
Online Event Recognition over Noisy Data Streams

Periklis Mantenogloub,a,∗, Alexander Artikisc,a, Georgios Paliourasa

aInstitute of Informatics and Telecommunications, NCSR Demokritos, Athens, Greece
bDepartment of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece

cDepartment of Maritime Studies, University of Piraeus, Greece

Abstract

Composite event recognition (CER) systems process streams of sensor data and infer composite
events of interest by means of pattern matching. Data uncertainty is frequent in CER applications
and results in erroneous detection. To support streaming applications, we present oPIECbd, an ex-
tension of oPIEC with a bounded memory, leveraging interval duration statistics to resolve mem-
ory conflicts. oPIECbd may achieve comparable predictive accuracy to batch reasoning, avoiding
the prohibitive cost of such reasoning. Furthermore, the use of interval duration statistics allows
oPIECbd to outperform significantly earlier versions of bounded oPIEC. The empirical evaluation
demonstrates the efficacy of oPIECbd on a benchmark activity recognition dataset, as well as real
data streams from the field of maritime situational awareness.

Keywords: Event Calculus, temporal pattern matching, probabilistic logic programming,
uncertainty, human activity recognition, maritime situational awareness

1. Introduction

‘Composite event recognition’ (CER) is the process of detecting composite activities/events
of interest based on streams of time-stamped ‘simple, derived events’ (SDEs) [25], i.e., events
detected on sensor data. A CER system identifies ‘composite events’ (CEs), i.e., patterns of SDE
combinations subject to temporal and, possibly, atemporal constraints [10]. The distinction be-
tween SDEs and CEs imposes an event hierarchy which is innate in many domains of interest,
such as human activity recognition [27] and maritime situational awareness [44]. For example, in
the latter domain, a ‘rendez-vous’ of vessels is a suspicious activity during which two proximate
vessels have low speed while being far from any port. ‘rendez-vous’ is a CE comprising vessel
activities like ‘moving at low speed’ or ‘having stopped’, which may themselves be CEs with
patterns based on SDEs like the velocity change of a vessel [44]. Recognising the critical events
of a domain and modelling their dependencies is essential for CER. Such dependencies are often
captured by logic-based languages, due to their expressivity and the direct routes to explainabil-
ity [11]. We utilize the Event Calculus [32], a logic programming language for the representation

∗Corresponding author
Email addresses: periklismant@di.uoa.gr (Periklis Mantenoglou), a.artikis@unipi.gr

(Alexander Artikis), paliourg@iit.demokritos.gr (Georgios Paliouras)

Preprint submitted to International Journal of Approximate Reasoning October 17, 2023

of SDEs and the construction of rules for CE patterns. These patterns may be given by domain
experts [51] or learned from data [28, 40].

Uncertainty is inherent in CER applications; consider, for instance, erroneous or incomplete
SDEs which may lead to errors in CE recognition. For example, gaps in sensor data are common
in human activity recognition as a result of object occlusion in videos [48]. Similarly, in maritime
situational awareness, the malfunction of a signal transmitter may lead to a communication gap
concerning the whereabouts of a vessel [44]. A catalogue of the sources of such uncertainty/noise
may be found in [3].

A typical approach for tackling noise in CER is associating a probability value to incoming
SDEs, serving as a confidence estimate (as, e.g., in ProbLog [31] or PITA [12]). In this setting,
an incoming stream consists of a sequence of probabilistic facts expressed as p :: SDE , where p
corresponds to the probability value of a SDE. A probabilistic CER system may then consume
such streams to derive the probability of a CE at each point in time [3]. We employ Prob-EC [50]
for point-based recognition; Prob-EC is a probabilistic extension of the Event Calculus based on
the probabilistic logic programming framework ProbLog [23].

Point-based CER often compromises predictive accuracy. For example, noise may lead to tem-
porary fluctuations in CE recognition probability, while instantaneous recognition probability may
be changing too slowly to allow the accurate recognition of the start or the end of a CE [8]. To
tackle these issues, we adopt an interval-based approach that consumes instantaneous CE prob-
abilities, such as those derived by Prob-EC, in order to compute the temporal intervals of CE
occurrences, paving the way for more robust CER [8]. For interval-based CER, we use PIEC
(Probabilistic Interval-based Event Calculus) [8], an algorithm which computes the maximal in-
tervals during which a CE is said to take place, with probability above a given threshold.

In [38], we introduced ‘online PIEC’ (oPIEC), an extension of PIEC designed to perform rea-
soning in data batches. oPIEC employs the ‘support set’, a memory structure with the minimal set
of time-points, to guarantee correct interval computation. To support streaming applications, we
present oPIECbd, an extension of oPIEC with a bounded support set, leveraging interval duration
statistics to resolve memory conflicts. oPIECbd may achieve comparable predictive accuracy to
batch reasoning, avoiding the prohibitive cost of such reasoning. Moreover, the use of interval
duration statistics allows oPIECbd to outperform significantly earlier versions of bounded oPIEC.

The contributions of this paper are summarised as follows:
• We present a formal analysis of oPIEC (Section 4). First, we prove the correctness of oPIEC,

i.e., we show that oPIEC computes exactly the same intervals as PIEC, and then present its
complexity, which is significantly lower than that of PIEC.

• We introduce oPIECbd, a bounded-memory version of oPIEC which takes into account statis-
tics regarding CE interval duration (Section 5.2). Furthermore, we present the complexity of
bounded oPIEC (Section 5.3). Our analysis shows that the memory management algorithm
of oPIECbd does not impose any performance delays.

• We present a thorough empirical evaluation on a benchmark dataset for human activity
recognition, as well as real data streams from the field of maritime situational awareness
(Section 6). In the former use case, we detect composite human activities based on symbolic
simple events annotated by experts on video frames. For maritime situational awareness, we
process streams of vessel position signals to recognise composite maritime activities, such

2

as a ‘rendez-vous’ of vessels or a tugging operation. To allow for reproducibility, the code
of oPIEC as well as the datasets of the aforementioned applications are publicly available1.
Our experimental evaluation demonstrates that oPIECbd is the preferred option for online
CER, striking the best balance between predictive accuracy and computational efficiency.

To facilitate understanding, we have also extended the presentation of earlier results [38] with
new examples and illustrations.

The remainder of the paper is structured as follows. Section 2 presents the background of
this work, i.e., the Event Calculus, Prob-EC for point-based CER and PIEC for batch, interval-
based CER. Then, in Section 3 we describe oPIEC, while in Section 4 we prove its correctness
and present its complexity. Section 5 presents bounded oPIEC and the corresponding complexity
analyses. Subsequently, Section 6 presents our empirical evaluation. Finally, Section 7 compares
our work against related research, and Section 8 summarises our work and outlines further research
directions.

2. Background

2.1. Event Calculus
The Event Calculus is a formalism for representing and reasoning about events and their ef-

fects [32]. Since its inception, many dialects have been put forward, including formulations in
(variants of) first-order logic and as logic programs [43, 15, 56]. The ontology of Event Calculus
dialects comprises time-points, events and ‘fluents’, i.e., properties that may have different values
at different points in time. Event occurrences may change the value of fluents. Hence, the Event
Calculus represents the effects of events via fluents. Given a fluent F , the term F =V denotes
that F has value V . Boolean fluents are a special case in which the possible values are true and
false.

We employ a simple logic programming implementation of the Event Calculus in which time
is linear, consisting of non-negative integer time-points [9]. Variables start with an upper-case
letter, whereas constants and predicates start with a lower-case letter. happensAt(E , T) denotes
that an event of type E occurs at time-point T . In CER, happensAt is typically used to express
the incoming simple, derived events (SDEs). CEs are defined by means of the initiatedAt and
terminatedAt predicates. These predicates denote, respectively, that a time period during which
a fluent F has the value V continuously is initiated/terminated at time-point T . initially(F =V)
expresses that fluent F has the value V at time-point 0, while holdsAt(F =V , T) states that fluent
F has value V at time-point T . Table 1 summarises the main predicates of this Event Calculus
dialect.

A key feature of the Event Calculus is the built-in representation of the common-sense law of
inertia, according to which F =V holds at a time-point, if F =V has been ‘initiated’ by an event
at some earlier time-point, and not ‘terminated’ by another event in the meantime. Consider the
following domain-independent axiomatisation:

1https://github.com/periklismant/oPIEC

3

https://github.com/periklismant/oPIEC

Table 1: Main Predicates of the Event Calculus.

Predicate Meaning

happensAt(E , T) Event E occurs at time T

initially(F =V) The value of fluent F is V at time 0

holdsAt(F =V , T) The value of fluent F is V at time T

initiatedAt(F =V , T) At time T , a period of time for which F =V is initiated

terminatedAt(F =V , T) At time T , a period of time for which F =V is terminated

holdsAt(F =V , T)←
initially(F =V),
not broken(F =V , 0 , T).

(1)
holdsAt(F =V , T)←

initiatedAt(F =V , Ts), Ts < T ,
not broken(F =V , Ts , T).

(2)

broken(F =V , Ts , T)←
terminatedAt(F =V , Tf),
Ts < Tf < T .

(3)
broken(F =V , Ts , T)←

initiatedAt(F =V ′, Tf), V ̸= V ′,
Ts < Tf < T .

(4)

‘not’ expresses negation-by-failure [16], while broken(F =V , Ts , T) is an auxiliary predicate
that checks whether F =V is terminated, or F is initiated with a value other than V , in (Ts ,T).
F , V , Ts and T are ground at the time when broken is called. Rules (1) and (2) imply that F =V
holds at some time-point T if it held initially, i.e., at time 0, or it has been initiated by an event at
a time-point before T , and has not been ‘broken’ in the meantime. F =V is broken in (Ts ,T) if,
at an intermediate time-point Tf , F =V is terminated (rule (3)) or F =V ′ is initiated, for some
V ′ ̸= V (rule (4)).

initiatedAt(F =V , T) and terminatedAt(F =V , T) are defined by means of domain-dependent
rules. Consider the example below from activity recognition on symbolic representations of video
content:

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(similarOrientation(P1 ,P2)= true, T).

(5)

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

(6)

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(active(P1), T),
happensAt(active(P2), T).

(7)

The above rules specify the conditions for initiating and terminating a time period during which
two people P1 and P2 are said to be moving together. Rule (5) suggests that if P1 and P2 are
walking close to each other with a similar orientation, then P1 and P2 are moving together. Rules
(6)–(7) express some termination conditions of the moving CE. For example, rule (6) states that

4

moving is terminated when the two people in question walk away from each other. To compute
whether ‘moving’ holds at a given time-point, the domain-independent axiomatisation of inertia,
i.e., rules (1)-(4), must be combined with the domain-specific definition of ‘moving’, i.e., rules
(5)-(7). Note that the moving CE may have multiple initiations: two people may be interacting for
several video frames. Similarly, moving may have multiple terminations. In this formulation of
the Event Calculus, initiatedAt(F =V , T) does not necessarily imply that F ̸= V at T . Similarly,
terminatedAt(F =V , T) does not necessarily imply that F =V at T . Suppose that F =V is
initiated at time-points 50 and 65 and terminated at time-points 75 and 86 (and at no other time-
points). In that case, F =V holds at all T such that 50 < T ≤ 75 .

2.2. Probabilistic Event Calculus
The Event Calculus has been expressed in the probabilistic logic programming framework

ProbLog [31, 23] in order to handle noisy input data. We summarise this probabilistic Event Cal-
culus, i.e., Prob-EC, following [50]. Prob-EC processes uncertain indications of SDEs, i.e., a col-
lection of happensAt(E , T) predicates with attached probability values, and derives the probability
of CE occurrences by means of Event Calculus rules. In the language of ProbLog, a probabilistic
fact is denoted as p :: f , indicating that fact f holds as true with probability p in each of its ground-
ings. All such facts are treated as independent variables. To compute the probability of a query
q which matches the head of some rules, ProbLog computes the probability of the conjunction of
the facts in the body of each rule. Then, the probability of the query is computed as the probability
of the disjunction of these rules:

P(q)=P(
∨

e∈Proofs(q)

∧
fi∈e

fi)

As an example, suppose that the query q is terminatedAt(moving(p1 , p2)= true, t), which ex-
presses that the moving CE for persons p1 and p2 is terminated at time-point t. This query matches
the head of rules (6)–(7) when applying the substitutions: P1 7→ p1 , P2 7→ p2 and T 7→ t . The
success probability of query q, i.e., the probability that terminatedAt(moving(p1 , p2)= true, t)
holds in a ProbLog program, is computed as follows:

P(terminatedAt(moving(p1 , p2)= true, t))=
P((happensAt(walking(p1), t) ∧ holdsAt(close(p1 , p2)= false, t))

∨(happensAt(active(p1), t) ∧ happensAt(active(p2), t)))
According to the above expression, the probability of terminatedAt(moving(p1 , p2)= true, t) is
computed as the probability of the disjunction of rules (6)–(7). Each rule succeeds with the same
probability as the conjunction of its body literals.

To derive CE occurrences, i.e., holdsAt(CE = true, T), Prob-EC integrates the law of inertia
(axioms (1)–(4)) to its probabilistic framework. The probability of holdsAt(CE = true, T) is equal
to the probability of the disjunction of the initiation conditions of CE = true before T , assuming
that CE = true has not been ‘broken’ in the meantime. This probability is calculated as follows:

P(holdsAt(CE = true, t))=P(∨∀ts<t(initiatedAt(CE = true, ts) ∧ (¬ broken(CE = true, ts , t))))
(8)

5

Therefore, multiple initiations of CE = true increase its probability. Moreover, if CE = true is
‘broken’ with probability pb , then the probability of CE = true becomes equal to the product of
the probability of the disjunction of the initiations and 1−pb (see expression (8)). The higher
the probability pb , the more significant the decrease in the probability of CE = true. Consecutive
terminations decrease further the probability of CE = true.

1 2 21 41

sarah begins

walking with

mike

sarah walks with

mike again

sarah is active,

mike continues

walking

sarah walks away

from mike

M
ov

in
g

P
ro

b
ab

ili
ty

Moving

initiated

once

Moving persists

through inertia

Moving repeatedly

initiated

Moving repeatedly

terminated

Video Frames

0.8

0.32

Figure 1: Probabilistic activity recognition with Prob-EC (after [50]).

Figure 1 illustrates the inference mechanism of Prob-EC when the task is to compute the prob-
ability of the moving CE. In this example, moving is initiated at time-point 1 , while no other
initiations/terminations of moving take place until time-point 21 . Then, moving is being initiated
repeatedly until time-point 41 . From then on, we have consecutive terminations of moving until
the end of the video. The probability of the CE increases (decreases) after each initiation (termi-
nation), while its probability does not change as long as no initiations/terminations occur. The
increase/decrease of the probability is proportional to the probability values of the corresponding
input events. For instance, the probability of moving at time-point 22 is equal to the probability of
the disjunction of the initiations of the CE at time-points 1 and 21, which is calculated as follows:

P(holds22)=P(init1 ∨ init21)=P(init1) + P(init21)− P(init1 ∧ init21)

= 0 .32 + 0 .1 − 0 .32 × 0 .1 = 0 .388

where holdst and initt are shorthands for holdsAt(moving(mike, sarah)= true, t) and
initiatedAt(moving(mike, sarah)= true, t), respectively, and the probabilities that both people are
walking close to each other, with a similar orientation at time-points 1 and 21 are 0 .32 and 0 .1 ,
respectively.

2.3. Probabilistic Interval-based Event Calculus
The output of Prob-EC is a sequence of ‘p :: holdsAt(CE = true, T)’ indications which denote

the evolution of the probability p of CE across time T . Some of these indications may be the result
of a sensor’s (temporary) malfunction. As an example, Figure 2 displays the probability of a CE
as time progresses. Notice that there is an abrupt probability drop between the two peaks; in this
example, the drop is the result of a sensor’s malfunction. Prob-EC predicts that the target CE has a

6

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

Figure 2: Probabilistic recognition over noisy data streams. The solid black line represents instantaneous CE probabil-
ities, as computed by Prob-EC, while the dotted line designates the chosen threshold T for recognition. The outcome
of Prob-EC, given this threshold value, is presented by the green straight lines. The red line expresses the recognition
of PIEC.

low probability of occurrence during this time period. In order to make sense of such indications,
we employ a threshold that allows us to distinguish between positive and negative CE instances.
In the example of Figure 2, the threshold is equal to 0 .7 , and the recognition of Prob-EC, i.e.,
the time-points at which the CE holds with a probability greater than the threshold, is depicted in
the form of intervals with the green straight lines. Since during the sensor’s malfunction Prob-EC
computes probability values lower than the threshold for the CE, there is a gap in the recognition
of Prob-EC. All time-points in this gap constitute false negatives, i.e., the CE took place during
that gap but was not detected.

