ), happensAt(walk(Y ), T ),
close(X,Y, 25, T ), orientation(X,Y, 45, T ).
0.923 terminatedAt(move(X,Y ), T )← happensAt(inactive(X), T ), not close(X,Y, 30, T ).

form some activities. These videos have been manually annotated by the CAVIAR team

to provide the ground truth for two types of activity. The first type, corresponding

to simple events, consists of knowledge about a person’s activities at a certain video

frame/time point (e.g. walking, standing still and so on). The second type, correspond-

ing to CEs/fluents, consists of activities that involve more than one person, for instance

two people moving together, meeting each other and so on. The aim is to detect CEs

as combinations of simple events and additional domain knowledge, such as a person’s

position and direction.

Table 1(c) presents an example of CAVIAR data, consisting of observations for a

particular time point, in the form of an interpretation I1. A stream of interpretations

is matched against a set of CE patterns (initiation/termination rules – see Table 1(d)),

to infer the truth values of CE instances in time, using the Event Calculus axioms as

a reasoning engine. We henceforth call the atoms corresponding to CE instances whose

truth values are to be inferred/predicted, target CE instances. Table 1(c) presents the

target CE instances corresponding to the observations in I1.
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In what follows the CE patterns included in a logic program Π are associated with

real-valued weights, defining a probability distribution over answer sets of Π. Similarly to

Markov Logic, where a possible world may satisfy a subset of the formulae in an MLN, and

the weights of the formulae in a unique, maximal such subset determine the probability

of the possible world, an answer set of a program with weighted rules may satisfy subsets

of these rules, and these rules’ weights determine the answer set’s probability. Based on

this observation, Lee and Wang (2016) propose to assign probabilities to answer sets

of a program Π with weighted rules as follows: For each interpretation I, first find the

maximal subset RI of the weighted rules in Π that are satisfied by I. Then, assign to I

a weight WΠ(I) proportional to the sum of weights of the rules in RI , if I is an answer

set of RI , else assign zero weight. Finally, define a probability distribution over answer

sets of Π by normalizing these weights.

Formally, let wr be the weight of rule r and ans(Π) the set of all interpretations I

which are answer sets of RI and which, moreover, satisfy all hard-constrained rules in Π

(rules without weights). Then:

WΠ(I) =

⎧⎪⎨
⎪⎩

exp

( ∑
r∈RI

wr

)
if I ∈ ans(Π)

0 otherwise

(1)

PΠ(I) =
WΠ(I)∑

J∈ans(Π)

WΠ(J)
(2)

4 Structure and weight learning in ASP

The task that WOLED, our proposed algorithm, addresses is to online learn the structure

and weights of CE patterns, while using their current version at each point in time to

perform CER in the streaming input. We adopt a standard online learning approach

consisting of the following steps: at time t the learner maintains a theory Ht (weighted

CE pattern set, as in Table 1(c)), has access to some static background knowledge (e.g.

the axioms of the Event Calculus – Table 1(a)) and receives an interpretation It, con-

sisting of a data mini-batch (as in Table 1(b)). Then (i) the learner performs inference

(CER) with B ∪Ht on It (B is the background knowledge) and generates a “predicted

state”, consisting of inferred holdsAt/2 instances of the target predicate. Via closed-world

assumption, all such instances not present in the predicted state are assumed false; (ii)

if available, the true state, consisting of the actual truth values of the predicted atoms

is revealed; (iii) the learner identifies erroneous predictions via comparing the predicted

state to the true one, and uses these mistakes to update the structure and the weights of

the CE patterns in Ht, yielding a new theory Ht+1. We next discuss each of these steps.

4.1 Generating the inferred state

To make predictions with the weighted CE patterns in the incoming data interpretations,

WOLED uses MAP (Maximum A Posteriori) probabilistic inference2, which amounts to

2 Marginal inference, that is, computing the probability of each target CE instance is also possible, but
it is computationally expensive since it requires a full enumeration of a program’s answer sets, or
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computing a most probable answer set A of Π = B ∪Ht ∪ It. From equations (1) and

(2) it follows that

A = argmax
I∈ans(Π)

PΠ(I) = argmax
I∈ans(Π)

WΠ(I) = argmax
I∈ans(Π)

∑
r∈RI

wr (3)

that is, a most probable answer set is one that maximizes the sum of weights of satisfied

rules, similarly to the MLN case, for possible worlds. This is a weighted MaxSat problem

that may be delegated to an answer set solver using built-in optimization tools. Since

answer set solvers only optimize integer-valued objective functions, a first step is to

convert the real-valued CE pattern weights to integers. We do so by scaling the weights,

via multiplying them by a positive factor, while preserving their relative differences, and

rounding the result to the closest integer.

Note that as it may be seen from equation (3), weight scaling by a positive factor

does not alter the set of most probable answer sets. Therefore, the inference result re-

mains unaffected, provided that rounding the weights to integer values preserves their

relative differences. To ensure the latter, we set the scaling factor to K/dmin , where

dmin = mini �=j |wi − wj | is the smallest distance between any pair of weights and K is a

large positive constant, which reduces precision loss when rounding the scaled weights to

integer values.

The MAP inference/weighted MaxSat computation is realized via a standard generate-

and-test ASP approach, presented in Algorithm 1, whose input is the background knowl-

edge B, the current CE pattern set Ht and the current interpretation It. First, Ht is

transformed into a new program, T (Ht), as follows: each CE pattern ri in Ht of the

form ri = headi ← bodyi is “decomposed”, so as to associate headi with a fresh predi-

cate, satisfied/2, wrapping headi ’s variables and its unique id, i (line 5, Algorithm 1). The

choice rule in line 6, the “generate” part of the process, generates instances of satisfied/2

that correspond to groundings of bodyi. The weak constraint in line 7, the “test” part of

the process, decides which of the generated satisfied/2 instances will be included in an

answer set, indicating groundings of the initial CE pattern ri, that will be true in the

inferred state.