To address such issues, i.e., abrupt probability fluctuations which do not adhere to reality, the
Probabilistic Interval-based Event Calculus (PIEC) [8] consumes the output of such a point-based
recognition, in order to compute the ‘probabilistic maximal intervals’ of a CE, i.e., the maximal
intervals during which a CE is said to take place, with a probability above a given threshold. This
way, PIEC is robust to short-term system failures. Below, we define the probability of an interval
and probabilistic maximal intervals following [8], and then present the way PIEC detects such
intervals.

Definition 1. The probability of interval ICE =[s , e] of a CE, with length(ICE)= e−s+1 time-
points, is

P(ICE)=

∑e
t= s P(holdsAt(CE = true, t))

length(ICE)
,

where P(holdsAt(CE = true, t)) is the probability of occurrence of the CE at time-point t.

In other words, the probability of an interval of a CE is equal to the average of the instantaneous
CE probabilities at the time-points that the interval contains. Note that the instantaneous CE prob-
abilities, i.e., P(holdsAt(CE = true, t)), are not independent, since the computation of holdsAt is
based on the common-sense law of inertia (see Section 2.2). Computing the average instantaneous
probability allows us to smooth out abrupt probability drops caused by sensor malfunction, such

7

as that presented in Figure 2. In contrast, interval probability definitions that employ instantaneous
probability multiplication are sensitive to abrupt probability drops.

Definition 2. A probabilistic maximal interval ICE =[s , e] of a CE is an interval such that, given
some threshold T ∈ [0 , 1], P(ICE) ≥ T , and there is no other interval I ′CE such that P(I ′CE) ≥ T
and ICE is a sub-interval of I ′CE .

Probabilistic maximal intervals (PMIs) may be overlapping. To choose an interval among
overlapping PMIs of the same CE, PIEC computes the credibility of each such PMI [8].

By computing PMIs, PIEC addresses the problems of point-based recognition in the presence
of noisy instantaneous CE probability fluctuations, and in the common case of non-abrupt proba-
bility change. See [8] for an empirical analysis supporting these claims. As an example, Figure 2
shows PIEC operating on top of the probability values computed by Prob-EC. The PMI of PIEC
spans over the region of noisy abrupt probability decay, leading to more robust recognition as
compared to Prob-EC.

Given a dataset of n instantaneous CE probabilities In[1 ..n] and a threshold T , PIEC infers
all PMIs of the CE in linear time, by translating the problem of PMI computation to the problem
of ‘maximal non-negative sum interval computation’ [5]. To calculate the PMIs, PIEC constructs:

• The L[1 ..n] list containing each element of In minus the given threshold T , i.e.,

∀ i ∈ [1 , n],L[i] = In[i]−T (9)

It follows that:
e∑

i = s

L[i] ≥ 0
Eq.(9)⇐===⇒
Def .1

P(ICE =[s , e]) ≥ T (10)

Expression (10) states that the probability of an interval ICE is above the given threshold T
iff the sum of the L values of all the time-points i that ICE contains is non-negative.

• The prefix [1 ..n] list containing the cumulative or prefix sums of list L, i.e.,

∀ i ∈ [1 , n], prefix [i] =
i∑

j = 1

L[j] (11)

• The dp[1 ..n] list, where

∀ i ∈ [1 , n], dp[i] = max
i≤j≤n

(prefix [j]) (12)

The elements of the dp list are calculated by traversing the prefix list in reverse order.

Table 2 presents an example dataset In[1 ..10] of instantaneous CE probabilities, along with the
lists calculated by PIEC for a threshold value T = 0 .5 . In this example, there are three PMIs:
[1 , 5], [2 , 6] and [8 , 10].

PIEC additionally uses the following variable:

(13)dprange[s , e] =

{
dp[e]−prefix [s−1] if s > 1
dp[e] if s = 1

Starting from Eq. (13), and substituting prefix and dp with their respective definitions (Eq. (11)
and (12)), we derive that dprange[s , e] expresses the maximum sum that may be achieved by

8

Table 2: PIEC with threshold T = 0 .5 (after [8]).

Time 1 2 3 4 5 6 7 8 9 10

In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1

L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5

prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

adding the elements of list L from s to some e∗ ≥ e, i.e.:

dprange[s , e] = max
e≤e∗≤n

(L[s] + · · ·+ L[e∗]). (14)

The following equivalence is a corollary of Eq. (14):

dprange[s , e] ≥ 0 ⇔ ∃e∗ : e∗ ≥ e,
∑

s≤i≤e∗
L[i] ≥ 0 . (15)

which, according to equivalence (10), entails that:

dprange[s , e] ≥ 0 ⇔ ∃e∗ : e∗ ≥ e,P([s , e∗]) ≥ T . (16)

This means that [s , e∗] is a potential PMI.
PIEC processes a dataset of instantaneous CE probabilities sequentially using two pointers

directed towards the starting point s and the ending point e of a potential PMI. According to
expression (16), if dprange[s , e] is non-negative, then [s , e∗] is a potential PMI, for some e∗ > e.
In that case, PIEC increments the e pointer until dprange becomes negative. When dprange
becomes negative, PIEC produces the following PMI: [s , e−1]. Once a PMI is computed, PIEC
increments the s pointer and re-calculates dprange. By repeating this process, PIEC computes all
PMIs of a given dataset.

Example 1. Consider the dataset presented in Table 2 and a threshold T = 0 .5 . Initially, s = 1 ,
e = 1 and PIEC calculates that dprange[1 , 1] = 0 .1 ≥ 0 . Then, PIEC increments e as long as
dprange remains non-negative. This holds until e = 6 when dprange[1 , 6] =−0 .4 . PIEC pro-
duces the PMI [1 , 5] and increments s . Afterwards, PIEC calculates that dprange[2 , 6] = 0 .1
and thus increments e, i.e., e = 7 , while s remains equal to 2 . PIEC proceeds by re-calculating
dprange, i.e., dprange[2 , 7] =−0 .4 < 0 , and then produces the PMI [2 , 6] and increments s ,
i.e., s = 3 . The condition dprange[s , 7] < 0 holds ∀s ∈ [3 , 7]. Hence, PIEC increments s until
s = 8 when dprange[8 , 7] = 0 . Note that ∀t, dprange[t + 1 , t] = dp[t]− prefix [t] ≥ 0 ; see the
definition of dp (Eq. (12)). Hence, PIEC avoids such erroneous pointer values, i.e., s > e, by
incrementing e. Here, e increases as long as dprange[8 , e] ≥ 0 . This holds for every subsequent
time-point of the dataset. Finally, PIEC produces the PMI [8 , 10] as P([8 , 10]) ≥ T and there is
no subsequent time-point to add. Summarising, PIEC computes all PMIs of the dataset In[1 ..10].
□

9

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
happensAt(walking(P2),T),
holdsAt(close(P1 ,P2) = true,T),
holdsAt(similarOrientation(P1 ,P2) = true,T).

terminatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
holdsAt(close(P1 ,P2) = false,T).

...

Event Calculus Axioms

holdsAt(F = V ,T) ←
initially(F = V),
not broken(F = V , 0 ,T).

holdsAt(F = V ,T) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T).

...

SDE Stream

0 .73 :: happensAt(walking(id0),T1)
0 .79 :: happensAt(walking(id1),T1)
0 .92 :: happensAt(active(id5),T1)
0 .85 :: happensAt(inactive(id1),T2)
0 .70 :: happensAt(active(id5),T2)
0 .45 :: happensAt(walking(id0),T3)

...
Point-based CE Stream

0 .73 :: holdsAt(moving(id0 , id1),T1)
0 .83 :: holdsAt(meeting(id1 , id5),T2)
0 .34 :: holdsAt(moving(id0 , id5),T2)
0 .56 :: holdsAt(moving(id0 , id1),T2)
0 .92 :: holdsAt(meeting(id1 , id5),T3)
0 .44 :: holdsAt(moving(id0 , id1),T3)

...

oPIEC =
PIEC +

support set

Interval-based CE Stream

0 .61 :: holdsFor(moving(id0 , id1), (T1 ,T2))
0 .88 :: holdsFor(meeting(id1 , id5), (T3 ,T6))
0 .66 :: holdsFor(moving(id0 , id5), (T6 ,T7))
0 .89 :: holdsFor(moving(id0 , id1), (T8 ,T12))
0 .67 :: holdsFor(meeting(id1 , id5), (T14 ,T18))

...

Figure 3: Online probabilistic CER. First, Prob-EC, equipped with the Event Calculus axioms (bottom left), and
application-specific fluent initiation and termination rules (top left), reasons over a probabilistic data stream (top
right) to derive the instantaneous probabilities of the target CEs (‘Point-based CE stream’ at the center of the picture).
Second, oPIEC processes this stream of instantaneous CE probabilities to compute the probabilistic maximal intervals
of the target CEs (bottom right).

3. Online Probabilistic Interval-based Event Calculus

PIEC was designed to operate in a batch mode, as opposed to an online setting where data
stream into the recognition system. In the online setting, reasoning has to be performed in data
batches and thus the predictive accuracy of PIEC may be compromised. To address this issue,
we presented oPIEC [38], i.e., online Probabilistic Interval-based Event Calculus, an extension of
PIEC which operates on data batches In[i ..j], where i and j are time-points with i ≤ j . oPIEC pro-
cesses each incoming data batch In[i ..j] and then discards it. Moreover, it identifies the minimal
set of time-points that need to be cached in memory in order to guarantee correct PMI computa-
tion. These time-points are cached in the support set and express the starting points of potential
PMIs, i.e., PMIs that may end in the future. To make the paper self-contained, we summarise
oPIEC following [38].

Figure 3 presents the pipeline of online probabilistic CER. Prob-EC reasons over the domain-
independent Event Calculus axioms, the domain-dependent rules (e.g., defining when two people
are said to be moving together in activity recognition), and a probabilistic data stream, in order
to compute instantaneous CE probabilities. With the use of a caching technique, Prob-EC may
operate in an online mode [50]. oPIEC consumes the instantaneous CE probabilities, as they
stream out of Prob-EC, in order to calculate PMIs.

Upon the arrival of a data batch In[i ..j], oPIEC computes the values of the L[i ..j], prefix [i ..j],

10

and dp[i ..j] lists. To allow for correct reasoning, the last prefix value of a batch is transferred to
the next one. Consequently, the prefix value of the first time-point of a batch, prefix [i], is set to
prefix [i−1]+L[i]. (For the first batch, prefix [1] =L[1].) This way, the computation of the values
of prefix [i ..j] and dp[i ..j] is not affected by the absence of the data prior to i. Subsequently, oPIEC
performs the following steps:

1. It computes all PMIs starting from some time-point in the support set or the data batch
In[i ..j] and ending in In[i ..j].

2. It identifies the minimal set of time-points of the data batch In[i ..j] that should be cached in
the support set.

In what follows, we first present Step 2 and then move to Step 1.

3.1. Support Set
The support set comprises a set of tuples of the form (t , prev prefix [t]), where t is a time-point

and prev prefix [t] expresses t’s previous prefix value, which is defined as follows:

prev prefix [t] =

{
prefix [t−1] if t > 1
0 if t = 1

(17)

With the use of prev prefix [t], oPIEC is able to compute dprange[t, t′] for any future time-
point t′, and thus determine whether t is the starting point of a PMI. For example, the arrival of a
time-point t ′ > t for which dp[t ′] ≥ prev prefix [t] implies that dprange[t , t ′] ≥ 0 , because

dp[t ′] ≥ prev prefix [t]
Eq.(17)
====⇒ dp[t ′] ≥ prefix [t−1] Eq.(13)

====⇒ dprange[t , t ′] ≥ 0

Hence, t is the starting point of a PMI that may end either at t′ or at a later time-point (see
expression (16)).

oPIEC identifies the time-points of a data batch In[i ..j] that should be cached in the support
set as follows. For each time-point t ∈ [i , j], oPIEC checks whether prev prefix [t] is less than
the min prev prefix , i.e., the lowest prev prefix value found so far. If prev prefix [t] is less than
min prev prefix , then (t , prev prefix [t]) is added to the support set and min prev prefix is set to
prev prefix [t]. Finally, the updated support set and the min prev prefix value are passed to the
next batch to ensure correct PMI computation. Example 2 illustrates this functionality of oPIEC.

Example 2. Consider the dataset in Table 2 arriving in three batches, In[1 ..4], In[5 ..8] and
In[9 , 10]. The values of the prefix list are shown in Table 2—recall that oPIEC generates the
same prefix list whether processing data batches or seeing all data in a single batch. oPIEC pro-
cesses every time-point of each batch sequentially. For t = 1 , prev prefix [1] = 0 is less than
min prev prefix , since, initially, min prev prefix=+∞. Thus, the tuple (1 , prev prefix [1] = 0)
is added to the support set and min prev prefix is set to 0. Next, t = 2 and prev prefix [2] =−0 .5 ,
which is less than min prev prefix . Therefore, oPIEC caches the tuple (2 ,−0 .5) and updates
min prev prefix . The remaining time-points of the first batch are not added to the support set
as the condition prev prefix <min prev prefix is not satisfied by their prev prefix value. By
processing the remaining batches in a similar way, the support set evolves as follows:

• [(1 , 0), (2 ,−0 .5)]; computed after processing In[1 ..4].
• [(1 , 0), (2 ,−0 .5), (8 ,−0 .9)]; computed after processing In[5 ..8].
• [(1 , 0), (2 ,−0 .5), (8 ,−0 .9), (9 ,−1 .4)]; computed after processing In[9 ..10]. □

11

This example illustrates that oPIEC augments the support set with the time-points having the
smallest prev prefix value, regarding the data seen so far, and no other time-points.

Theorem 1. If [ts , te] is a PMI, then ts satisfies the following condition:

∀tprev ∈ [1 , ts), prev prefix [tprev] > prev prefix [ts] (18)

Proof. See [38]. ■

Theorem 2. oPIEC caches a time-point ts in the support set iff ts satisfies condition (18).

Proof. See [38]. ■
According to Theorems 1 and 2, the starting point of a PMI has the smallest prev prefix value

up to that point, and oPIEC caches exclusively the time-points which have this property. As a
result, oPIEC caches in the support set the minimal set of time-points that guarantees correct PMI
computation, irrespective of the data that may arrive in the future.

Note that a time-point t may satisfy condition (18) and not be the starting point of a PMI in a
given dataset. For instance, see time-point 9 in Example 2. These time-points must also be cached
in the support set, because they may become the starting point of a PMI in the future. Consider
again Example 2 and assume that a fourth batch arrives with In[11] = 0 . In this case, we have a
new PMI: [9 , 11].

3.2. Interval Computation
We now describe how oPIEC computes PMIs using the support set. Algorithm 1 outlines this

process. oPIEC uses a pointer ptss to traverse the support set; moreover, oPIEC uses two pointers
to traverse the prefix and dp lists of the data batch In[i ..j], and indicate the starting point s and
ending point e of a potential PMI. Note that the elements of all lists are temporally sorted. The task
of Algorithm 1 is to compute all PMIs which end in data batch In[i ..j], starting from either a time-
point in the support set (lines 3–8) or in the current batch In[i ..j] (lines 9–15). While processing
time-points in the support set, oPIEC calculates dprange for the elements which correspond to the
ptss and e pointers. If the value of dprange is non-negative, then there is a PMI starting at the
examined element of the support set and e is incremented in order to find the ending point of the
PMI. Otherwise, if the value of dprange is negative, then there is no PMI starting from the given
element of the support set. In this case, oPIEC checks whether the ending point of a PMI was
identified in the previous iteration, which is indicated by a Boolean flag variable. If this is the
case, the interval [support set [ptss].timepoint , e−1] is added to the list of computed PMIs, where
support set [ptss].timepoint expresses the time-point of the tuple in the support set indicated by
ptss . At this point, oPIEC increments ptss in order to check the next potential starting point in the
support set.

Once the support set has been processed, oPIEC computes PMIs starting in In[i ..j]. Again,
dprange is computed and, depending on its value, the starting and ending points of PMIs are
selected, as explained above. Finally, if after processing In[i ..j] there is a pending interval, i.e., an
interval whose starting point has been computed but its ending point may be found in future data,
then, given the data seen so far, this interval is a PMI which ends at the last time-point of In[i ..j],
and thus is added to the output of oPIEC.

12

Algorithm 1 intervalComputation(i, j, prefix , dp, prev prefix [i], support set)
Input: Indices i and j indicating the starting and ending point of the current data batch, lists
prefix [i ..j] and dp[i ..j], prev prefix [i], i.e., the last value of the prefix list of the previous data
batch, and the support set after processing the previous data batch.
Output: A temporally sorted list of PMIs, given the data up to the current data batch In[i ..j].

1: s ← i , e ← i , ptss ← 1 , flag ← false
2: while s ≤ j and e ≤ j do
3: if ptss ≤ length(support set) then ▷ look for starting points in the support set
4: dprange ← dp[e]−support set [ptss].prev prefix
5: if dprange ≥ 0 then flag ← true, e+=1
6: else
7: if flag == true then intervals .append((support set [ptss].timepoint , e−1))
8: flag ← false, ptss+=1

9: else ▷ look for starting points in the current data batch
10: if s == i then dprange ← dp[e]−prev prefix [i]
11: else dprange ← dp[e]− prefix [s−1]
12: if dprange ≥ 0 then flag ← true, e+=1
13: else
14: if s < e and flag == true then intervals .append((s , e−1))
15: flag ← false, s+=1

16: if flag == true and ptss ≤ length(support set) then ▷ append pending interval
17: intervals .append((support set [ptss].timepoint , e−1))
18: else if flag == true then intervals .append((s , e−1))
19: return intervals

Example 3. We complete Example 2 by presenting the interval computation process for the same
dataset arriving in batches In[1 ..4], In[5 ..8], and In[9 ..10]. Table 3 displays the contents of lists
In, L, prefix , prev prefix and dp for each data batch. The first three lists are the same as in Ex-
ample 2. Please recall that the consistency of prefix in the presence of data batches is achieved
by transferring its last element to the next data batch. The last two lines of Table 3 present the
elements added to the support set and the newly computed PMIs after processing each data batch.
Upon the arrival of the first batch In[1 ..4], the support set is empty. Therefore, Algorithm 1 only
considers intervals starting in In[1 ..4] and computes the interval [1 , 4], which is a PMI, given the
data seen so far. When the second batch In[5 ..8] arrives, the support set is [(1 , 0), (2 ,−0 .5)]
(see Example 2). Hence, Algorithm 1 initializes pointer ptss to 1 and pointer e to 5 . Since
dp[5] ≥ prev prefix [1], the flag becomes true and e is incremented (lines 4–5 of Algorithm 1).
In the following iteration, dp[6] < prev prefix [1] and thus Algorithm 1 produces the PMI [1 , 5],
which replaces the interval [1 , 4]. Next, ptss is set to 2 . Because dp[6] > prev prefix [2], Algo-
rithm 1 decides that there is a PMI starting at t = 2 . However, it fails to extend it in the following
iteration. Therefore, Algorithm 1 produces the PMI [2 , 6] and terminates for this data batch,
since dprange is negative for all values of pointers s and e. When the third batch In[9 ..10] ar-

13

Table 3: oPIEC operating on data batches.

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1

L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5

prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
prev prefix 0 −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −1 .4 −0 .9 −0 .9
support set
(new tuples) [(1 , 0), (2 ,−0 .5)] [(8 ,−0 .9)] [(9 ,−1 .4)]

PMIs
(ending in batch) [[1 , 4]] [[1 , 5], [2 , 6]] [[8 , 10]]

rives, the support set is [(1 , 0), (2 ,−0 .5), (8 ,−0 .9)]. Since dp[9] =−0 .9 is less than any of the
prev prefix values of the first two elements of the support set, Algorithm 1 skips these elements,
and sets ptss = 3 , for which support set [3] =(8 ,−0 .9). Finally, Algorithm 1 increments e as
long as dprange ≥ 0 and eventually computes the PMI [8, 10]. □

In this example, oPIEC computes all PMIs of the dataset. In contrast, PIEC cannot compute any
of the PMIs because, in the data partitioning of this example, the interval starting points have been
discarded at the time when their ending points arrive at the system.

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

oPIEC Recognition

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

oPIEC Recognition

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

oPIEC Recognition

Figure 4: Probabilistic recognition over noisy data streams (continued from Figure 2). The solid black straight line
denotes the current data batch. The black crosses on top of the horizontal axis denote the time-points stored in the
support set, while the blue straight line denotes the recognition of oPIEC, given the data seen so far.

As another example, Figure 4 shows how oPIEC processes the instantaneous CE probabilities
displayed in Figure 2 in three data batches. Figure 4 features three diagrams; each diagram shows
the PMIs and the support set of oPIEC after processing each data batch. In the first batch (left
diagram), the instantaneous probability of the CE is initially below the threshold T , and it gradu-
ally increases, overcoming the threshold at some time-point t, i.e., In[t] ≥ T . oPIEC computes a

14

PMI I1 including all time-points t ′ : t ≤ t ′ ≤ j , where j indicates the end of the data batch, and
as many of the previous time-points as possible, while maintaining that P(I1) ≥ T . Next, oPIEC
caches the potential starting points of future PMIs based on their prev prefix values. All time-
points in [0 , t] satisfy condition (18) and thus, according to Theorem 2, are cached in the support
set.

In the second data batch (middle diagram), oPIEC extends I1 to a longer PMI I2 ending in
this batch, because, given the newly arrived probability values, I1 is not a PMI as it is a sub-
interval of I2 and P(I2) ≥ T . Note that I2 starts earlier than I1 as the starting point of I2 was
cached in the support set. Moreover, the instantaneous probabilities in this data batch are either
above the given threshold or temporally close to those that are above the threshold, and thus the
support set does not have to be extended. In the third data batch (right diagram), oPIEC can extend
I2 further to PMI I3 , since P(I3) ≥ T , and thus match the output of PIEC. This batch includes
low instantaneous probabilities which decrease the values of the prev prefix list. As a result,
prev prefix [t] < min prev prefix holds for some time-points t near the end of the data batch. All
such time-points are cached in the support set because they may become starting points of PMIs if
high probability values appear later in the stream.

4. Formal Analysis of oPIEC

We extend previous work by proving the correctness of oPIEC, i.e., we demonstrate that every
interval computed by oPIEC is a PMI, and every PMI is computed by oPIEC, given the data seen
so far. Moreover, we present the complexity analysis of the algorithms for updating the support
set and computing PMIs.

4.1. Correctness
Algorithm 1 uses dprange to identify PMIs. We associate dprange with PMIs using the fol-

lowing lemma.

Lemma 1. If I = [s , e] is a PMI, then dprange[s , e] is non-negative. Moreover, for every interval
I ′ = [k , l], such that I is a sub-inteval of I ′, we have dprange[k , l] < 0 .

Proof. Since I is a PMI, then P(I) ≥ T , i.e., the probability of I is greater or equal to the
threshold T . By taking advantage of the definitions of the lists of oPIEC (see Section 2.3), we
have the following:

P(I) ≥ T Eq.(10)⇐===⇒
∑

s≤m≤e

L[m] ≥ 0
Eq.(11)⇐===⇒ prefix [e]− prefix [s − 1] ≥ 0 .

We proceed as follows. According to Eq. (12), we have that dp[e] = maxe≤m≤n prefix [m], where
n is the last time-point seen by oPIEC, and therefore dp[e] ≥ prefix [e]. Consequently, it holds
that:

prefix [e]− prefix [s − 1] ≥ 0 =⇒ max
e≤m≤n

prefix [m]− prefix [s − 1] ≥ 0
Eq.(12)⇐===⇒

dp[e]− prefix [s − 1] ≥ 0
Eq.(13)⇐===⇒ dprange[s , e] ≥ 0

15

Therefore, we conclude that if I =[s , e] is a PMI, then dprange[s , e] ≥ 0 .
We will now prove the second part of this lemma. Let k ≤ s , l ≥ e, I ′ =[k , l], I ′ ̸= I , i.e., I is

a sub-interval of I ′, and dprange[k , l] ≥ 0 . Then, we have:

dprange[k , l] ≥ 0
Eq.(13)⇐===⇒ dp[l] ≥ prefix [k − 1]

Eq.(12)⇐===⇒

max
l≤m≤n

prefix [m] ≥ prefix [k − 1]⇐⇒ ∃m : l ≤ m ≤ n, prefix [m] ≥ prefix [k − 1]
Eq.(11)⇐===⇒

∃m : l ≤ m ≤ n,
∑

k≤m ′≤m

L[m ′] ≥ 0
Eq.(10)⇐===⇒ ∃m : l ≤ m ≤ n,P([k ,m]) ≥ T

The probability of I ′′ = [k ,m], where m ≥ l , is greater or equal to the threshold and I ⊂ I ′ ⊆ I ′′.
Therefore, I is not a PMI. We reached a contradiction and thus dprange[k , l] < 0 . ■

We proceed by presenting the proofs of soundness and completeness of oPIEC, focusing on
PMIs starting with an element of the support set. The proofs for PMIs starting with an element of
the current data batch are similar and thus omitted.

In the analysis that follows, it is also useful to define the state of Algorithm 1 of oPIEC as a
triple {ptss , e,flag}, in order to refer to the values of variables ptss , e and flag at a specific iteration
of the while loop of Algorithm 1. Recall that ptss and e are pointers traversing, respectively, the
support set and the current data batch, indicating the starting and the ending point of a potential
PMI, while flag is a Boolean variable declaring whether dprange was non-negative in the previous
iteration. For every PMI in a dataset, oPIEC is guaranteed to reach the state corresponding to the
starting and ending point of the PMI, as shown below in Lemma 2.

Lemma 2. Suppose that In[i ..j] is the current data batch, [sst1 ..sstm] is the list of time-points
in the support set, and the interval I = [sstk , l], where 1 ≤ k ≤ m and i ≤ l ≤ j , is a PMI. The
execution of Algorithm 1 will eventually reach the state {k , l , true} or the state {k , l , false}.

Proof. The while loop of Algorithm 1 stops searching for PMIs starting with a time-point in the
support set when either ptss has iterated over all elements in the support set, including sstk , the
starting point of I , or e has iterated over all elements of the current data batch, including l, the
ending point of I . As a result, Algorithm 1 reaches a state for which either ptss = k or e = l . There
are two possibilities for the first encounter of such a state:

1. {k ′, l , true/false}, where k ′ < k . Since I =[sstk , l] is a PMI and a sub-interval of [sstk ′ , l],
we have dprange[sstk ′ , l] < 0 (see Lemma 1). Consequently, the condition of the if state-
ment in line 5 of Algorithm 1 fails when its state is {k ′, l , true/false}, and ptss is subse-
quently incremented. The same holds for all the following states {k ′′, l , true/false}, where
k ′ < k ′′ < k , because I is a sub-interval of [sstk ′′ , l]. Therefore, ptss will continue to in-
crease until the algorithm reaches the state {k , l , false}; the flag is set to false because ptss
is increased in the last iteration before state {k , l , false} (see line 8 of Algorithm 1).

2. {k , l ′, true/false}, where l ′ < l . Since I =[sstk , l] is a PMI, we have dprange[sstk , l] ≥ 0
(Lemma 1). Equivalently, we have dp[l] ≥ prefix [sstk − 1] (Eq. (13)). As a corollary of the

16

definition of dp (Eq. (12)), for t1 < t2 , we have:

max
t1≤t≤n

(prefix [t]) ≥ max
t2≤t≤n

(prefix [t])
Eq.(12)
====⇒ dp[t1] ≥ dp[t2].

In other words, dp is a decreasing sequence and thus dp[l ′′] ≥ prefix [sstk − 1], when l ′′ < l .
So, for every state {k , l ′′, true/false}, where l ′ ≤ l ′′ < l , we have that dprange[sstk , l ′′] ≥ 0 .
The if condition in line 5 of Algorithm 1 holds for all these states and e increases continu-
ously until Algorithm 1 reaches the state {k , l , true}. The flag is set to true, because e is
increased in the last iteration before state {k , l , true} (see line 5 of Algorithm 1).

Hence, given that I = [sstk , l] is a PMI, the execution of Algorithm 1 reaches either the state
{k , l , true} or the state {k , l , false}. ■

Theorem 3 (Soundness of Interval Computation). Every interval computed by oPIEC is a PMI
of the data seen so far.

Proof. Suppose that In[i ..j] is the current data batch and [sst1 ..sstm] is the list of time-points in
the support set. Moreover, I =[sstk , l], where 1 ≤ k ≤ m, i ≤ l ≤ j , is an interval computed by
Algorithm 1. We will prove that I is a PMI.

In order for Algorithm 1 to reach line 7 and add the interval I = [sstk , l] to its results, the
state must be {k , l + 1 , true}. Recall that the value of flag is true iff the if condition in line
5 was satisfied in the previous iteration, i.e., dprange[sstk , l] ≥ 0 . However, since the execu-
tion reaches line 7, the if condition in line 5 fails in the current iteration, which means that
dprange[sstk , l + 1] < 0 . Hence, we have the following:

dprange[sstk , l] ≥ 0
Eq.(13)⇐===⇒ dp[l] ≥ prefix [sstk − 1]

Eq.(12)⇐===⇒

max
l≤l ′≤j

(prefix [l ′]) ≥ prefix [sstk − 1]
(a)
==⇒ prefix [l] ≥ prefix [sstk − 1]

Eq.(11)⇐===⇒∑
sstk≤t≤l

L[t] ≥ 0
Eq.(10)⇐===⇒ P(I = [sstk , l]) ≥ T

Implication (a) holds because if there existed a l ′ > l for which prefix [l ′] ≥ prefix [l], then we
would have dprange[sstk , l + 1] ≥ 0 , contradicting the fact that line 7 has been reached. Thus,
we conclude that the probability of interval I is greater or equal to the threshold. Next, we will
show that I is not a sub-interval of a PMI.

Suppose that I is a sub-interval of the PMI I ′=[sstk ′ , l ′], i.e., k ′ ≤ k , l ′ ≥ l , I ̸= I ′

and P(I ′) ≥ T . Based on Lemma 2, Algorithm 1 will reach the state {k ′, l ′, true/false}. Also,
since I ′ is a PMI, we have dprange[sstk ′ , l ′] ≥ 0 (Lemma 1). So, the if condition in line 7 of
Algorithm 1 is satisfied, e is incremented and the flag is set to true, thus reaching the state
{k ′, l ′ + 1 , true}.

Since I =[sstk , l] is computed by oPIEC, the state {k , l + 1 , true} is also reached. Moreover,
since k ′ ≤ k , the following transition between states has to take place, possibly in multiple steps:

{k ′, l ′ + 1 , true} → . . .→ {k , l + 1 , true}

17

We distinguish between two cases depending on the value of l ′. If l ′ > l , the above state transition
is infeasible since e does not decrease in Algorithm 1. If l ′= l , the state transition can only be
achieved by increasing ptss up to the value k while e remains constant. However, incrementing
ptss is accompanied by setting the flag to false (see line 8 of Algorithm 1). The flag can only be
reset when incrementing e (in line 5). Therefore, eventually either e = l + 1 and flag = false, or
e > l + 1 and flag = true. In either case, the aforementioned transition cannot take place.

Consequently, oPIEC cannot reach the state {k , l + 1 , true} and, as a result, cannot compute
I . By contradiction, there is no PMI I ′ such that I is a sub-interval of I ′.

Therefore, since P(I) ≥ T and I is not the sub-interval of a PMI, I is a PMI. Thus, every
interval computed by oPIEC is a PMI. ■

Theorem 4 (Completeness of Interval Computation). oPIEC computes all PMIs of the data seen
so far.