As it may be seen from line 7, the violation of a weak constraint by an answer set A

of Π = B ∪ T (Ht) ∪ It, that is, the satisfaction of a ground instance of ri by A , incurs

a cost of −wi on A , where wi is ri’s integer-valued weight. The optimization process

triggered by the inclusion of these weak constraints in a program generates answer sets of

minimum cost. During the cost minimization process, costs of −wi are actually rewards

for rules with a positive wi, whose satisfaction by an answer set, via the violation of

the corresponding weak constraint, reduces the answer set’s total cost. The situation

is reversed for rules with a negative weight, whose corresponding weak constraint is

associated with a positive cost.

Obtaining the inferred state amounts to “reading-off” target CE instances from an

optimal (minimum-cost) answer set of the program B ∪ T (Ht) ∪ It.

Example 1

We illustrate the inference process via the example in Figure 1, where we assume that

the target CE to be recognized is a. (a) presents a CE pattern set Ht, that is, a set of

utilizing techniques for sampling from such answer sets. We are not concerned with marginal inference
in this work.
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Algorithm 1 MAPInference(B ,Ht , It)

Input: background knowledge B; the current CE pattern setHt; the input interpretation

It.

Output: Target CE instances included in the most probable answer set of B∪T (Ht)∪It.
1: T (Ht) := ∅
2: for each CE pattern ri = α← δ1, . . . , δn in Ht with integer weight wi do

3: let vars(α) be a term wrapping the variables of α.

4: Add to T (Ht) the following rules:

5: α← satisfied(vars(α), i).

6: {satisfied(vars(α), i)} ← δ1 , . . . , δn .

7: : � satisfied(vars(α), i). [−wi , vars(α), i ]

8: Find an optimal answer set Aopt of B ∪ T (Ht) ∪ It.

9: return the target CE instances in Aopt .

Fig. 1. ASP-based MAP inference example.

initiation and termination condition for the target CE, a. We assume that the actual real-

valued weights of the patterns have been converted into integers; (b) presents the current

data interpretation It; (c) presents the inferred state obtained with crisp logical inference,

that is, the target CE instances included in the unique answer set of the program BK ∪
Ht ∪ It, where the CE patterns’ weights have been ignored. Note that the occurrence

of happensAt(b, 2 ) ∈ It initiates the target CE a via rule1 ∈ Ht, so a holds at the next

time point, 3, and it also holds at time points 4 & 5 via inertia. Then, the occurrence of

happensAt(c, 5 ) ∈ It terminates a, via rule2 ∈ Ht, so a does not holds at times 6,7,8, while
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Algorithm 2 LearnNewRules(B ,M ,Ht , It , I
MAP
t , I truet )

Input: background knowledge B; mode declarations M , the current CE pattern set Ht;

the current data interpretation It; the MAP-inferred state IMAP
t ; the true state Itruet

Output: A set Hnew of new CE patterns.

1: Π := ∅, Hnew := ∅, H⊥ := ∅, T (H⊥) := ∅
2: Mistakes := Itruet \ IMAP

t .

3: for each m ∈Mistakes do

4: H⊥ ← generateBottomRule(m, It,M)

5: H⊥ ← compressBottomRules(H⊥)
6: for each bottom rule ri = αi ← δ1i , . . . , δ

n
i in H⊥ do

7: Add to T (H⊥) the following rules:

αi ← use(i , 0 ), try(i , 1 , v(δ1i )), . . . , try(i ,n, v(δ
n
i )).

try(i , 1 , v(δ1i ))← use(i , 1 ), δ1i .

try(i , 1 , v(δ1i ))← not use(i , 1 ).

. . .

try(i ,n, v(δni ))← use(i ,n), δni .

try(i ,n, v(δni ))← not use(i ,n).

8: Π← B ∪ It ∪ T (Ht) ∪ T (H⊥), where T (Ht) is the MAP

inference-related transformation

of Algorithm 1 applied to the current CE pattern set Ht.
9: Add to Π the following rules:

{use(I , J )} ← ruleId(I ), literalId(J ).

: � use(I , J ). [1 , I , J ]
10: Add to Π one weak constraint of the form

: � not α. [1] (resp. : � α. [1]) for each target CE

instance α included (resp. not included – closed world

assumption) in Itruet .
11: Find an optimal answer set Aopt of Π.

12: Remove from H⊥ every body literal δji for which use(i, j) /∈ Aopt and each rule ri for

which use(i, 0) /∈ Aopt.

13: Hnew ← H⊥.
14: return Hnew .

the occurrence of happensAt(d , 8 ) ∈ It reinitiates a, via rule3 ∈ Ht, so a holds at times

9 & 10.

(d) in Figure 1 presents the program T (Ht) obtained from Ht, via the transformation

in Algorithm 1, to allow for MAP inference; Finally, (e) presents the MAP-inferred state,

that is, the target predicate instances included in an optimal (minimum-cost) answer

set of the program BK ∪ T (Ht) ∪ It (for illustrative purposes the satisfied/2 instances

in the optimal answer set are also presented). Note that the set of target CE inferences

is reduced, as compared to the crisp case, since the negative-weight, rule3 ∈ Ht is not

satisfied by the optimal answer set. The satisfied/2 instances in the MAP-inferred state

correspond to the ground atoms terminatedAt(a, 5) and initiatedAt(a, 2), which, along with

inertia, are responsible for the target CE inferences.
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4.2 Learning new rules

Right after making a prediction via MAP inference on the current interpretation the

true state is revealed to the learner, compared against the MAP-inferred state and the

erroneous predictions are identified. The existing CE pattern set Ht is expanded with

the addition of new rules, generated in response to these mistakes, via the addition of

new initiatedAt/2 (resp. terminatedAt/2) patterns, generated from false-negative (FN ) (resp.

false-positive (FP)) mistakes, which have the potential to prevent similar mistakes in the

future. For instance, an FN mistake at time t, that is, a target CE instance predicted

as false, while actually being true at t, could have been prevented via a pattern that

initiates the target CE at some time prior to t.

Generating new CE patterns from the entirety of mistakes may result in a very large

number of rules, many of which are redundant, or generated from noisy data points.