Proof. Suppose that In[i ..j] is the current data batch, [sst1 ..sstm] is the list of time-points in the
support set, and I = [sstk , l] is a PMI, where 1 ≤ k ≤ m and i ≤ l ≤ j . Based on Lemma 2,
oPIEC will eventually reach a state {k , l , true/false} where ptss = k and e = l . Also, since I is a
PMI, from Lemma 1, we have that dprange[sstk , l] ≥ 0 . Therefore, the if condition in line 5 of
Algorithm 1 will be satisfied, e incremented and the flag set to true. In the following iteration, the
state will become {k , l + 1 , true}. Since I is a PMI and a sub-interval of [sstk , l + 1], based on
Lemma 1, we have that dprange[sstk , l + 1] < 0 . Therefore, the if condition will not be satisfied
and, since the flag will be set to true, I will be computed in line 7 of Algorithm 1. Hence, every
PMI is computed by Algorithm 1. ■

Theorems 3 and 4 show that, given the data seen so far, oPIEC computes every PMI and every
interval computed by oPIEC is a PMI. Therefore, oPIEC is correct with respect to the data seen so
far.

4.2. Complexity
Before presenting the complexity of oPIEC, we revisit the complexity of PIEC [8]. In PIEC,

the computation of lists L, prefix and dp takes linear time Θ(n), where n is the number of the
input time-points. With respect to PMI computation, in the worst case, the two pointers looking
for interval starting and ending points have to traverse the input list of size n. Therefore, this
step requires O(2n). Consequently, the complexity of PIEC may be summarised by the following
proposition:

Proposition 1 (PIEC complexity). The cost of computing the PMIs in a dataset of n time-points
with PIEC is O(n).

To update the support set, oPIEC iterates over the time-points of the current data batch In[i ..j].
Therefore, this step isO(nw), where nw is the size of In[i ..j]. The process of interval computation
of oPIEC (Algorithm 1) iterates over the elements of the support set and time-points of In[i ..j].
In the worst case, Algorithm 1 traverses the support set once and In[i ..j] twice. Hence, the com-
plexity of interval computation is O(m + 2nw), where m is the size of the support set. After
simplifications, the complexity bound of Proposition 2 is reached.

18

Proposition 2 (oPIEC complexity). The cost of computing the PMIs of a data batch and updat-
ing the support set with oPIEC is

O(m+nw), (19)

where m is the size of the support set and nw is the size of the data batch.

The data batch size nw can be constant, while the support set size m may increase over time.
In rare cases, the support set may include a significant portion of the stream seen so far. Consider,
e.g., the case where every probability value of the input stream is below the user-defined threshold.
Then, the prefix list is strictly decreasing and oPIEC caches in the support set every time-point of
the stream. In practice, m + nw is only a small fragment of the data seen so far, i.e., n. In other
words, oPIEC is more efficient than PIEC, since the complexity of the latter increases much faster
(with n) than the complexity of the former (which increases with m). In any case, streaming
applications require constant complexity. To achieve this, the support set of oPIEC needs to be
bounded. In the following section, we present ways in which this can be achieved.

5. Bounded Support Set

In streaming applications, memory and performance requirements demand a bounded support
set. In [38], we introduced oPIECb, that is, a version of oPIEC in which the support set has a
bounded size. oPIECb is equipped with a support set maintenance algorithm which decides which
elements, if any, should be deleted from the support set, in order to make room for new ones.
Consequently, compared to oPIEC which computes all the PMIs of a dataset, oPIECb may detect,
for instance, fewer or shorter intervals.

Since our previous work [38], we have observed that the support set of oPIECb often includes
elements with time-stamps much prior to the current time. In most applications, each CE has a
typical duration and it is not useful to anticipate an instance of a CE which exceeds that duration
significantly. As an example, in human activity recognition, it is improbable that two people are
fighting for more than five minutes, and thus support set elements with temporal distance greater
than five minutes from the current time are very unlikely to be useful for computing PMIs. To
take advantage of this property, we propose an extension of the support set maintenance algorithm
of oPIECb in order to consider CE-specific statistics concerning the duration of PMIs. In the
following, we first outline the support set maintenance algorithm of oPIECb, and then present
oPIECbd, the variant of oPIECb which considers the expected PMI duration.

5.1. Support Set Maintenance with oPIECb

The support set maintenance algorithm of oPIECb works as follows. When a time-point t
satisfying condition (18) arrives, i.e., t may be the starting point of a PMI, oPIECb considers
caching it in the support set. If the designated support set limit is exceeded, then oPIECb decides
whether to cache t, replacing some older time-point of the support set, by computing the ‘score
range’, i.e., an interval of real numbers defined as follows:

score range[t] =[prev prefix [t], prev prefix [prevs [t]]) (20)

19

The score range is computed for the time-points in set S, i.e., the time-points already in the
support set and the time-points that are candidates for the support set. The elements in S are
tuples of the form (t , prev prefix [t]), which are sorted in ascending time-point order and, since
they satisfy condition (18), these tuples are also sorted in descending prev prefix order. prevs [t]
is the time-point before t in S.

With the use of score range[t], oPIECb computes the likelihood that a time-point t in set S
will indeed become the starting point of a PMI. The longer the score range[t], i.e., the longer the
distance between prev prefix [t] and prev prefix [prevs [t]], the more likely it is that a future time-
point te will arrive with dp[te] ∈ score range[t], and thus t will be the starting point of a PMI.
Therefore, oPIECb stores in the support set the elements with the longer score range.

Table 4: Support set maintenance of oPIECb (after [38]).

Time 1 2 3 4 5

In 0 0 .3 0 .3 0 .6 0 .9

L −0 .5 −0 .2 −0 .2 0 .1 0 .4

prefix −0 .5 −0 .7 −0 .9 −0 .8 −0 .4
prev prefix 0 −0 .5 −0 .7 −0 .9 −0 .8
dp −0 .5 −0 .7 −0 .8 −0 .8 −0 .4

Example 4. Consider the dataset In[1 ..5] presented in Table 4. With a threshold value T of 0.5,
this dataset has a single PMI: [2 , 5]. Assume that the data arrive in two batches: In[1 ..4] and
In[5]. Given an unbounded support set, oPIEC would have cached time-points 1 , 2 , 3 and 4
into the support set. Assume now that the limit of the support set is set to two elements. oPIECb

processes In[1 ..4] to detect the time-points that may be used as starting points of PMIs. These are
time-points 1 , 2 , 3 and 4 . In order to respect the support set limit, oPIECb computes the score
ranges:

• score range[1] is set to [0 ,+∞) since t = 1 has no predecessor in the support set.
• score range[2] =[prev prefix [2], prev prefix [1]) =[−0 .5 , 0).
• score range[3] = [prev prefix [3], prev prefix [2]) =[−0 .7 ,−0 .5).
• score range[4] =[prev prefix [4], prev prefix [3]) =[−0 .9 ,−0 .7).

Given these score range values, oPIECb caches the tuples (1 , 0) and (2 ,−0 .5) in the support set,
since these are the elements with the longest score ranges.

With such a support set, oPIECb is able to perform correct CER, i.e., compute PMI [2 , 5], upon
the arrival of the second data batch In[5]. Note that we have dprange[2 , 5] = 0 .1 ≥ 0 and t = 5
is the last time-point of the data stream so far. Also, for the other time-point of the support set,
t = 1 , we have a negative dprange, i.e., dprange[1 , 5] =−0 .4 < 0 , and hence a PMI cannot start
from t = 1 . □

Figure 5 describes how oPIECb processes the instantaneous CE probabilities displayed in Fig-
ure 2 in three data batches, using a support set which may hold at most three elements. After

20

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

oPIEC Recognition

oPIECb Recognition

0

0.2

0.4

0.6

0.8

1

Time
P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

oPIEC Recognition

oPIECb Recognition

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

oPIEC Recognition

oPIECb Recognition

Figure 5: Probabilistic recognition over noisy data streams (continued from Figure 4). The orange straight line
expresses the recognition of oPIECb after processing the current data batch. Black crosses denote the potential starting
points of future PMIs computed by oPIEC/oPIECb and cached by oPIEC. Orange crosses depict the ones cached in
the bounded support set of oPIECb after processing the current data batch.

processing the first data batch (left diagram), oPIECb computes the PMI I1 . Then, it identifies the
same potential starting points of PMIs as oPIEC, but caches in the support set only three of them.
These are the three starting points with the longest score range.

After processing the second data batch (middle diagram), oPIECb extends I1 . There are no
potential starting points of PMIs in this data batch, and thus the support set of oPIECb is not
updated. When oPIECb processes the third data batch (right diagram), it extends further I1 to I b3 .
I b3 , however, is not a PMI—compare it against the interval computed by PIEC and oPIEC. The
starting point of the PMI was not cached in the support set after processing the first data batch, and
oPIECb could only compute a slightly shorter interval. oPIECb updates the support set with a new
element, because the low probability values near the end of this data batch have caused a large
decrease in the values of prefix . As a result, the first candidate element of this batch has a longer
score range than one of the time-points previously cached in the support set, and thus takes its
place.

5.2. Support Set Maintenance with oPIECbd

It is often the case that oPIECb maintains in the support set elements whose time-points are
much earlier than the current data batch, while the duration of a CE is usually within some bounds.
See, for example, the first cached time-point, depicted as an orange cross, in the right diagram of
Figure 5—it is unlikely that this time-point will become the starting point of a PMI in a future
data batch. To address this issue, we extend our previous work by introducing oPIECbd, a variant
of oPIECb with a support set maintenance algorithm taking advantage of CE-specific knowledge
regarding PMI duration, which may be obtained by observing historical data. We assume that
the duration of PMIs is normally distributed and oPIECbd is given the mean µ and the standard
deviation σ of the observed values. During online execution, when support set conflicts arise,
oPIECbd utilises this information for support set maintenance.

The support set maintenance algorithm of oPIECbd works as follows. First, oPIECbd constructs
the set S which contains every element of the support set and the candidate elements. When the

21

t1t2t3 tnow

ld3
ld2

µ
ld1

ld2 ld3

d
u
ra
ti
o
n
sP

D
F
(x
)

x

∫ ld3
2µ−ld3

durationsPDF (x) dx = 0 .68
∫ ld2
2µ−ld2

durationsPDF (x) dx = 0 .38

µld1

Figure 6: The deletion probabilities of the elements of set S whose time-points are t1, t2 and t3. The left diagram
shows the temporal positions of these time-points in relation to the last time-point of the current batch tnow and
their least durations ld1 , ld2 and ld3 in relation to the mean duration µ of the observed values. The right diagram
visualises the process of calculating the deletion probabilities of these time-points. For time-point t1 , delPr(t1)= 0
because ld1 <µ. For time-points t2 and t3 , whose least durations are greater than µ, delPr is equal to the area
under durationsPDF defined by the integral of equation (21). As an example, delPr(t2) is equal to the area under
durationsPDF between 2µ−ld2 and ld2 , i.e., delPr(t2)=

∫ ld2

2µ−ld2
durationsPDF (x) dx.

size of S is greater than the support set limit mb , oPIECbd computes, for each element ti in S, its
least duration ldi = tnow−ti+1 , where tnow expresses the last time-point of the current batch. ldi
denotes the minimum duration of a PMI starting from ti and ending in some future data batch.
(Upon each incoming data batch, support set maintenance takes place after PMI computation. At
this stage, therefore, oPIECbd has computed the PMIs ending in the current data batch.) Then,
oPIECbd calculates the deletion probability of ti , defined as follows:

delPr(ti)=

{
0 ldi ≤µ∫ ldi
2µ−ldi

durationsPDF (x) dx ldi >µ
(21)

durationsPDF is the probability density function of the normal distribution N (µ, σ2) with mean
µ and standard deviation σ of the observed duration values. Thus,

∫ y

−∞durationsPDF (x) dx is
equal to the probability that a sample generated from N (µ, σ2) is smaller than y . As an example,∫ µ

−∞durationsPDF (x) dx= 0 .5 denotes that a sample generated fromN (µ, σ2) is shorter than the
observed mean value µ with a probability equal to 50%. According to expression (21), the deletion
probability delPr(ldi) of a time-point ti is 0 when its least duration ldi is shorter or equal to µ.
In such cases, it is possible for a future PMI starting from ti to have a duration shorter or equal to
the mean µ of the observed duration values, and therefore it is too early to delete ti . Otherwise,
when all possible future PMIs starting from ti may have a duration greater than µ, i.e., ldi >µ,
delPr(ldi) is positive and increases with the probability that a sample generated from the given
probability distribution is smaller than ldi , i.e., the area under the probability density function up
to ldi . The integral in expression (21), however, starts from 2µ−ldi instead of −∞ in order to
have delPr(µ)= 0 and delPr(∞)= 1 , i.e., delPr is a cumulative distribution function.

As an example, Figure 6 presents the deletion probabilities of three elements with time-points
t1 , t2 and t3 , given that the observed duration values follow the normal distribution N (µ, σ2).
The left diagram of Figure 6 shows the temporal positions of these time-points in relation to tnow ,
as well as their least durations. The least durations of t1 , t2 and t3 are ld1 <µ, ld2 =µ+1

2
σ and

22

ld3 =µ + σ, respectively. The right diagram of Figure 6 shows that the deletion probability of
t1 is 0, because ld1 < 0 (see expression (21)). Moreover, the deletion probabilities of t2 and t3 ,
which are equal to the line-highlighted and the orange-coloured areas, respectively, are derived by
computing the integral of expression (21). As an example, for time-point t3 , whose least duration
is ld3 =µ+σ, we have:

delPr(t3)=

∫ ld3

2µ−ld3

durationsPDF (x) dx=

∫ µ+σ

µ−σ

durationsPDF (x) dx= 0 .68

After each element is assigned a deletion probability, it is removed from set S if this probability
is greater than a threshold generated randomly from the uniform distribution U(0 , 1). Since this
is a stochastic process, it is not guaranteed that the length of S will be equal to mb after iterating
over all of its elements. If the length of S remains greater than mb , oPIECbd invokes the support
set maintenance algorithm of oPIECb to resolve the remaining conflicts.

Algorithm 2 supportSetFiltering(S, mb, µ, σ, tnow)
Input: Set S containing the support set elements and the candidate elements of the current data
batch, the maximum size of the bounded support set mb , the mean and the standard deviation of
the given duration values µ and σ, and the last time-point of the current data batch tnow .
Output: Set S containing mb tuples which comprise the new support set.

1: durationsPDF ← N (µ, σ2)
2: for each (ti , prev prefix [ti]) ∈ S do
3: ldi ← tnow−ti+1
4: if length(S) > mb and ldi >µ then
5: delPr(ldi)←

∫ ldi
2µ−ldi

durationsPDF (x) dx

6: threshold ← random(U(0 , 1))
7: if delPr(ldi) > threshold then S .delete((ti , prev prefix [ti]))

8: if length(S) > mb then S ← supportSetMaintenance(S , length(S)−mb)

9: return S

Algorithm 2 describes the support set maintenance algorithm of oPIECbd. First, oPIECbd gen-
erates durationsPDF (line 1). Then, for each time-point ti in set S, oPIECbd computes its least
duration ldi (line 3). If the support set limit is exceeded, Algorithm 2 checks whether ldi is greater
than µ (line 4). If it is, we compute the deletion probability of time-point ti (line 5). Subsequently,
Algorithm 2 generates a threshold based on the uniform distribution U(0 , 1) (line 6) and deletes
the element of S whose time-point is ti if its deletion probability exceeds that threshold (line 7).
Finally, if the support set limit is still violated after iterating over all elements of S, Algorithm 2
invokes the support set maintenance algorithm of oPIECb (line 8). After this step, the length of S
is guaranteed to be equal to the maximum support set size, and thus Algorithm 2 returns S as the
new support set (line 9).

The following example illustrates oPIECbd and compares it against oPIECb.

Example 5. Suppose that oPIECb and oPIECbd operate on the data batches In[1 ..4], In[5 ..8] and
In[9 ..10] of Example 3. The maximum size of the support set for both systems is two elements.

23

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

oPIEC Recognition

oPIECb Recognition

oPIECbdRecognition

0

0.2

0.4

0.6

0.8

1

Time
P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

oPIEC Recognition

oPIECb Recognition

oPIECbdRecognition

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

oPIEC Recognition

oPIECb Recognition

oPIECb
st Recognition

Figure 7: Probabilistic recognition over noisy data streams (continued from Figure 5). The violet straight line ex-
presses the recognition of oPIECbd after processing the current data batch. Violet crosses depict the potential starting
points of future PMIs cached by oPIECbd after processing the current data batch.