To avoid that, WOLED instantiates an optimization process that seeks a good trade-off

between theory complexity and accuracy. This is done by combining structure induction

techniques from non-monotonic ILP with probabilistic reasoning with the existing CE

pattern set Ht, in order to learn a new set of CE patterns R, which is as compressive

as possible, while at the same time, the result of reasoning with B ∪Ht ∪R on the cur-

rent interpetation approximates the corresponding true state as close possible. Viewing

the current input interpretation as a small training set, such a process corresponds to

the standard machine learning practice of jointly minimizing training error and model

complexity.

To realize this process, WOLED employs the strategy for new rule generation, presented

in Algorithm 2: First, a set of bottom rules (BRs) is created (line 4), using the constants in

the erroneously predicted atoms to generate ground initiatedAt/2 and terminatedAt/2 atoms,

which are placed in the head of a set of initially empty-bodied rules. The bodies of these

rules are then populated with literals, grounded with constants that appear in the head,

that are true in the current data interpretation It. The signatures of allowed body literals

are specified via mode declarations (De Raedt 2008).

Next, constants in the BRs are replaced by variables and the BR set is “compressed”

(line 5) to a bottom theory H⊥, which consists of unique, w.r.t. θ-subsumption, variabi-

lized BRs. The new CE patterns are chosen among those that θ-subsume H⊥. To this

end, the generalization technique of Ray (2009), which allows to search into the space

of theories that θ-subsume H⊥, is combined with inference with the existing weighted

CE pattern set Ht, yielding a concise set of CE patterns Hnew with the property that

an optimal answer set of B ∪ Ht ∪ Hnew ∪ It best-approximates the true state associated

with It.

To this end, each BR ri ∈ H⊥ is “decomposed” in the way shown in line 7 of

Algorithm 2, where the head of ri corresponds to an atom use(i, 0) and each of its body

literals, δji , to a try/3 atom, which, via the try/3 definitions provided, may be satisfied

either by satisfying δji and an additional use(i, j) atom, or by “assuming” not use(i, j).

Choosing between these two options is done via ASP optimization in line 9 of Algorithm 2,

where the choice rule generates use/2 atoms that correspond to head atoms/body literals

for H⊥, and the subsequent weak constraint minimizes the generated instances to those

necessary to approximate the true state, as encoded via the additional weak constraints in

line 10. New rules are “assembled” from the bottom rules inH⊥, by following the prescrip-
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Fig. 2. Example of new rule induction in response to prediction mistakes.

tions encoded in the use/2 atoms of an optimal answer set of the resulting program, as in

line 12.

This is essentially the XHAIL algorithm (Ray 2009) in an ASP context. The difference

of our approach from usages of this structure induction technique in previous works

(Ray 2009; Katzouris et al . 2015) is that here the search into the space of H ′
⊥s subsumers

is combined with MAP inference with the existing set of weighted CE patterns (line

8, Algorithm 2). Therefore, new patterns are generated only insofar they indeed help

to better approximate the true state, given the already existing weighted rules. This

technique allows to generalize from the data in the current interpretation, while taking

into account previously discovered patterns and their relative quality, as reflected by their

weights.

Example 2

We illustrate the rule induction technique in Algorithm 2 via an example. Recall Example

1 and assume that after making a prediction and generating the MAP-inferred state we

receive the true state presented in Figure 2. Assume also that we have an additional

target CE here, a′. The true state in Figure 2 differs from the MAP-inferred one as it

contains holdsAt/2 atoms concerning a′. These atoms are missing from the MAP-inferred

state; therefore, they are false-negative (FN ) predictions, that is, true instances of a

target complex event, which are not recognized by the weighted theory of Figure 1. In

order to revise the current theory toward eliminating the FN ’s we employ the strategy

of Algorithm 2. First, a set of ground atoms that eliminate the erroneous predictions

if added to the current theory are generated via abductive reasoning. These atoms will

serve as heads for new rules and their signatures are predefined via mode declarations
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(see Figure 2). In our example one such atom, initiatedAt(a′, 5), suffices (note that a′ in
the true state holds from time 6 onwards, therefore, it must have been initiated in the

previous time point). A bottom rule ⊥ having this atom in the head is generated from the

data in the current interpretation, as shown in Figure 2. The signatures of literals in the

body of ⊥ are specified via the mode declarations and the actual atoms are groundings

of such literals, generated using constants in the head, that are true in the data. The

“lifted” version of ⊥ shown in Figure 2 is then transformed into program H⊥ in Figure 2,

forming a search space for learning a new rule.

Approximating the true state is then realized via finding an optimal answer set of a

program Π consisting of the following parts: (i) the axioms of the Event Calculus (back-

ground knowledge); (ii) program T (Ht) from Figure 1, used for probabilistic inference

with the weighted theory Ht; (iii) program H⊥ from Figure 2, used for new rule induc-

tion; (iv) a choice rule for use/2 atoms and weak constraints that minimize the use/2

atoms included in the optimal answer set, thus encoding a preference for simpler rules in

the rule induction process (line 9, Algorithm 2); (v) weak constraints that minimize the

“disagreement” between the optimal answer set and the true state w.r.t. the target CE

instances included in the optimal answer set (line 10, Algorithm 2).

An optimal answer set of program Π contains the atoms use(1 , 0 ), use(1 , 1 ),

and use(1 , 3 ), which correspond to the rule r� : initiatedAt(a ′,T )← happensAt(c,T ),

holdsAt(a,T ). This is the simplest rule r with the property that Ht ∪ r correctly accounts

for the true state.

Remark. Note that reasoning with the weighted theory Ht is necessary in order to learn

the new rule r� in this example. Indeed, rule1 in Figure 1 initiates a at time 2, thus caus-

ing it to hold at time 5 and allowing the holdsAt(a,T ) atom to be added to the body of r�.