Recall that in Examples 2 and 3, given the same data stream, oPIEC computed the following
support set and PMIs:

support set=[(1 , 0), (2 ,−0 .5), (8 ,−0 .9), (9 ,−1 .4)]
PMIs=[[1 , 5], [2 , 6], [8 , 10]]

After processing In[1 ..4], the support set of both oPIECb and oPIECbd is [(1 , 0), (2 ,−0 .5)].
Then, when In[5 ..8] arrives, both systems compute the first two PMIs: [1 , 5] and [2 , 6]. Subse-
quently, both systems attempt to add the tuple (8 ,−0 .9) to the support set, i.e.,
S =[(1 , 0), (2 ,−0 .5), (8 ,−0 .9)], and thus the respective maintenance algorithm is invoked, since
the support set size is limited to two elements.

oPIECb computes the score range of each element of S:
• score range[1] =[0 ,+∞).
• score range[2] =[−0 .5 , 0).
• score range[8] =[−0 .9 ,−0 .5).

Then, oPIECb removes element (8 ,−0 .9) because it has the shortest score range. Therefore,
when data batch In[9 ..10] arrives, oPIECb cannot compute the interval [8 , 10].

Suppose that the normal distribution fitting the duration data seen so far has µ= 4 .3 and
σ= 2 .4 . Given tnow = 8 , i.e., the last time-point of the current data batch In[5 ..8], for the first
element of S, where ti = 1 , we have ldi = tnow−ti+1 = 8 . This means that any future PMI start-
ing from the first element of S will have a duration of at least 8 time-points. However, the PMI
duration statistics indicate that PMIs very rarely exceed 8 time-points. When ldi > µ, oPIECbd

calculates the deletion probability of each element of the set, which for ti = 1 is delPr(1)= 0 .88 .
Therefore, element (1 , 0) will very likely be deleted from S. If this happens, the support set of
oPIECbd when In[9 ..10] arrives will be [(2 ,−0 .5), (8 ,−0 .9)] and the final PMI, i.e., [8 , 10],
will be computed. If t = 1 is not deleted, t = 2 will be deleted with probability delPr(2)= 0 .74 ,
leading again to the computation of PMI [8 , 10]. □

Figure 7 demonstrates how oPIECbd processes the instantaneous CE probabilities displayed

24

in Figure 2 in three data batches, using a support set which may hold, at most, three elements.
Similarly to oPIECb, after processing the first data batch (left diagram), oPIECbd computes all
the potential starting points of future PMIs, but caches only three of them. Algorithm 2, using
duration statistics regarding the target CE, derives that some of the earlier time-points of the data
batch are not likely to be starting points of future PMIs, because these statistics favour intervals
with a shorter duration. As a result, the support set maintenance algorithm of oPIECbd has cached
more recent time-points, compared to oPIECb. Finally, after processing the third data batch (right
diagram), oPIECbd computes the correct interval, i.e., the PMI computed by PIEC and oPIEC,
because the starting point of the PMI is in the support set.

5.3. Complexity of Support Set Maintenance
In oPIEC, the cost of PMI computation given a data batch with size nw and a support set with

size m is O(m+nw) (see Section 4.2). In oPIECb and oPIECbd, we have a bounded support set
with, at most, mb elements. The choice of the value of mb constitutes a trade-off between accuracy
and efficiency. For small values of mb , it is more likely that a PMI is missed because its starting
point is not present in the support set. Choosing a larger value for mb , however, may hinder the
efficiency of oPIEC.

Suppose that the support set is full (mb elements) and there are nw new candidate elements—
in the worst case, there is one candidate element for each time-point in the current data batch
In[i ..j]. Both oPIECb and oPIECbd utilise set S, containing the elements of the support set and
the candidate elements, i.e., mb+nw elements in total. The support set maintenance algorithm
of oPIECb removes the nw elements of S with the shortest score ranges. This is achieved with
an iterative process which compares the score range of each element in S, with the largest score
range among the nw elements of S with the shortest score ranges found so far. This operation
has a cost of O(mbnw). In total, the cost of oPIECb amounts to that of interval computation
(O(mb + nw)), support set candidate element identification (O(nw), because oPIEC checks the
prev prefix value of each time-point in the data batch) and support set maintenance (O(mbnw)).
After simplifications, the complexity of oPIECb is presented in Proposition 3.

Proposition 3 (oPIECb complexity). The cost of computing the PMIs of a data batch and updat-
ing the support set with oPIECb is

O(mbnw), (22)

where mb is the size of the bounded support set and nw is the size of the data batch.

In the case of oPIECbd, support set maintenance is performed by Algorithm 2. The filtering
step of Algorithm 2 (lines 1–7) iterates over each element of S once, and removes it from S if
its deletion probability exceeds a threshold. Therefore, the cost of this step is O(mb+nw). Af-
terwards, if the support set limit is still exceeded, oPIECbd invokes the support set maintenance
algorithm of oPIECb, whose complexity is O(mbnw). Therefore, the cost of support set main-
tenance in oPIECbd is O(mb+nw+mbnw). After simplifications, the complexity of oPIECbd is
presented in Proposition 4.

25

Proposition 4 (oPIECbd complexity). The cost of computing the PMIs of a data batch and up-
dating the support set with oPIECbd is

O(mbnw), (23)

where mb is the size of the bounded support set and nw is the size of the data batch.

In other words, the support set maintenance algorithm of oPIECbd (expression (23)) is of the
same complexity order as the corresponding algorithm of oPIECb (expression (22)). This is veri-
fied by the empirical comparison presented in the following section.

In contrast to oPIECbd and oPIECb, the cost of oPIEC with an unbounded support set is
O(m+nw), where m is the size of the unbounded support set (see Proposition 2). m increases
as the stream progresses, whereas mb remains constant, and thus, in practice, mb ≪ m. There-
fore, oPIEC with a bounded support set is the preferred choice for streaming applications.

6. Experimental Evaluation

We evaluated oPIECbd on human activity recognition and maritime situational awareness. Our
experiments were conducted on a single node of a desktop PC running Ubuntu 20.04 with Intel
Core i7-4770 CPU 3.4GHz and 16GB RAM. All components for online probabilistic CER—see
Figure 3—as well as the input data streams and execution instructions, are publicly available1.
Therefore, our experimental analysis is reproducible.

6.1. Experimental Setup
We describe the setup of the experiments concerning human activity recognition and maritime

situational awareness. We present the input data, i.e., the simple, derived events (SDEs) and
accompanying contextual data, and the output composite events (CEs). In all experiments, the
task of oPIECbd is to compute the PMIs of CEs.

6.1.1. Human Activity Recognition
Data. To evaluate our work, we used CAVIAR2, a benchmark activity recognition dataset.

CAVIAR includes 28 videos with 26,419 video frames in total. The videos are staged, i.e., actors
walk around, sit down, meet one another, fight, etc. Each video has been manually annotated by
the CAVIAR team in order to provide the ground truth for both SDEs (Simple Derived Events),
taking place on individual video frames, as well as CEs (Composite Events). Table 5 describes the
SDEs and the CEs of CAVIAR. The input to the activity recognition system consists of SDEs such
as ‘inactive’, i.e., standing still, ‘active’, i.e., non-abrupt body movement in the same position,
‘walking’ and ‘running’, together with their time-stamps, that is, the video frame in which the
SDE took place. The dataset also includes the coordinates of the tracked people and objects as
pixel positions at each time-point, as well as their orientation. Consider the following example:

happensAt(walking(id0), 680).
holdsAt(coord(id0)=(262 , 285), 680).

2https://groups.inf.ed.ac.uk/vision/DATASETS/CAVIAR/CAVIARDATA1/

26

https://groups.inf.ed.ac.uk/vision/DATASETS/CAVIAR/CAVIARDATA1/

Table 5: The input SDEs (above the dashed line) and contextual data (below the dashed line), and the output CEs of
human activity recognition.

Entity Description

SD
E

s
&

co
nt

ex
tu

al
da

ta

walking(P) Person P is walking.

running(P) Person P is running.

active(P)
Person P performs non-abrupt body

movements without changing position.
inactive(P) Person P is standing still.

abrupt(P) Person P performs abrupt body movements.

appear(P) Person P starts being tracked.

disappear(P) Person P stops being tracked.

coord(P)=(X ,Y) Person P is at position (X ,Y).

orientation(P)=Θ
Person P is facing at an angle of Θ degrees w.r.t.

the x-axis in the two-dimensional video projection.

C
E

s

moving(P1 ,P2) Persons P1 and P2 are moving together.

meeting(P1 ,P2) Persons P1 and P2 are having a meeting.

fighting(P1 ,P2) Persons P1 and P2 are fighting.

holdsAt(orientation(id0)= 0 , 680).
According to this video frame annotation, id0 is walking at video frame 680 , located at (262 , 285)
in the two dimensional projection of the video, and facing towards the horizontal axis of this
projection.

CAVIAR includes inconsistencies, as the members of the CAVIAR team that provided the
annotation for SDEs and CEs did not always agree with each other [36, 50]. Furthermore, to allow
for a more demanding evaluation, Skarlatidis et al. [50] injected noise into CAVIAR, producing
the following datasets:

• Smooth noise: SDEs have been attached with probability values, generated by a Gamma
distribution with a varying mean, which signify the probability of their occurrence.

• Strong noise: Apart from SDEs, probabilities have also been attached to contextual informa-
tion (coordinates and orientation) using the same Gamma distributions. Moreover, spurious
SDEs that do not belong to the original dataset have been added using a uniform distribution.

Task. Given the SDEs and contextual data of each video frame, the task is to recognise the CEs
‘moving’, ‘meeting’ and ‘fighting’. The patterns of these CEs are presented in Appendix A.1.

Evaluation. We evaluated the predictive accuracy of oPIECbd and oPIECb on the CAVIAR
dataset for human activity recognition. The streams of instantaneous CE probabilities we used

27

as input were generated either by Prob-EC or OSLα. Recall that Prob-EC is an implementation
of the Event Calculus in ProbLog, designed to handle data uncertainty (see Section 2.2). OSLα
translates the Event Calculus into Markov Logic [51], and uses supervised learning to generate
weighted CE definitions [41, 40]. OSLα is not designed to handle probabilistic data, and thus was
trained on the original CAVIAR dataset (see [41] for the setup of the training process). The CE
definitions used by Prob-EC were constructed manually and are not weighted (see Appendix A.1).

The support set maintenance algorithm of oPIECbd requires CE duration statistics. For this
reason, the presented experiments were performed using 5-fold cross-validation. We made sure
that all folds were balanced with respect to the number of CE instances, and that no video was split
between the training and test sets. In each fold, the durations of the PMIs identified by PIEC in the
training set were used when testing oPIECbd in the corresponding test set. In other words, oPIECbd

had to compute the PMIs in the test set given the mean and the standard deviation of the PMIs of
the training set. The overall (micro) f1-score was derived by combining the results of all folds.
A perfect f1-score implies that the intervals computed by oPIECb/oPIECbd match precisely the
PMIs of PIEC. oPIECbd and oPIECb operated on data batches of one time-point, i.e., performing
reasoning at every time-point and then discarding it, unless cached in the support set.

Table 6: The input SDEs (above the dashed line) and contextual data (below the dashed line), and the output CEs of
maritime situational awareness.

Entity Description

SD
E

s
&

co
nt

ex
tu

al
da

ta

entersArea(V ,A) Vessel V enters area A.

leavesArea(V ,A) Vessel V exits area A.

gapStart(V) Vessel V stops sending position signals.

gapEnd(V) Vessel V resumes sending position signals.

stopStart(V) Vessel V starts being idle.

stopEnd(V) Vessel V stops being idle.

slowMotionStart(V) Vessel V starts moving at a low speed.

slowMotionEnd(V) Vessel V stops moving at a low speed.

proximityStart(V1 ,V2) Vessels V1 and V2 start being close to each other.

proximityEnd(V1 ,V2) Vessels V1 and V2 stop being close to each other.

coord(V)=(Lat ,Lon) Vessel V is at position (Lat ,Lon).

velocity(V)= S Vessel V sails at speed S.

C
E

s rendezVous(V1 ,V2)
Vessels V1 and V2 are nearby in the

open sea, stopped or sailing at a low speed.

tugging(V1 ,V2)
Vessels V1 or V2 is a tugboat and

is pulling or towing the other vessel.

28

6.1.2. Maritime Situational Awareness
Data. To test further oPIECbd, we employed a publicly available dataset3 which includes 18

million Automatic Identification System (AIS) position signals collected from 5 thousand ships
sailing in the area of Brest, France, for a period of six months, between October 2015 and March
2016. AIS messages comprise dynamic information (position, speed, etc.), as well as static infor-
mation (name, type, etc.) about vessels [13]. This dataset has been pre-processed by means of
trajectory simplification [24] and spatial processing [45]. The former process annotated position
signals of interest as ‘critical’, signifying major changes in a vessel’s behaviour such as a stop, a
turn, and a gap in signal transmission, while the latter process computed spatial relations between
vessels, such as vessels being close to each other. Table 6 describes the SDEs and CEs of the Brest
dataset. Consider the following example of input data:

happensAt(leavesArea(id2 , fishing), 492).
holdsAt(coord(id2)=(48 .12 ,−4 .35), 492).
holdsAt(velocity(id2)= 5 .13 , 492).

According to these records, vessel id2 leaves some fishing area at time-point 492 ; moreover, id2
is located at (48 .12 ,−4 .35) and sailing with a speed of 5 .13 knots.

We injected noise into the dataset of Brest by assigning a probability value to every item of
the dataset. We followed [62] and assumed that the confidence of an AIS signal decreases as
the distance of the corresponding vessel from the nearest coastline base station increases, and
annotated each signal of the dataset with a probability using the following function:

Pc(x) = 1 − x

x + c
x is the distance of the ship from the nearest base station and c is a distance threshold denoting our
confidence concerning the veracity of signals. According to the function above, the probability
of a position signal decreases as the value of c decreases. We constructed a ‘smooth noise’ and a
‘strong noise’ version of the Brest dataset by applying the noise functions P10000 and P5000 on the
original dataset.

Task. Given the input presented in Table 6, the task is to recognise the CEs ‘rendez-vous’,
i.e., a potential ship-to-ship transfer of goods in the open sea, and ‘tugging’, i.e., the activity of
pulling a ship into or out of a port. These CEs were defined following expert opinion [44] and
their patterns are presented in Appendix A.2.

Evaluation. For our experiments on maritime situational awareness, we employed Prob-EC
to produce probability values for the instantaneous occurrences of the target CEs, i.e., ‘rendez-
vous’ and ‘tugging’. Subsequently, we evaluated oPIECb and oPIECbd on the derived probability
streams. We compared the intervals computed by oPIECb and oPIECbd when processing online the
CE probabilities of Prob-EC against the PMIs computed by PIEC when processing the same data
as a single batch. The duration statistics required by oPIECbd were derived by a cross-validation
setting similar to that of the experiments on human activity recognition. We made sure that the
folds were balanced in terms of CE instances, and that the set of vessels in the training set is
disjoint from the set of vessels in the test set. The batch size of oPIECb and oPIECbd was set to

3https://zenodo.org/record/1167595

29

https://zenodo.org/record/1167595

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

f1
-s
co

re

oPIECbd

oPIECb

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
support set size

(a)moving
‘smooth noise’

(b)moving
‘strong noise’

(c)meeting
‘smooth noise’

(d)meeting
‘strong noise’

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

f1
-s
co

re

oPIECbd

oPIECb

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
support set size

(e) fighting
‘smooth noise’

(f) fighting
‘strong noise’

(g)moving
OSLα

(h)meeting
OSLα

Figure 8: The predictive accuracy of oPIECbd and oPIECb on human activity recognition. The intervals computed
by oPIECbd and oPIECb are compared to the PMIs computed by PIEC. The point-based systems providing the input
probability streams are Prob-EC (diagrams (a)–(f)) and OSLα (diagrams (g)–(h)).

one, while the probabilistic threshold T was set to 50%.