Observe that without this atom, the more general rule, initiatedAt(a ′,T )← happensAt(c,T )

would yield a number of false- positive predictions, since it would initiate a′ at time

1, due to the happensAt(c, 1 ) atom in the input data, thus causing a′ to (erroneously)

hold in the interval [2, 5]. It can be seen by comparing costs in the optimization

process that “settling” for the initial false-negative predictions for a′ in the interval

[6, 10] (by not learning a new rule at all) is more cost efficient than learning the rule

initiatedAt(a ′,T )← happensAt(c,T ), which does retrieve the false negatives, but causes the

false positives for a′ in the interval [2, 5]. Therefore, had we not used Ht as background

knowledge, we would not have learned a new rule from the data in this example. It is

worth mentioning that the same would have happened if we used Ht as a crisp theory,

that is, without the rules’ weights. In that case rule3 from Figure 1 would be responsible

for a number of false positives in the inferred state. This example, therefore, demon-

strates the merit of combining probabilistic inference with existing rules with the new

rule induction process.

4.3 Weight learning

The CE patterns’ weights (which are initialized to a close-to-zero value) are updated

by comparing their true groundings in the inferred and the true state, respectively.

For a target CE α and an initiatedAt/2 (resp. terminatedAt/2) CE pattern ri, a true

grounding, either in the inferred, or in the true state, is a grounding of ri at time t,
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such that holdsAt(α, t + 1) is true (resp. false). CE patterns that contribute toward cor-

rect predictions are promoted, while those that contribute to erroneous predictions are

downweighted.

As in Katzouris et al . (2018), we use the AdaGrad algorithm (Duchi et al . 2011) for

weight updates, a version of Gradient Descent that dynamically adapts the learning rate,

that is, the magnitude of weight promotion/demotion, for each CE pattern individually,

by taking into account the pattern’s performance on the past data. AdaGrad updates a

weight vector, whose coordinates correspond to a set of features (the CE patterns in

our case), based on the subgradient of a convex loss function of these features. Our loss

function, called the prediction-based loss, is a simple variant of the max-margin loss for

structured prediction for MLNs (Huynh and Mooney 2011), whose subgradient is the

vector with Δgi in its ith coordinate, where Δgi = gMAP
ri − gtrueri denotes the difference

in the true groundings of the ith pattern, ri, in the MAP-inferred and the true state,

respectively. Essentially, Δgi counts prediction mistakes which are relevant to ri, either

false- positive mistakes (Δgi > 0), for which ri is responsible, or false-negative predictions

(Δgi < 0), committed by the entire theory, which ri could have helped prevent. The

weight update rule for the ith CE pattern ri is then:

wt+1
i = sign

(
wt

i −
η

Ct
i

Δgti

)
max

{
0, |wt

i −
η

Ci
t

Δgti | − λ
η

Ci
t

}
(4)

where η is a learning rate parameter, λ is a regularization parameter, and Ct
i = δ +√∑t

j=1(Δgji )
2 is a term proportional to the sum of ri’s past subgradients (the Δgi’s)

(plus a δ ≥ 0 to avoid division by zero in η/Ct
i ). Note that according to equation (4), a

Δgi > 0, that is, a case where ri is responsible for false-positive predictions, leads to a

weight demotion for ri, while a Δgi < 0 leads to a promotion of its weight, that can help

the theory retrieve the false-negative misses.

The Ct
i term is the adaptive factor that assigns a different learning rate to each

CE pattern, since the magnitude of a weight update via the term |wt
i − η

Ci
t
Δgti | is af-

fected by the CE pattern’s previous history, in addition to its current utility, expressed

by Δgti . Smaller values for Ct
i correspond to “rare”, but potentially highly informa-

tive features, and therefore lead to weight updates of larger magnitude. The “infor-

mativeness” of these features is reflected in the magnitude of the current subgradi-

ent Δgi, since, regardless of the value of Ct
i , zero, or very small values of the current

subgradient (corresponding to noninformative features) have very small effect to the

weight.

The regularization term in equation (4), λ η
Ci

t
, is the amount by which the ith CE

pattern’s weight is discounted when Δgti = 0. As usual, the role of regularization is to

introduce a bias toward simpler models, in this case by eventually (over time) pushing

to zero the weights of irrelevant rules, that play no significant role in helping the theory

make correct predictions.

4.4 Revising existing CE patterns’ structure

Although the rules induced with the process described in Section 4.2 are useful locally,

that is, w.r.t. the current input interpretation It, they may be proven inadequate w.r.t.

a more “global” view of the data. A case where this typically occurs is inducing the
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simplest rule that helps approximate the true state in It, which turns out to be over-

general once larger regions of the data are taken into account. Weight learning may help

suppress the effects of such rules in the predictive performance of the model, but this is

not enough: Since the data are processed incrementally in small batches, it may be the

case that a “data view” large-enough for learning a high-quality target rule may never

occur, causing the learning process to fail.

A remedy is to revise the rules’ structure over time, as larger portions of the data

are revealed. Similarly to OLED (Katzouris et al . 2016), WOLED does so via a classical

in ILP, hill-climbing search process, searching for a high-quality CE pattern into a sub-

sumption lattice defined by a bottom rule. Such bottom rules are generated during the

rule induction process of Section 4.2. Each induced rule r is associated with a bottom

rule ⊥r (such that r θ-subsumes ⊥r), which serves as a pool to draw literals from, in

order to specialize r over time. This process is online, using the data in the incoming

interpretations to evaluate a CE pattern and its current specializations. A Hoeffding test

(Domingos and Hulten 2000) allows to identify, with high probability, the best specializa-

tion from a small subset of the input interpretations. Once the test succeeds, the parent

rule is replaced by its best specialization and the process continues for as long as new

specializations improve the current rule’s performance.

In particular, at each point in time a parent rule and its specializations are evaluated

on incoming data, via an information gain scoring function, assessing the cumulative

merit of a specialization over the parent rule, across the portion of the stream seen

so far:

G(r, r′) = Pr ·
(
log

Pr

Pr +Nr
− log

Pr′

Pr′ +Nr′

)
where r′ is r’s parent rule and for each rule r, Pr (resp. Nr) denotes the sum of true (resp.

false) groundings of r in the MAP-inferred states generated so far. The information gain

function is normalized in [0, 1] by taking 0 as the minimum (as we are interested in positive

gain only) and dividing a G-value by its maximum, Gmax(r, r
′) = Pr′ · (−log Pr′

Pr′+Nr′
).

When the range of G is [0, 1], a Hoeffding test succeeds, allowing to select r1 as the best

of a parent rule r’s specializations, when G(r1, r)−G(r2, r) > ε =
√

log1/δ
2N , where r1, r2

are, respectively, r’s best and second-best specializations, δ is a confidence parameter

and N is the number of observations seen so far, we refer to Katzouris et al . (2016) for

further details.

A successful Hoeffding test results in replacing the parent rule r with its best spe-

cialization r1 and moving one level down in the subsumption lattice, via generating r1’s

specializations and subsequently evaluating them on new data. Figure 3 illustrates the

process for an initiation CE pattern. The rules at each level of the lattice represent the

specializations of a corresponding rule at the preceding level. The grayed out part of the

search space in Figure 3 represents the portion that has already been searched, while the

non grayed out rule at the third level represents the best-so-far rule that has resulted

from a sequence of Hoeffding tests.

The specializations’ weights are learnt simultaneously to those of their parent rules,

by comparing the specializations’ true groundings over time in the MAP-inferred states

(generated from “top theories”, consisting of parent rules only) and the true states,

respectively.
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Fig. 3. A subsumtion lattice.

5 Discussion on implementations

We highlight the differences between the ASP-based version of WOLED, which we hence-

forth denote by WOLED-ASP, with the version of Katzouris et al . (2018), which relies on

MLN libraries, and which we henceforth denote by WOLED-MLN.

Contrary to WOLED-ASP, which is based entirely on the Clingo3 answer set solver, WOLED-

MLN is based on a number of different software tools. It uses the LoMRF library for Markov

Logic Networks (Skarlatidis and Michelioudakis 2014), for grounding MLN theories and

performing circumscription via predicate completion (Skarlatidis et al . 2015), in order

to convert them into a form that supports the non-monotonic semantics of the Event

Calculus for reasoning, something that WOLED-ASP has out of the box. MAP inference in

WOLED-MLN is performed via a state-of-the-art in MLNs, Integer Linear Programming-

based approach, which is introduced in Huynh and Mooney (2009) and is implemented

using the lpsolve4 solver.

Another important difference between WOLED-ASP and WOLED-MLN, from an algo-

rithmic perspective, lies in the new CE pattern generation process. As discussed in

Section 4.2, WOLED-ASP is able to perform the search for new structure, while taking into

account the contribution of the weights of existing patterns in approximating the true

state. In contrast, WOLED-MLN lacks this ability. It generates a bottom theory H⊥ from

the erroneously predicted atoms, and then attempts to gradually learn a high-quality CE

3 https://potassco.org/
4 https://sourceforge.net/projects/lpsolve
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pattern from the rules therein, regardless of their quality. In comparison, WOLED-ASP’s

strategy may lead, in principle, to simpler theories of more meaningful rules.

6 Experimental evaluation

We present an experimental evaluation of our approach on three CER data sets from the

domains of activity recognition, maritime monitoring and vehicle fleet management.

Data sets. CAVIAR5 is a benchmark data set for activity recognition, described in

Section 3, consisting of 28 videos with 26,419 video frames in total. We experimented

with learning CE patterns for two CEs from CAVIAR, related to two people meeting

each other and moving together, which we henceforth denote by meeting and moving,

respectively. There are 6272 video frames in CAVIAR where moving occurs and 3722

frames where meeting occurs. A fragment of a CE definition for moving is presented in

Table 1(d).

Our second data set is a publicly available data set from the field of maritime mon-

itoring6. It consists of Automatic Identification System (AIS) position signals collected

from vessels sailing around the area of Brest, France, for a period of six months, between

October and March 2015. The data have been preprocessed using trajectory compression

techniques (Patroumpas et al . 2017) that identify “critical points” in a trajectory, that

is, mobility features, such as vessel stops, turns, slow motion movements, etc. The critical

points maritime data set has been further pre-processed, in order to extract spatial rela-

tions between vessels (e.g. vessels being close to each other) and areas of interest, such

as protected areas, areas near coast, open-sea areas, etc. There are 16,152,631 critical

points in the maritime data set, involving 4961 vessels and 6894 areas, for a total size of

approximately 1,3GB.

The maritime data set is not labeled in terms of occurring CE instances, we therefore

used hand-crafted CE patterns to perform CER on the critical points, thus generating the

annotation. The purpose of learning was to reconstruct the hand-crafted CE patterns. We

experimented with learning CE patterns for a CE related to vessels involved in potentially

suspicious rendezvous (henceforth denoted by rendezVous), which holds when two vessels

are stopped, or move with very low speed in proximity to each other in the open sea.

Since such behavior is often related to illegal activities, tracking it is of special interest

for maritime surveillance.

Our third data set is provided by Vodafone Innovus7, a commercial vehicle fleet man-

agement provider and our partner in the Track & Know8 EU-funded funded project. The

data consist of time-stamped vehicle positions (GPS), in addition to mobility-related

events, such as abrupt acceleration, abrupt deceleration, harsh cornering, provided by

an accelerometer device installed in each commercial vehicle. Moreover, map-matched

weather attributes were used to enrich the data set with contextual information, such as

icy road. We refer to Tsilionis et al . (2019) for a detailed account of this data set.

5 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
6 https://zenodo.org/record/1167595#.WzOOGJ99LJ9
7 https://www.vodafoneinnovus.com
8 https://trackandknowproject.eu/
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Similarly to the maritime data set, due to the lack of CE-related ground truth we

used hand-crafted patterns, developed in collaboration with domain experts in Track

& Know to generate the ground truth CE instances. The learning target was a CE

related to dangerous driving, which holds in a number of occasions, such as abruptly

accelerating/decelerating on an icy road. The fleet management data set consists of 4M

records for a total size of 527 MB.