6.2. Experimental Results
Human Activity Recognition. Figure 8 presents the predictive accuracy of oPIECbd and

oPIECb, operating with a probabilistic threshold T = 50%; using this value, PIEC outperforms
point-based recognition. These results demonstrate that the use of oPIECbd leads to significant
performance gains compared to oPIECb. In all cases, oPIECbd outperforms oPIECb, highlighting
the importance of taking into consideration PMI duration statistics. Note that in the case of ‘meet-
ing’ oPIECbd performs better under ‘strong noise’ than ‘smooth noise’, when Prob-EC provides the
input stream (see Diagrams 8(c) and 8(d)). Some intervals which were PMIs under ‘smooth noise’
are not PMIs under ‘strong noise’ because their probabilities have dropped below the threshold.
This exclusion of lower probability PMIs produces more reliable duration statistics for oPIECbd.

In order to illustrate the performance of oPIECbd, we analyse some typical snapshots of our
experiments. Figure 9 displays two PMIs, I1 and I2 , computed by PIEC for ‘meeting’ under
‘strong noise’, and the corresponding intervals computed by oPIECbd and oPIECb. Table 7 displays
the endpoints of PMIs I1 and I2 , along with the support sets of oPIECb and oPIECbd at the time
denoted by the ending point of the corresponding PMI. The support sets of oPIECb and oPIECbd

may hold at most five elements, while the mean and the standard deviation of the duration values
provided to oPIECbd are 411 and 22 time-points, respectively.

30

oPIECbd

oPIECb

PIEC

I1 I2

Figure 9: Indicative comparison of the intervals computed by PIEC (top) against those computed by oPIECbd (middle)
and oPIECb (bottom). Green lines denote true positives, red lines denote false positives, while grey lines denote false
negatives.

Table 7: Indicative interval computation comparison between PIEC, oPIECbd and oPIECb. The first column presents
the PMIs computed by PIEC. The second and third columns present the support sets (lists of tuples in the form of
(t , prev prefix [t])) of oPIECbd and oPIECb, respectively, at the time denoted by the ending point of the correspond-
ing PMI.

Target PMI oPIECbd support set oPIECb support set

I1 =[17492 , 18881]
[(17312 ,−7075), (17390 ,−7114), (17495 ,−7167), [(0 , 0), (4858 ,−1096), (10391 ,−3628),

(17556 ,−7192), (17673 ,−7211)] (13025 ,−4936), (17133 ,−6986)]
I2 =[21602 , 22960]

[(21503 ,−8475), (21559 ,−8503), (21616 ,−8532), [(0 , 0), (10391 ,−3628), (13025 ,−4936),
(21680 ,−8555), (21793 ,−8572)] (17133 ,−6986), (20715 ,−8081)]

Consider oPIECb and oPIECbd attempting to compute PMI I1 =[17492 , 18881] with the cor-
responding support sets displayed in Table 7. oPIECb computed the interval [17133 , 18522] start-
ing from the time-point of the last support set element, i.e., (17133 ,−6986). The time-point
t = 17492 , with prev prefix [t] =−7164 , was not stored in the support set because its score range
was shorter than the score range of all support set elements. In contrast, oPIECbd maintained in
the support set the time-point 17495 , and thus computes the interval [17495 , 18883], having only
three false negatives and two false positives. In oPIECbd, support set elements which are ‘out-
dated’ with respect to duration statistics are eventually removed. Note that the intervals computed
by oPIECb and oPIECbd are PMIs. PIEC chose I1 over these intervals because I1 has the highest
‘credibility’, i.e., among overlapping PMIs, PIEC chooses the one with the highest probability.

In the case of PMI I2 =[21602 , 22960], all intervals starting from a time-point in the support
set of oPIECb have a probability below the threshold. In such cases, the recognition of oPIECb

follows point-based recognition, i.e., it returns the time periods during which instantaneous CE
probability is greater or equal to the threshold, which resulted in the construction of a sub-interval
of I2 , i.e., oPIECb could not compute a PMI. In contrast, oPIECbd maintained in its support set
time-point 21616 , which is the starting point of a PMI overlapping I2 .

Maritime Situational Awareness. Figure 10 presents the f1-scores of oPIECbd and oPIECb.
oPIECbd performs at least as well as oPIECb in the case of ‘rendez-vous’ and clearly outperforms
oPIECb in the case of ‘tugging’. In the recognition of ‘tugging’, it is often the case that all intervals
starting from a time-point in the support set of oPIECb and ending in the current data batch have
a probability below the threshold. It such cases, the intervals computed by oPIECb are confined
only to time-points with probability above the threshold, and thus oPIECb detects sub-intervals

31

0 10 20 30 40 50
0.7

0.8

0.9

1

f1
-s
co

re

oPIECbd

oPIECb

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
support set size

(a) rendez-vous
‘smooth noise’

(b) rendez-vous
‘strong noise’

(c) tugging
‘smooth noise’

(d) tugging
‘strong noise’

Figure 10: The predictive accuracy of oPIECbd and oPIECb on maritime situational awareness. The intervals com-
puted by oPIECbd and oPIECb are compared to the PMIs computed by PIEC. The point-based system providing the
input probability streams is Prob-EC.

Table 8: Run-times of oPIECbd, oPIECb and PIEC when computing the PMIs of ‘rendez-vous’ under ‘strong noise’.

(a) Total run-times of oPIECbd, oPIECb and PIEC in seconds when processing data streams of increasing size.

total stream size
(number of time-points) 1K 2K 4K 8K

PIEC 1 .92 ± 0 .32 7 .53 ± 1 .24 29 .76 ± 4 .9 134 .63 ± 22

oPIECb 0 .09 ± 0 .02 0 .19 ± 0 .05 0 .38 ± 0 .1 0 .7 ± 0 .2

oPIECbd 0 .09 ± 0 .02 0 .19 ± 0 .05 0 .39 ± 0 .1 0 .72±0 .23

(b) Total run-times of oPIECbd and oPIECb in seconds as the support set size increases.

support set size
(number of elements) 50 100 200 400

oPIECb 0 .7 ± 0 .21 1 .27 ± 0 .5 2 .4 ± 1 .1 4 .79 ± 2 .41

oPIECbd 0 .7 ± 0 .23 1 .27 ± 0 .53 2 .4 ± 1 .1 4 .79 ± 2 .41

of PMIs, resulting in false negatives. In contrast, oPIECbd is more accurate than oPIECb because
it promptly discards obsolete time-points from the support set. In the case of ‘rendez-vous’, the
elements in the support set of oPIECb often coincide with those maintained after consulting the
provided duration statistics. Thus, the performance of oPIECb is closer to that of oPIECbd.

The aim of the next set of experiments was to compare the run-times of oPIECbd, oPIECb and
PIEC. We show the results of this comparison on ’rendez-vous’ under ’strong noise’; the results
for the other CEs in maritime situational awareness and human activity recognition are similar
and thus not shown here. The support set size limit was set to 50 elements for both oPIECbd

and oPIECb, as this value leads to near-perfect PMI computation (see Figure 10(b)). The data
batch size was set to one time-point. Upon each new batch arrival, PIEC had to process every
input probability value from the start of the stream until the latest data batch, in order to ensure
correct PMI computation. Table 8(a) shows the performance of PIEC, oPIECb and oPIECbd for

32

0 50 100 150
0.7

0.8

0.9

support set size

f1
-s
co

re

oPIECbd

SEC

(a)meeting
‘strong noise’

0 50 100 150
0.7

0.8

0.9

support set size
f1
-s
co

re

(b) fighting
‘smooth noise’

0 50 100 150
0.4

0.5

0.6

support set size

f1
-s
co

re

(c) fighting
‘strong noise’

Figure 11: The predictive accuracy of oPIECbd and SEC against the ground truth provided by the CAVIAR team.
The standard deviations in diagram (b) are small, and thus not visible. oPIECbd consumed the instantaneous CE
probabilities computed by Prob-EC (which are the same as the instantaneous CE probabilities computed by SEC).

input data streams with size ranging from 1,000 to 8,000 time-points. oPIECbd and oPIECb have
effectively the same performance; their run-times increase linearly with the input stream size, as
the cost of processing an incoming data batch depends only on the size of the data batch and the
size of the support set, which remain constant, and not on the entire history of the stream. Not
surprisingly, the use of PIEC becomes prohibitively expensive as the stream progresses. These
results are compatible with the complexity analyses of Sections 4.2 and 5.3.

In order to stress test oPIECbd and oPIECb further, we performed experiments for support
set sizes ranging from 50 to 400 elements, while the stream size remains constant and equal to
8,000 time-points. Table 8(b) shows the results. Again, the performance of both systems is nearly
identical. In other words, the additional operations of oPIECbd impose practically no overhead to
the system (see Section 5.3).

6.3. Experimental Comparison
We compared oPIECbd with three state-of-the-art systems: the Simplified Event Calculus im-

plemented in ProbLog (SEC), the Probabilistic Event Calculus (PEC) and OSLα. SEC is a proba-
bilistic Event Calculus framework that supports uncertainty in both SDEs and CE definitions [39].
Similar to Prob-EC, SEC performs point-based recognition. We compared the predictive accuracy
of oPIECbd and SEC using the CE annotation provided by the CAVIAR team as the ground truth.
Following [38], we investigated the detection of the ‘meeting’ CE under ‘strong noise’ and the de-
tection of the ‘fighting’ CE under ‘smooth noise’ and ‘strong noise’. We used the threshold values
leading to the best performance for each system. When recognising ‘meeting’ and ‘fighting’ under
‘strong noise’, we set T = 50% for all systems. In the case of ‘fighting’ under ‘smooth noise’, the
best performance for SEC is achieved with T = 90%, while oPIECbd reached its best performance
with T = 50%. oPIECbd was evaluated using 5-fold cross-validation, while SEC does not require
training. Figure 11 shows the f1-scores of oPIECbd and SEC, as the size of the support set used
by oPIECbd increases from 0 to 150 elements. Our results show that the use of oPIECbd improves
upon the point-based recognition of SEC, while requiring only a small subset of the data.

Figure 12 shows the reasoning times of oPIECbd and SEC when processing SDE streams of

33

64 128 256 512 1024
1

101

102

103

104

105

number of events in stream

re
a
so

n
in
g
ti
m
e
(s
e
c)

oPIECbd+Prob-EC SEC PEC

Figure 12: The reasoning times of oPIECbd and Prob-EC (oPIECbd+Prob-EC), SEC and PEC on the task of detecting
the ‘moving’ CE under ‘smooth noise’ in logarithmic scale. PEC and SEC required more than 5 hours to process
streams including at least 256 events and 1024 events, respectively, and thus we terminated their execution in these
cases.

increasing size. The reasoning times presented for oPIECbd include the time that Prob-EC required
to derive the instantaneous CE probabilities which are necessary for PMI computation. As a matter
of fact, PMI computation takes up approx. 0 .2% of the times shown in Figure 12. Our results
show that oPIECbd scales much better than SEC. SEC computes the probability of a CE at each
time-point from scratch, without taking into consideration the CE probabilities derived at previous
time-points. In contrast, oPIECbd uses Prob-EC, which derives CE probabilities incrementally as
time progress, avoiding redundant computations and maintaining in memory only the probabilities
of CEs at the previous time-point.

A closely related system is PEC, i.e., a probabilistic Event Calculus framework for point-
based recognition, which is implemented in answer set programming (ASP) for evaluation with a
state-of-the-art ASP solver [21, 20]. The ASP implementation of PEC has been used in a decision-
making system monitoring the attention levels of children engaging in rehabilitation exercises [22].
We tried to compare the predictive accuracy of oPIECbd against that of PEC, but could not con-
duct a meaningful comparison due to the high reasoning times of PEC. Figure 12 shows that the
reasoning time of PEC increased exponentially as we doubled the number of SDEs in the input
stream. Moreover, given a stream with at least 256 SDEs, we had to terminate the execution of
PEC because it ran for more than 5 hours.

OSLα is a supervised learning system optimising the structure and weights of CE definitions
in an Event Calculus expressed in Markov Logic [41, 40]. OSLα has proven effective in the task
of learning human activity definitions, often outperforming manually constructed rules. We com-
pared the predictive accuracy of oPIECbd and OSLα with respect to detecting the ‘meeting’ CE
against the ground truth provided by the CAVIAR team. OSLα is not designed to handle proba-
bilistic data, and thus operated on the original CAVIAR dataset. OSLα included a training phase
during which it learned a definition of ‘meeting’ in the form of weighted Event Calculus rules,
given a training set containing a subset of the annotation provided by the CAVIAR team (see [41]

34

0 50 100 150
0.7

0.8

0.9

support set size

f1
-s
co

re

meeting

oPIECbd

OSLα

Figure 13: The predictive accuracy of oPIECbd and OSLα on the task of detecting the ‘meeting’ CE against the
ground truth provided by the CAVIAR team.

for the setup of the training process). Afterwards, OSLα was evaluated in the remaining instances
of ‘meeting’, using the learned pattern to compute the probability of ‘meeting’ at each time-point.
oPIECbd processed the instantaneous probabilities derived by OSLα in order to compute the inter-
vals of ‘meeting’ and was trained using 5-fold cross-validation. The threshold value for all systems
was set to 70% because this choice maximises the predictive accuracy of each system.

Figure 13 presents our results, according to which the interval-based recognition of oPIECbd

improves upon the recognition of OSLα. The instantaneous probabilities computed by OSLα in-
clude frequent fluctuations (similar to the one presented in Figure 2), which lead to false negatives.
oPIECbd addressed this issue by computing PMIs and, as a result, outperformed the point-based
recognition of OSLα.

7. Related Work

oPIECbd is a complex event recognition (CER) framework; CER refers to the identification of
high-level, composite events (CE)s of interest based on streams of simple, derived events (SDE)s.
These simple event streams may include various types of noise. For instance, in activity recog-
nition, erroneous SDE indications are often the result of failures in the object tracker or object
occlusion [48, 30], while maritime data streams may include empty fields and erroneous field val-
ues [13]. To address these issues, various frameworks have been proposed for probabilistic CER.
See [3, 8] for two comprehensive surveys. Tables 9 and 10 compare probabilistic CER frameworks
extending [3]. Table 9 compares the state-of-the-art in terms of the underlying formalism, tempo-
ral model, support for background knowledge, uncertainty model and learning capabilities. Table
10 reports the time complexity, empirical efficiency and predictive accuracy of these frameworks,
as well as their code availability. In what follows, we review the probabilistic CER systems along
the dimensions-columns of Tables 9 and 10.

7.1. Expressive Power
Probabilistic CER frameworks are commonly automata-based or logic-based [3]. Automata-

based methods, which often extend the CER engine SASE+ [1], have been designed to handle
uncertainty in event symbols and their time-stamps [60, 61]. The approach based on deterministic

35

Table 9: A comparison of probabilistic CER frameworks in terms of the underlying formalism, temporal model,
support for background knowledge, uncertainty model and learning capabilities. B.K.: Background Knowledge,
M.L.: Machine Learning.

Approach Formalism Temporal
Model B.K. Uncertainty M.L.

Data Pattern Model

oPIECbd Logic programming
Intervals, Explicit,

Event Calculus.
✓ ✓ Probabilistic logic programming

SEC [39] Logic programming
Points, Explicit,
Event Calculus.

✓ ✓ ✓ Probabilistic logic programming

DeepProbCEP [58] Logic programming Points, Explicit. ✓ ✓ Neural probabilistic logic programming ✓

Apriceno et al. [6] Logic programming Intervals, Explicit. ✓ ✓ Neural probabilistic logic programming ✓

CPT-L [54]
Disjunctive logic

programming
Points, Implicit. ✓ ✓ Probabilistic logic programming ✓

Qualitative time
CP-Logic [26]

Disjunctive logic
programming

Intervals, Explicit. ✓ ✓ Dynamic Bayesian Networks

WOLED [29]
Answer set

programming
Points, Explicit,
Event Calculus.

✓ ✓
Derivation of answer set that maximises

the sum of weights of satisfied rules
✓

PEC [21, 20, 19]
Action logic

translated to answer
set programming

Points, Implicit,
Event Calculus.

✓ ✓
Multiplication of independent

probabilistic choices

OnPad [2] First-order logic Intervals, Explicit. ✓
Probabilities assigned to predicates for

object equality

MLN-EC [51] First-order logic
Points, Explicit,
Event Calculus.

✓ ✓ Markov Logic Networks ✓

MLN-Allen [42] First-order logic
Intervals, Explicit,
Allen’s Algebra.