In order to provide some insight into the different domains used for these experiments,

Table 2 presents the language bias used for all target CEs, in addition to some indicative

complex event definitions from each domain (note that for the moving complex event,

an indicative fragment of its specification was shown in Table 1).

All experiments were carried out on a machine with a 3.6GHz processor (4 cores, 8

threads) and 16GB of RAM. Clingo (v. 5.4.0) was used with the –opt-strategy=usc option,

which significantly speeds-up the optimization process. The hyperparameters for the

different algorithms compared in these experiments were set as follows: For AdaGrad,

η = 1.0, λ = 0.01, δ = 1.0. The significance parameter for Hoeffding tests was set to

δ = 10−2. The code for all algorithms used in these experiments is available online9.

6.1 Scalability of inference

The purpose of our first experiment was to compare the scalability of the ASP-based

MAP inference process, which lies at WOLED-ASP’s core, to that of WOLED-MLN’s. To that

end we used the task of online weight learning with hand-crafted CE patterns, where

the learner is required to first perform MAP inference on the incoming interpretations

with a fixed-structure CE pattern set, and then update the CE patterns’ weights, based

on their contribution to erroneous inferences in the MAP-inferred state. Given that the

weight update cost is negligible and the CE pattern set is fixed, the MAP inference cost

is the dominant one in this task and it depends on the cost of grounding the current

CE pattern set, plus the cost of solving the corresponding weighted MaxSat problem for

each incoming interpretation. Note that since the CE pattern sets for each CE are fixed

in this experiment, predicate completion in WOLED-MLN is performed only once at the

beginning of a run, therefore, its cost is negligible.

The data were consumed by the learners in mini-batches, where each mini-batch is

an interpretation consisting of data in a particular time interval. We performed weight

learning with different mini-batch sizes of 50, 100, 500, and 1000 time points. We mea-

sured the average MAP inference time (grounding plus solving time) for WOLED-ASP and

WOLED-MLN respectively, throughout a single-pass over the data, for different mini-batch

sizes. Note that as the mini-batch size grows, so does the size of the corresponding ground

program from which the MAP-inferred state is extracted.

Figure 4 presents the results, which indicate that the growth in the size of the ground

program, as the mini-batch size increases, entails an exponential growth to the MAP

inference cost for WOLED-MLN. In contrast, thanks to Clingo’s highly optimized grounding

and solving abilities, MAP inference with WOLED-ASP takes near-constant time.

9 https://github.com/nkatzz/ORL
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Table 2. Language bias (mode declarations) used in the experiments and some indicative complex event definitions from each domain

Meeting/Moving: Rendezvous:

head(initiatedAt(move(+person,+person),+time)) head(initiatedAt(rendezVous(+vessel,+vessel),+time))

head(terminatedAt(move(+person,+person),+time)) head(terminatedAt(rendezVous(+vessel,+vessel),+time))

head(initiatedAt(meet(+person,+person),+time)) body(happensAt(slow motion start(+vessel),+time))

head(terminatedAt(meet(+person,+person),+time)) body(happensAt(slow motion end(+vessel),+time))

body(happensAt(walking(+person),+time)) body(happensAt(stop start(+vessel),+time))

body(happensAt(running(+person),+time)) body(happensAt(stop end(+vessel),+time))

body(happensAt(abrupt(+person),+time)) body(proximity(+vessel,+vessel,+time))

body(happensAt(active(+person),+time)) body(not proximity(+vessel,+vessel,+time))

body(happensAt(inactive(+person),+time)) body(happensAt(stopped(+vessel),+time))

body(happensAt(appears(+person),+time)) body(happensAt(slow motion(+vessel),+time))

body(happensAt(disappears(+person),+time)) body(happensAt(heading change(+vessel),+time))

body(close(+person,+person,#distance,+time)) body(happensAt(communication gap(+vessel),+time))

body(not close(+person,+person,#distance,+time)) body(happensAt(sailing speed(+vessel),+time))

body(orientation(+person,+person,#diff,+time)) body(farFromPorts(+vessel,+time))

body(visible(+person,+time))

body(not visible(+person,+time))

Dangerous Driving:

head(initiatedAt(dangDrive(+vehicle),+time)) head(terminatedAt(dangDrive(+vehicle),+time))

body(happensAt(acceleration(+vehicle),+time)) body(happensAt(cornering(+vehicle),+time))

body(happensAt(braking(+vehicle),+time)) body(happensAt(stop(+vehicle),+time))

body(happensAt(icy road(+vehicle),+time)) body(happensAt(overspeeding start(+vehicle),+time))

body(happensAt(overspeeding end(+vehicle),+time)) body(happensAt(overspeeding(+vehicle),+time))
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Table 2. Continued

Some indicative domain rules that must be learnt:

initiatedAt(meet(X,Y ), T )← initiatedAt(rendezV ous(X,Y ), T )← initiatedAt(dangDrive(X,Y ), T )←
happensAt(walking(X), T ), happensAt(stopped(X), T ), happensAt(acceleration(X), T ),

happensAt(walking(Y ), T ), happensAt(slow motion(Y ), T ), happensAt(icy road(X), T ).

close(X,Y, 34, T ). proximity(X,Y, T ). terminatedAt(dangDrive(X), T )←
terminatedAt(meet(X,Y ), T )← farFromPorts(X,T ), happensAt(overspeeding end(X), T ).

happensAt(walking(X), T ), farFromPorts(Y, T ), terminatedAt(dangDrive(X), T )←
not close(X,Y, 30, T ). terminatedAt(rendezV ous(X,Y ), T )← happensAt(stop(X), T ).

happensAt(sailing speed(X), T ),

not proximity(X,Y, T ).
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(a) (b) (c) (d)

Fig. 4. Scalability of MAP inference.

Fig. 5. Prequential Evaluation on CAVIAR.

6.2 Online structure & weight learning performance

In our next experiment we assess WOLED-ASP’s predictive performance and efficiency in

the task of online structure and weight learning and we compare it to (i) WOLED-MLN; (ii)

OLED (Katzouris et al . 2016), the crisp version of the algorithm that learns unweighted CE

patterns; (iii) HandCrafted, a set of predefined rules for each CE and (iv) HandCrafted-WL,

the rules in HandCrafted with weights learnt by WOLED-ASP.

To assess the predictive performance of the systems compared we used two methods:

Prequential evaluation (Bifet et al . 2018), where each incoming data interpretation is first

used to evaluate the current CE pattern set and then to update its structure and weights,

and standard cross-validation. In prequential evaluation we typically measure the average

prediction loss over time, which is an indication of a learner’s ability to incorporate new

information that arrives over time into the current model. With cross-validation we assess

a learner’s generalization abilities, by evaluating the predictive performance of a learnt

model on a test set.

The results from prequential evaluation formeeting &moving are presented in Figure 5,

while Table 3 reports several statistics for the systems being compared: (i) F1-scores on

a test set. For CAVIAR we used tenfold cross-validation and the reported F1-scores are

micro-averages obtained from ten different test sets. For the maritime and the fleet man-

agement data sets, whose size makes tenfold cross-validation impractical, we used half the

data set for training and half for testing, so the reported F1-scores are obtained from the

latter half; (ii) CE pattern set sizes (total number of literals) at the end of a single-pass
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Table 3. Online structure and weight learning results

F1-score Theory Inference Pred. Compl. Total
Method (test set) size Time (s) Time (s) Time (s)

Moving WOLED-ASP 0.821 26 15 – 112
WOLED-MLN 0.801 47 187 28 478

OLED 0.730 24 13 – 74
HandCrafted 0.637 28 – – –

HandCrafted-WL 0.702 28 16 – 52

Meeting WOLED-ASP 0.887 34 12 – 82
WOLED-MLN 0.841 56 134 12 145

OLED 0.782 42 10 – 36
HandCrafted 0.735 23 – – –

HandCrafted-WL 0.753 23 13 – 31

Rendezvous WOLED-ASP 0.98 18 647 – 4856
WOLED-MLN 0.98 18 2923 434 6218

OLED 0.98 18 623 – 4688

Dang.Drive WOLED-ASP 0.99 21 341 – 2465
WOLED-MLN 0.99 28 926 287 3882

OLED 0.99 21 312 – 2435

over a data set; (iii) total inference time at the end of a single-pass over a data set (MAP

inference for WOLED-ASP, WOLED-MLN & HandCrafted-WL, crisp logical inference for OLED);

(iv) for WOLED-MLN, total time spent on predicate completion; (v) total training time at

the end of a single-pass over a data set, which includes time spent on CE pattern genera-

tion, computing θ-subsumption, etc., that is, the dominant costs involved in learning CE

patterns structure. Note that we report on (iii), (iv), (v) only for approaches that require

training (i.e. not for HandCrafted). Also, we did not experiment with hand-crafted CE pat-

terns in the maritime and the fleet management data sets, since in these data sets hand-

crafted CE patterns were used to generate the ground truth in the first place. We also omit

prequential learning curves for rendezVous & dangerous driving in Figure 5, since, due to

the synthetic ground truth in the maritime & the fleet management data sets, the learn-

ing curves for these CEs are very similar for all algorithms being compared and are not

informative.

The results in Figure 5 and in Table 3 seem to validate the claim of Section 5 on the dif-

ferences in predictive performance between WOLED-ASP and WOLED-MLN. Indeed, WOLED-

ASP clearly outperforms WOLED-MLN, both in prequential error and in cross-validation

F1-scores, indicating better generalization abilities. Moreover, WOLED-ASP learns simpler

CE patterns sets, as shown by the theory size statistic, which seems to validate the claim

made right before Section 5. HandCrafted-WL outperforms WOLED-ASP in the prequential

task for the most part of the training process. This was expected, since HandCrafted-WL

has the advantage of operating on a good set of rules provided beforehand and, therefore,

is less prone to erroneous predictions. On the other hand, its inability to learn new rules

explains its inferior test-set F1-scores for meeting & moving.
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OLED aims at quickly discovering a good set of rules. It is not concerned with optimizing

their joint predictive performance and does not learn weights. It is the most efficient of

all learners, but it is also outperformed by all in terms of prequential error and test set

F1-scores.

Regarding efficiency, it may be seen by comparing inference times to total training

times, that the dominant cost is related to structure learning tasks (recall that total train-

ing times factor-in such costs). Yet, in comparison to WOLED-MLN, WOLED-ASP achieves

significantly lower costs for MAP inference, which approximate the cost of OLED’s crisp

logical inference. In addition to its more sophisticated CE pattern creation strategy,

which tends to generate fewer CE patterns of high quality, this results in WOLED-ASP

being significantly more efficient than WOLED-MLN. Note also, that an additional, not

negligible cost for WOLED-MLN stems from predicate completion.

6.3 Comparison to batch learners

In our last experiment we compare WOLED-ASP to a number of batch learning algorithms

for learning structure and weights. To that end we used smaller data sets whose size makes

batch learning practical. In particular, we used a fragment of the CAVIAR data set that

has been used in batch learning experiments in previous work (Skarlatidis et al . 2015)

and a small excerpt of the maritime data set. The fragment CAVIAR data set consists of

the regions of the original data set where the two target CEs (meeting and moving) occur

and contains a total of 25,738 training interpretations. The maritime fragment data set

contains 11,930 training interpretations corresponding to six data sequences, extracted

from the original maritime data set, where rendezvous between pairs of vessels occurs.