✓ ✓ ✓ Markov Logic Networks

OSLα [41, 40] First-order logic
Points, Explicit,
Event Calculus.

✓ ✓ Markov Logic Networks ✓

Apriceno et al. [7] First-order logic Intervals, Explicit. ✓ ✓ Mixed integer linear programming ✓

PEL [14] Event logic [49]
Intervals, Implicit,
Allen’s Algebra.

✓ ✓ Weighted event logic formulas

CEP2U [18] TESLA [17] Points, Explicit. ✓ ✓ Bayesian Networks

Partial-State
MTL [35]

Metric temporal
logic

Points, Implicit. ✓
Multiplication of state transitions

probabilities

ProbSTL [55]
Signal temporal

logic
Points, Implicit. ✓ Bayesian filtering

Neuroplex [59]
Finite state machines

and logic
programming

Points, Explicit. ✓ ✓
Probabilistic logic programming

approximated with a deep learning
model

✓

SASE++ [60, 61]
Non-deterministic

finite automata
Points, Implicit. ✓ Probability distribution on time attribute

Sugiura and
Ishikawa [52, 53]

Deterministic finite
automata

Intervals, Implicit. ✓
Multiplication of probabilistic transition

matrices

Data Pattern Model

Approach Formalism Temporal
Model B.K. Uncertainty M.L.

36

Table 10: A comparison of probabilistic CER frameworks in terms of the time complexity, empirical efficiency,
predictive accuracy and code availability. C.A.: Code Availability.

Approach Complexity Efficiency Accuracy C.A.

oPIECbd
O(mbnw), where mb is the

bounded memory size and nw
is the batch size.

Processes a stream of 8K
probabilities in less than 1

second.

F1-score of at least 90%
w.r.t. batch processing. ✓

SEC [39] Not reported. Not reported. Not reported. ✓

DeepProbCEP [58] Not reported.
Slower training and reasoning
times than Neuroplex by more

than an order of magnitude.

Outperforms state-of-the-art
neural approaches when
trained using sparse data.

✓

Apriceno et al. [6] Not reported. Not reported. Improves upon fully neural
benchmark.

CPT-L [54]

Program transformed into a
BDD in polynomial time.

Probabilistic inference is linear
to the size of the BDD. The

size of the BDD may be
exponential to the size of the

program.

Inference over 200K nodes in
the ground network in
approx. 20 seconds.

Approx. 84% in the most
challenging domain of their

experiments.

Qualitative time
CP-Logic [26] Not reported. Not reported. Not reported.

WOLED [29]
Reduction to weighted MaxSat,

which is NP-complete.

MAP inference over batches
including approx. 30K ground
atoms in less than 1 second.

Induced patterns for ‘moving’
and ‘meeting’ yield f1-scores
of 82% and 89%, respectively.

✓

PEC [21, 20, 19] Not reported. Processes approx. 4K
traces/sec.

Approximate solution
computes probabilities within

95% confidence intervals
w.r.t. exact probabilities by

sampling 100 worlds.

✓

OnPad [2]

O(max (|O |, |l |, |pl |)|af |),
where is |O | is the number of
objects in a video, |l | is the
number of ground boolean
atoms, |pl | is the number of

probabilistic ground atoms and
|af | is the number of atoms in
the formula of the activity of

interest.

Processes approx. 4 video
frames per second.

Divergence from human
reviewer annotation ranges

from 9% to 20%.

Approach Complexity Efficiency Accuracy C.A.

37

Table 10: Continued.

Approach Complexity Efficiency Accuracy C.A.

MLN-EC [51]

Marginal inference with the
approximate sampling
algorithm MC-SAT.

Approximate MAP inference
through a transformation into
Integer Linear Programming.

Marginal and MAP inference
in less than 5 minutes.

Increased precision, slight
decrease in recall

w.r.t. deterministic solution.
✓

MLN-Allen [42] Not reported. Not reported. F1-score > 65%, even for
small window sizes.

OSLα [41, 40] Not reported.
Training time for ‘meeting’ CE

approx. 2 hours. Uses
MLN-EC for inference.

Accuracy of learned CE
definitions is similar and often

better than the accuracy of
manually curated rules.

✓

Apriceno et al. [7] Not reported. Not reported. Improves upon fully neural
benchmark.

PEL [14]

Transforms the knowledge base
in CNF in time linear to its size

and applies an approximate
stochastic local search

approach for MAP inference.

Not reported. On average, >75%.

CEP2U [18] Not reported. <10ms/event after introducing
data and pattern uncertainty.

>80% in all of their
experiements.

Partial-State
MTL [35] Not reported.

<3 minutes for formulas
corresponding to automata

with up to 15K states.
Approx. 1.5 minutes with
approximate reasoning.

Accuracy of formula
probability approximation

w.r.t. exact solution is
controlled by a user-defined

parameter.

✓

ProbSTL [55]

Proportional to the length of
the formula defining the target

complex event and the
complexity of the

domain-specific functions
mapping stochastic signals to

real values.

Not reported.

Probabilistic approach
improves upon the recall

metric, which is crucial for
safety formulas where no

instances should be missed.

Neuroplex [59] Not reported. Not reported.
Outperforms corresponding

neural solutions without human
knowledge injected.

✓

SASE++ [60, 61]
Exponential to window size if
Kleene closure is included in

the language.

Throughput 300K–7M
events/sec or 13.62

events/second/node w.r.t. 6
queries.

Not reported.

Sugiura and
Ishikawa [52, 53]

O(√wn2+n3), where w is
the window size and n is the

number of states in the
deterministic finite automaton

representation of a pattern.

Throughput of >1K events/sec
for a deterministic finite

automaton with <10 states.

Removing states with
probability <0.0001 to

improve efficiency introduces
an error of approx. 7%.

Approach Complexity Efficiency Accuracy C.A.

38

finite automata of Sugiura and Ishikawa [52, 53] employs adaptive sliding windows and opti-
misation techniques. Automata-based methods lack the explicit representation of time and the
expressive power of logic-based frameworks, such as the Event Calculus, making the modelling
of CE patterns with complex temporal constraints and background knowledge cumbersome, and
often impossible. Logic-based approaches are typically based on (subsets of) first-order logic.
Several probabilistic Event Calculus dialects, such as Prob-EC and SEC [39], model CE defini-
tions through logic programming rules. Other approaches employ extensions of linear temporal
logic [35, 55], action logics [21] or the ‘event logic’ [47, 49]. These approaches model state ma-
chines where time is specified implicitly as the index of a state in an execution sequence. Metric
Temporal Logic (MTL) augments the expressive power of state machines by supporting temporal
operators whose scope can be constrained by user-defined temporal intervals. de Leng et al. pre-
sented Partial-State MTL [35], an incremental reasoning algorithm for computing formula satis-
faction under uncertainty in MTL. ProbSTL [55] employs an extension of MTL with dense-time
semantics where logical statements represent continuous time signals. Because of their point-
based, implicit time model, these approaches are designed for path checking, i.e., finding whether
a possible state evaluation is a model for a given query, and do not support durative CE computa-
tion. Through the use of Prob-EC, oPIECbd is based on logic programming, and thus avoids the
aforementioned representation issues.

There are additional point-based frameworks in the literature. Skarlatidis et al. [51] proposed
MLN-EC, i.e., an Event Calculus expressed in Markov Logic and implemented using Markov
Logic Networks (MLNs). CEP2U [18] extends the TESLA [17] event specification language with
probabilistic modelling. CPT-Logic [54] is a temporal extension of Causal-Probabilistic Logic
(CP-Logic) [57] using Markov processes. SEC and PEC [21] are probabilistic Event Calculus
dialects based on probabilistic logic programming and an action logic, respectively. In all of
these approaches, CE inference is performed at each individual time-point (e.g., video frame). It
has been shown that point-based approaches are often insufficient for CER under uncertainty [8].
Noisy instantaneous CE probability fluctuations, and non-abrupt probability change affect the per-
formance of point-based recognition. Therefore, it is preferrable to employ interval-based tech-
niques for CER.

Towards this, Brendel et al. [14] integrated the interval-based Probabilistic Event Logic (PEL)
into an activity recognition framework for detecting CEs from a set of noisy, durative SDEs. MLN-
Allen [42] is an interval-based activity recognition framework that avoids the enumeration of all
possible intervals of a CE. In [26], CP-logic was combined with Allen’s interval relations [4] to
perform interval-based CER under uncertainty. Contrary to oPIECbd, these frameworks cannot
compute CE intervals with a single pass over the input stream. Complexity and performance are
discussed in Section 7.3.

Some frameworks support CE patterns that rely on background knowledge. For example, in
the maritime domain, it is often necessary to retrieve the type of a vessel and its dimensions, or
the regulations governing vessel behaviour in a designated area. Table 9 shows that the automata-
based frameworks, i.e., SASE++ and the work of Sugiura and Ishikawa, do not support background
knowledge, while most logic-based frameworks do. oPIECbd is based on logic programming, and
thus has inherent support for background knowledge.

A probabilistic CER framework may express data uncertainty in the input SDEs, and/or pattern

39

uncertainty, i.e., uncertainty in the definitions of CEs. Moreover, a model is used to handle the
uncertainty of SDE occurrences and/or CE definitions in reasoning. Table 9 compares the proba-
bilistic CER frameworks along these dimensions. oPIECbd processes input SDEs using Prob-EC,
which supports data uncertainty as SDEs are associated with probability values. Moreover, Prob-
EC, like all probabilistic logic programming frameworks displayed in Table 9, is based on Sato’s
distribution semantics [46]. PEL models uncertainty by defining CEs as weighted event logic for-
mulas [14]. OnPad supports probability annotations only on equality predicates and employs an
ad-hoc algorithm to propagate their uncertainty to its output. Some state transition systems propa-
gate uncertainty by multiplying the probabilities of all transitions in some sequence [52, 55], while
other frameworks employ Bayesian Networks [18, 26]. PEC derives the instantaneous probability
of a CE by computing all possible worlds in which the CE holds and adding their probabilities. As
demonstrated in Section 6.3, this approach is not suitable for probabilistic CER.

7.2. Learning
Several probabilistic CER frameworks support learning; see the last column of Table 9.

WOLED combines inductive logic programming techniques with answer set programming (ASP)
in order to learn the structure and the weights of probabilistic Event Calculus rules [29]. For ex-
ample, WOLED was able to learn a more accurate definition for ‘meeting’ than the related learner
ILASP [33, 34], while being more efficient [29]. Our experimental evaluation included OSLα,
a supervised framework for learning the structure of weighted Event Calculus rules in Markov
Logic [41]. OSLα has been employed in a semi-supervised setting using an online supervision
completion method adapted to first-order logic [40]. In this setting, OSLα was able to learn ac-
curate definitions for the ‘moving’ and ‘meeting’ CEs, even in the presence of partially labelled
data. Learning CE definitions is orthogonal to our work; the definitions used by oPIECbd may be
learned or manually constructed.

Neuro-symbolic frameworks for CER typically employ a neural layer for deriving SDEs from
multimedia data and a logic layer for defining patterns of CEs. Neuroplex [59] is a neuro-symbolic
CER framework that translates logical rules expressing CE definitions in a ‘neural reasoning layer’,
resulting in a fully differentiable neural architecture that may be trained end-to-end using CE an-
notations. DeepProbCEP [58] is a neuro-symbolic CER framework whose logic layer is based
in DeepProbLog [37], incorporating an Event Calculus dialect inspired by Prob-EC. The use of
DeepProbLog enables training with CE labels without translating CE definitions into a neural
representation. The probabilistic Event Calculus implementation of DeepProbCEP, however, is
a bottleneck for the training and reasoning efficiency of the system, suggesting the need for fur-
ther optimisations. Moreover, DeepProbCEP and Neuroplex are point-based, and thus exhibit the
drawbacks of point-based recognition [8].

Apriceno et al. [6] proposed a neuro-symbolic framework based on DeepProbLog which lever-
ages background knowledge about the SDEs and the visual objects in CE patterns. In a more re-
cent work [7], Apriceno et al. employed a mixed integer linear programming formulation instead
of DeepProbLog. SDE durations were used as soft constraints in order to find the most probable
sequence of SDEs. The logic layers of [6, 7] employ an Event Calculus dialect where SDEs and
CEs are durative. Contrary to our work, this dialect is very minimal as it contains only a durative
incarnation of the happensAt predicate. Moreover, CE recognition is limited to one CE per video

40

clip, while the SDEs generated by the neural network are mutually exclusive, i.e., concurrent or
overlapping SDEs are not considered.

7.3. Performance
Table 10 reports the time complexity, empirical efficiency and predictive accuracy of each sys-

tem. Note that some frameworks do not provide a complexity analysis and/or empirical results.
Futhermore, we identify the systems with available code. Regarding time complexity, OnPad com-
putes the probability that a durative CE takes place, given a possibly incomplete video sequence,
with a cost exponential to the length of the formula defining the CE. PEL resorts to approximate
inference techniques to mitigate its exponential worst-case cost for the task of durative CE com-
putation. Sugiura and Ishikawa translate the definition of the target CE into a deterministic finite
automaton and use an algorithm with cost O(√wn2 + n3), where w is the window size and n is
the number of states in the automaton. In our work, Prob-EC computes CE probabilities incremen-
tally, maintaining in memory only the probabilities of CEs at the previous time step. Subsequently,
oPIECbd performs one pass over the derived instantaneous CE probabilities and computes PMIs
with a cost of O(mbnw), where the bounded support set size mb and the data batch size nw are
typically very small.

Table 10 describes the best reported empirical results of each system in terms of efficiency.
OnPad processed approx. 4 video frames per second, indicating the need for further optimisations
for supporting real-time processing. Sugiura and Ishikawa showed that their approach can process
thousands of events per second, when the size of the automaton expressing the target CE pattern
includes less than 10 states. Given a stream of 8K instantaneous probabilities, oPIECbd was able
to compute the PMIs of the ‘rendez-vous’ CE in less than 1 second (see Table 8(a)).

Table 10 also reports empirical results on the predictive accuracy of probabilistic CER frame-
works. For OnPad, PEL and MLN-Allen, the accuracy of CE recognition was evaluated against
the CE annotations provided by experts. For the approach of Sugiura and Ishikawa, which sup-
ports approximate reasoning, predictive accuracy was reported as a comparison against the CE
recognition derived by the corresponding exact algorithm. We demonstrated that the recognition
of oPIECbd is comparable to that of PIEC with a very small support set (see Figures 8 and 10).
Moreover, we showed that oPIECbd outperforms point-based recognition, using ground truth of-
fered by experts (see Figures 11 and 13).

The last column of Table 10 marks the systems with publicly available code. As mentioned
earlier, oPIECbd is open-source and our experiments are reproducible1.

8. Summary and Further Research

We presented a formal computational framework for online, interval-based composite event
recognition (CER) under uncertainty. Our framework consumes the output of a point-based CER
system to compute the most likely maximal intervals during which a composite activity is said
to take place. oPIEC employs a ‘support set’, a memory structure with the minimal set of time-
points, to guarantee correct interval computation. To support streaming applications, we presented
oPIECbd, an extension of oPIEC with a bounded support set, leveraging interval duration statistics

41

to resolve memory conflicts. oPIECbd achieves comparable predictive accuracy to batch reason-
ing, avoiding the prohibitive cost of such reasoning. Moreover, oPIECbd stands out from the
state-of-the-art because it addresses the issues of point-based recognition and implicit interval rep-
resentation, supports expressive activity patterns, such as those including background knowledge,
and computes composite activity intervals with a single pass over the input data. The remain-
ing contributions of the paper include the theoretical analysis of oPIEC, proving its correctness
and presenting its complexity, the complexity analysis of bounded oPIEC, and an extensive, re-
producible empirical evaluation demonstrating the benefits of oPIECbd. For future work, we aim
to integrate our system into a neuro-symbolic framework for adaptive, interval-based CER under
uncertainty.

Acknowledgements

This work was supported by the ENEXA project, which has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme, under grant agreement No
101070305, and by the Hellenic Foundation for Research and Innovation (HFRI) under the 3rd
Call for HFRI PhD Fellowships (Fellowship Number: 6011).

References

[1] Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N., 2008. Efficient pattern matching over event streams, in:
SIGMOD, pp. 147–160.