We compare WOLED-ASP to the following batch learning algorithms: (i) XHAIL (Ray

2009), a non-monotonic ILP learner whose rule induction strategy WOLED-ASP combines

with probabilistic reasoning; (ii) ILED (Katzouris et al . 2015), an algorithm that com-

bines XHAIL’s learning machinery with theory revision, in order to learn incrementally,

and has been shown to achieve performance comparable to that of XHAIL’s, while be-

ing much more efficient; (iii) ILASP (Law et al . 2015), a state-of-the art ILP system

that learns answer set programs from examples and has been used for inducing complex

event patterns (Law et al . 2018); (iv) MaxMargin, a batch weight learning algorithm for

MLN, introduced in Huynh and Mooney (2009), which has been used with the CAVIAR

fragment data set in the past and as been shown to achieve very good results. XHAIL,

ILED, and ILASP are crisp learners (i.e. there is no weight learning involved). MaxMar-

gin was used with hand-crafted rule sets and the task was to learn weights for these

rules.

WOLED-ASP, XHAIL, ILED, and ILASP are based on ASP and rely on Clingo. The imple-

mentation of XHAIL and ILED is available online10 and so is the most recent version of

ILASP (ILASP4)11. MaxMargin is available from the LoMRF platform.

The original ILED algorithm is designed for soundness and cannot tolerate noise. To

account for that in this experiment we used a noise-tolerant version (denoted by ILED-

HC) that learns theories in an iterative hill-climbing process: It first constructs a bottom

10 https://github.com/nkatzz/ORL
11 http://www.ilasp.com/download
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Fig. 6. Comparison with batch learners.

theory (collection of bottom rules) from the mode declarations and then passes once

over the data, which are presented in mini-batches, to generate a number of different

theories, by generalizing the bottom theory w.r.t. each mini-batch. The theory with the

best performance on the training set is retained and is subsequently further revised from

each mini-batch in an additional pass over the data. The process continues, keeping the

best revision at each iteration, until no improvement in performance is observed, or a

max-iterations threshold is reached. In these experiments we used batch size of 100 time

points with ILED-HC, from which the algorithm converged in approximately 5–7 iterations

over the data for meeting and moving and 3 iterations for rendezvous.

We used tenfold cross-validation process for meeting and moving and sixfold cross-

validation for rendezVous. The results are presented in Figure 6 in the form of (micro-

averaged) F1-scores from the testing sets and average training times for each algorithm.

We omit results for MaxMargin on rendezVous, since the hand-crafted rules that MaxMargin

would learn weights for are those that were used to generate the ground truth.

WOLED-ASP achieves the best F1-score for meeting, with a significant distance from the

other algorithms. It also achieves the second-best F1-score for moving. In rendezVous,

XHAIL is a clear winner w.r.t. predictive performance, while all other algorithms achieve

comparable F1-scores. WOLED-ASP is significantly faster than ILASP, XHAIL and MaxMargin,

while its efficiency is comparable to that of ILED-HC’s, which, however, is outperformed

by WOLED-ASP.

To appreciate the differences in performance between the algorithms being compared, it

is helpful to take a look into their inner workings. XHAIL generalizes a bottom theory from

the entirety of the training data in one go, which explains its increased training times.

On the other hand, it is thanks to this strategy that XHAIL is capable to learn better

theories for rendezVous than algorithms that process the training examples individually,

thus failing to discover fragments of the rendezVous definition, whose utility is revealed

only when “looking” at the training data as a whole. In contrast to the rendezVous

case where the ground truth is synthetic, XHAIL’s learning strategy seems less useful in

CAVIAR, where XHAIL marginally outperforms ILASP at the cost of much higher training

times, it achieves identical performance to ILED and is outperformed by WOLED-ASP on

both meeting and moving and by MaxMargin on moving. This latter observation is an

indication for the merit of weight learning.

In contrast to XHAIL, ILED-HC, and WOLED-ASP, which generate rules on demand in a

data-driven fashion, ILASP4 explicitly enumerates its search space. Even by taking into
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account what is referred to as “commonsense constraints” in Law et al . (2018), that is,

forbidding useless rules from being generated (e.g. rules stating that two persons/vessels

are close and far at the same time), This yields large search spaces, of approximately

3400 rules for meeting, 10,000 rules for moving, and 12,000 rules for rendezVous, which

explains ILASP’s increased training times, as compared to those of WOLED-ASP and ILED-

HC’s. On the other hand, given a search space, ILASP4 is guaranteed to find an optimal

hypothesis therein, that is, a theory that minimizes training error and model complexity,

while processing the data incrementally. XHAIL also comes with optimality guarantees,

which, however, are subject to the quality of the bottom theory that is used to struc-

ture its search space, while WOLED-ASP and ILED-HC use heuristic search procedures with

no guarantees on the quality of the learnt hypotheses. ILASP4’s inferior predictive per-

formance is attributed to the learning setting, which for ILASP4 follows closely the one

reported in Law et al . (2018) and aims at keeping learning tractable: first, to limit the

number of irrelevant answer sets generated during learning, additional constraints on

ILASP4’s search space dictate that the learnt event patterns should only account for the

“turning points” in a fluent’s truth value. That is, initiation rules for a fluent f are learnt

from data points t, such that f does not hold at t and holds at t+1. Similarly, for termi-

nation rules, f should hold at t and not hold at t+ 1. Second, since such turning points

in fluents’ truth values are too few in the data sets, as compared to points where fluents

hold/do not hold continuously, the turning point examples are weighted12, reflecting their

increased importance and simulating the effect of “over-sampling” such examples. This

allows for efficient learning with ILASP4 in this domain. The downside is that learning

becomes very susceptible to the even the slightest noise in the turning point examples,

which explains ILASP4’s inferior performance, as compared to the other algorithms.

We conclude this section by pointing out that XHAIL and ILASP4 are more general-

purpose learners than the event-based algorithms they were compared to. Therefore, they

may be outperformed by the latter on the particular task of learning event definitions, but

on the other hand, they may be used for learning tasks that the event-based algorithms

cannot.

7 Conclusions and future work

We presented an online algorithm for learning weighted Event Calculus rules. Our system

is entirely implemented in ASP and it is capable of combining temporal reasoning under

uncertainty via probabilistic logical inference, with online structure and weight learning

techniques. Our empirical evaluation on three data sets indicates that it compares fa-

vorably to state-of-the art online and batch learners. Future work involves combination

with semi-supervised learning, toward handling the scarcity of labeled data in streaming

settings.
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