[2] Albanese, M., Chellappa, R., Cuntoor, N., Moscato, V., Picariello, A., Subrahmanian, V.S., Udrea, O., 2010.
PADS: A Probabilistic Activity Detection Framework for Video Data. IEEE Trans. Pattern Anal. Mach. Intell.
32, 2246–2261.

[3] Alevizos, E., Skarlatidis, A., Artikis, A., Paliouras, G., 2017. Probabilistic complex event recognition: A survey.
Commun. ACM 50, 71:1–71:31.

[4] Allen, J.F., 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843.
[5] Allison, L., 2003. Longest biased interval and longest non-negative sum interval. Bioinform. 19, 1294–1295.
[6] Apriceno, G., Passerini, A., Serafini, L., 2021. A neuro-symbolic approach to structured event recognition, in:

TIME, pp. 11:1–11:14.
[7] Apriceno, G., Passerini, A., Serafini, L., 2022. A neuro-symbolic approach for real-world event recognition

from weak supervision, in: TIME, pp. 12:1–12:19.
[8] Artikis, A., Makris, E., Paliouras, G., 2021. A probabilistic interval-based event calculus for activity recognition.

Ann. Math. Artif. Intell. 89, 29–52.
[9] Artikis, A., Sergot, M.J., Paliouras, G., 2010. A logic programming approach to activity recognition, in: EIMM,

ACM. pp. 3–8.
[10] Artikis, A., Sergot, M.J., Paliouras, G., 2015. An event calculus for event recognition. IEEE Trans. Knowl. Data

Eng. 27, 895–908.
[11] Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G., 2012. Logic-based event recognition. Knowl. Eng. Rev. 27,

469–506.
[12] Bellodi, E., Alberti, M., Riguzzi, F., Zese, R., 2020. Map inference for probabilistic logic programming. Theory

Pract. Log. Program. 20, 641–655.
[13] Bereta, K., Chatzikokolakis, K., Zissis, D., 2021. Maritime reporting systems, in: Guide to Maritime Informat-

ics, pp. 3–30.
[14] Brendel, W., Fern, A., Todorovic, S., 2011. Probabilistic event logic for interval-based event recognition, in:

CVPR, pp. 3329–3336.

42

[15] Cervesato, I., Franceschet, M., Montanari, A., 2000. A guided tour through some extensions of the event
calculus. Comput. Intell. 16, 307–347.

[16] Clark, K., 1978. Negation as failure, in: Logic and Databases, pp. 293–322.
[17] Cugola, G., Margara, A., 2010. TESLA: a formally defined event specification language, in: DEBS, ACM. pp.

50–61.
[18] Cugola, G., Margara, A., Matteucci, M., Tamburrelli, G., 2015. Introducing uncertainty in complex event

processing: model, implementation, and validation. Computing 97, 103–144.
[19] D’Asaro, F., Bikakis, A., Dickens, L., Miller, R., 2020. Probabilistic reasoning about epistemic action narratives.

Artif. Intell. 287, 103352.
[20] D’Asaro, F.A., 2019. Probabilistic epistemic reasoning about actions. Ph.D. thesis. University College London,

UK.
[21] D’Asaro, F.A., Bikakis, A., Dickens, L., Miller, R., 2017. Foundations for a probabilistic event calculus, in:

LPNMR, pp. 57–63.
[22] D’Asaro, F.A., Raggioli, L., Malek, S., Grazioso, M., Rossi, S., 2022. An application of a runtime epistemic

probabilistic event calculus to decision-making in e-health systems. Theory and Practice of Logic Programming
, 1–24.

[23] Fierens, D., Van Den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens, G., De Raedt, L.,
2014. Inference and learning in probabilistic logic programs using weighted boolean formulas. Theory Pract.
Log. Program. 15, 358–401.

[24] Fikioris, G., Patroumpas, K., Artikis, A., Paliouras, G., Pitsikalis, M., 2020. Fine-tuned compressed representa-
tions of vessel trajectories, in: CIKM, pp. 2429–2436.

[25] Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., Garofalakis, M., 2020. Complex event recognition in
the big data era: a survey. VLDB J 20, 313–352.

[26] van der Heijden, M., Lucas, P.J.F., 2013. Describing disease processes using a probabilistic logic of qualitative
time. Artif. Intell. Medicine 59, 143–155.

[27] Hongeng, S., Nevatia, R., Brémond, F., 2004. Video-based event recognition: activity representation and prob-
abilistic recognition methods. Comput. Vis. Image Underst. 96, 129–162.

[28] Katzouris, N., Artikis, A., 2020. WOLED: A tool for online learning weighted answer set rules for temporal
reasoning under uncertainty, in: KR, pp. 790–799.

[29] Katzouris, N., Paliouras, G., Artikis, A., 2023. Online learning probabilistic event calculus theories in answer
set programming. Theory Pract. Log. Program. 23, 362–386.

[30] Khan, A., Serafini, L., Bozzato, L., Lazzerini, B., 2019. Event detection from video using answer set programing,
in: CILC, pp. 48–58.

[31] Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R., 2011. On the implementation of the probabilistic
logic programming language ProbLog. Theory Pract. Log. Program. 11, 235–262.

[32] Kowalski, R.A., Sergot, M.J., 1986. A logic-based calculus of events. New Gener. Comput. 4, 67–95.
[33] Law, M., 2018. Inductive learning of answer set programs. Ph.D. thesis. Imperial College London, UK.
[34] Law, M., 2023. Conflict-driven inductive logic programming. Theory Pract. Log. Program. 23, 387–414.
[35] de Leng, D., Heintz, F., 2019. Approximate stream reasoning with metric temporal logic under uncertainty, in:

AAAI, pp. 2760–2767.
[36] List, T., Bins, J., Vazquez, J., Fisher, R.B., 2005. Performance evaluating the evaluator, in: VS-PETS, pp.

129–136.
[37] Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., De Raedt, L., 2021. Neural probabilistic logic pro-

gramming in deepproblog. Artif. Intell. 298, 103504.
[38] Mantenoglou, P., Artikis, A., Paliouras, G., 2020. Online probabilistic interval-based event calculus, in: ECAI,

pp. 2624–2631.
[39] McAreavey, K., Bauters, K., Liu, W., Hong, J., 2017. The event calculus in probabilistic logic programming

with annotated disjunctions, in: AAMAS, pp. 105–113.
[40] Michelioudakis, E., Artikis, A., Paliouras, G., 2019. Semi-supervised online structure learning for composite

event recognition. Mach. Learn. 108, 1085–1110.
[41] Michelioudakis, E., Skarlatidis, A., Paliouras, G., Artikis, A., 2016. OSLα: Online structure learning using

43

background knowledge axiomatization, in: ECML-PKDD, pp. 232–247.
[42] Morariu, V.I., Davis, L.S., 2011. Multi-agent event recognition in structured scenarios, in: CVPR, pp. 3289–

3296.
[43] Mueller, E.T., 2009. Automating commonsense reasoning using the event calculus. Commun. ACM 52, 113–

117.
[44] Pitsikalis, M., Artikis, A., Dreo, R., Ray, C., Camossi, E., Jousselme, A., 2019. Composite event recognition for

maritime monitoring, in: DEBS, pp. 163–174.
[45] Santipantakis, G.M., Vlachou, A., Doulkeridis, C., Artikis, A., Kontopoulos, I., Vouros, G.A., 2018. A stream

reasoning system for maritime monitoring, in: TIME, pp. 20:1–20:17.
[46] Sato, T., 1995. A statistical learning method for logic programs with distribution semantics, in: ICLP, pp.

715–729.
[47] Selman, J., Amer, M.R., Fern, A., Todorovic, S., 2011. PEL-CNF: Probabilistic event logic conjunctive normal

form for video interpretation, in: ICCV Workshop, pp. 680–687.
[48] Singh, T., Vishwakarma, D.K., 2019. Video benchmarks of human action datasets: a review. Artif. Intell. Rev.

52, 1107–1154.
[49] Siskind, J.M., 2001. Grounding the lexical semantics of verbs in visual perception using force dynamics and

event logic. J. Artif. Intell. Res. 15, 31–90.
[50] Skarlatidis, A., Artikis, A., Filipou, J., Paliouras, G., 2015a. A probabilistic logic programming event calculus.

Theory Pract. Log. Program. 15, 213–245.
[51] Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.A., 2015b. Probabilistic event calculus for event recognition.

ACM Trans. Comput. Log. 16.
[52] Sugiura, K., Ishikawa, Y., 2019. Regular expression pattern matching with sliding windows over probabilistic

event streams, in: IEEE BigComp, pp. 1–8.
[53] Sugiura, K., Ishikawa, Y., 2020. Multiple regular expression pattern monitoring over probabilistic event streams.

IEICE Trans. Inf. Syst. 103-D, 982–991.
[54] Thon, I., Landwehr, N., De Raedt, L., 2011. Stochastic relational processes: Efficient inference and applications.

Mach. Learn. 82, 239–272.
[55] Tiger, M., Heintz, F., 2020. Incremental reasoning in probabilistic signal temporal logic. Int. J. Approx. Reason.

119, 325 – 352.
[56] Tsilionis, E., Artikis, A., Paliouras, G., 2022. Incremental event calculus for run-time reasoning. J. Artif. Intell.

Res. 73, 967–1023.
[57] Vennekens, J., Denecker, M., Bruynooghe, M., 2009. Cp-logic: A language of causal probabilistic events and

its relation to logic programming. Theory Pract. Log. Program. 9, 245–308.
[58] Vilamala, M.R., Xing, T., Taylor, H., Garcia, L., Srivastava, M., Kaplan, L.M., Preece, A.D., Kimmig, A.,

Cerutti, F., 2023. Deepprobcep: A neuro-symbolic approach for complex event processing in adversarial set-
tings. Expert Syst. Appl. 215, 119376.

[59] Xing, T., Garcia, L., Vilamala, M.R., Cerutti, F., Kaplan, L., Preece, A., Srivastava, M., 2020. Neuroplex:
Learning to detect complex events in sensor networks through knowledge injection, in: SenSys, p. 489–502.

[60] Zhang, H., Diao, Y., Immerman, N., 2013. Recognizing patterns in streams with imprecise timestamps. Inf.
Syst. 38, 1187–1211.

[61] Zhang, H., Diao, Y., Immerman, N., 2014. On complexity and optimization of expensive queries in complex
event processing, in: SIGMOD, ACM. pp. 217–228.

[62] Zocholl, M., Iphar, C., Pitsikalis, M., Jousselme, A., Artikis, A., Ray, C., 2019. Evaluation of maritime event
detection against missing data, in: QUATIC, pp. 275–288.

44

Appendix A. Complex Event Patterns

Appendix A.1. Human Activity Recognition

‘moving’ CE Definition:

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
moveDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= true, T),
happensAt(walking(P2), T),
not happensAt(disappear(P1), T),
not happensAt(disappear(P2), T),
holdsAt(similarOrientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
moveDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= false, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P2), T),
moveDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= false, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(active(P1), T),
happensAt(active(P2), T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(active(P1), T),
happensAt(inactive(P2), T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(running(P1), T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(running(P2), T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(abrupt(P1), T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(abrupt(P2), T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(disappear(P1), T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(disappear(P2), T).

45

‘meeting’ CE Definition:

initiatedAt(meeting(P1 ,P2)= true, T)←
happensAt(active(P1), T),
happensAt(person(P2), T),
interactDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= true, T),
not happensAt(abrupt(P2), T),
not happensAt(running(P2), T),
not happensAt(disappear(P1), T),
not happensAt(disappear(P2), T).

initiatedAt(meeting(P1 ,P2)= true, T)←
happensAt(inactive(P1), T),
happensAt(person(P1), T),
happensAt(person(P2), T),
interactDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= true, T),
not happensAt(running(P2), T),
not happensAt(active(P2), T),
not happensAt(abrupt(P2), T),
not happensAt(disappear(P1), T),
not happensAt(disappear(P2), T).

terminatedAt(meeting(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
meetDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= false, T).

terminatedAt(meeting(P1 ,P2)= true, T)←
happensAt(walking(P2), T),
meetDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= false, T).

terminatedAt(meeting(P1 ,P2)= true, T)←
happensAt(running(P1), T).

terminatedAt(meeting(P1 ,P2)= true, T)←
happensAt(running(P2), T).

terminatedAt(meeting(P1 ,P2)= true, T)←
happensAt(abrupt(P1), T).

terminatedAt(meeting(P1 ,P2)= true, T)←
happensAt(abrupt(P2), T).

terminatedAt(meeting(P1 ,P2)= true, T)←
happensAt(disappear(P1), T).

terminatedAt(meeting(P1 ,P2)= true, T)←
happensAt(disappear(P2), T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(active(P1), T),
happensAt(active(P2), T).

‘fighting’ CE Definition:

initiatedAt(fighting(P1 ,P2)= true, T)←
happensAt(abrupt(P1), T),
holdsAt(person(P2)= true, T),
fightDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= true, T),
not happensAt(inactive(P2), T),
not happensAt(disappear(P1), T),
not happensAt(disappear(P2), T).

terminatedAt(fighting(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
fightDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= false, T).

terminatedAt(fighting(P1 ,P2)= true, T)←
happensAt(walking(P2), T),
fightDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= false, T).

terminatedAt(fighting(P1 ,P2)= true, T)←
happensAt(running(P1), T),
fightDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= false, T).

terminatedAt(fighting(P1 ,P2)= true, T)←
happensAt(running(P2), T),
fightDist(Dist),
holdsAt(close(P1 ,P2 ,Dist)= false, T).

terminatedAt(fighting(P1 ,P2)= true, T)←
happensAt(disappear(P1), T).

terminatedAt(fighting(P1 ,P2)= true, T)←
happensAt(disappear(P2), T).

46

Appendix A.2. Maritime Situational Awareness

‘rendez-vous’ CE Definition:

initiatedAt(rendezVous(Vessel1 ,Vessel2)= true, T)←
happensAt(proximityStart(Vessel1 ,Vessel2), T),
not oneIsTug(Vessel1 ,Vessel2),
not oneIsPilot(Vessel1 ,Vessel2),
(holdsAt(lowSpeed(Vessel1)= true, T); holdsAt(stopped(Vessel1)= farFromPorts, T)),
(holdsAt(lowSpeed(Vessel2)= true, T); holdsAt(stopped(Vessel2)= farFromPorts, T)),
not holdsAt(withinArea(Vessel1 ,nearPorts)= true, T),
not holdsAt(withinArea(Vessel2 ,nearPorts)= true, T),
not holdsAt(withinArea(Vessel1 ,nearCoast)= true, T),
not holdsAt(withinArea(Vessel2 ,nearCoast)= true, T).

terminatedAt(rendezVous(Vessel1 ,Vessel2)= true, T)←
happensAt(proximityEnd(Vessel1 ,Vessel2), T),
not oneIsTug(Vessel1 ,Vessel2),
not oneIsPilot(Vessel1 ,Vessel2),
(holdsAt(lowSpeed(Vessel1)= true, T); holdsAt(stopped(Vessel1)= farFromPorts, T)),
(holdsAt(lowSpeed(Vessel2)= true, T); holdsAt(stopped(Vessel2)= farFromPorts, T)),
not holdsAt(withinArea(Vessel1 ,nearPorts)= true, T),
not holdsAt(withinArea(Vessel2 ,nearPorts)= true, T),
not holdsAt(withinArea(Vessel1 ,nearCoast)= true, T),
not holdsAt(withinArea(Vessel2 ,nearCoast)= true, T).

‘tugging’ CE Definition:

initiatedAt(tugging(Vessel1 ,Vessel2)= true, T)←
happensAt(proximityStart(Vessel1 ,Vessel2), T),
oneIsTug(Vessel1 ,Vessel2),
not oneIsPilot(Vessel1 ,Vessel2),
holdsAt(tuggingSpeed(Vessel1)= true, T),
holdsAt(tuggingSpeed(Vessel2)= true, T).

terminatedAt(tugging(Vessel1 ,Vessel2)= true, T)←
happensAt(proximityEnd(Vessel1 ,Vessel2), T),
oneIsTug(Vessel1 ,Vessel2),
not oneIsPilot(Vessel1 ,Vessel2),
holdsAt(tuggingSpeed(Vessel1)= true, T),
holdsAt(tuggingSpeed(Vessel2)= true, T).

47

