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Abstract. Complex Event Recognition (CER) systems aim to iden-
tify critical events of interest that emerge from streams of data. These
complex events are typically specified as spatio-temporal composi-
tions of simpler events (e.g., sensor readings), using symbolic tem-
poral patterns such as finite state machines or temporal logic rules.
In practice, CER systems often need to operate on sub-symbolic in-
put. For instance, autonomous vehicles must detect complex, tempo-
rally extended events, such as overtaking maneuvers, based on raw
sensor data like video streams, in order to react safely and effec-
tively. Neuro-symbolic (NeSy) AI offers a promising framework in
this context, as it combines neural networks’ ability to interpret sub-
symbolic data with symbolic reasoning over structured knowledge,
such as CER patterns. However, the application of NeSy techniques
to temporal learning and reasoning in real-world domains remains
significantly underexplored. To address this gap, we propose a NeSy
approach, which utilizes the NeSyA framework, for detecting over-
taking events between vehicles in an autonomous driving setting. We
conduct an empirical evaluation on the ROAD dataset and demon-
strate that our approach outperforms purely neural baselines in terms
of complex event recognition performance.

1 Introduction

Many applications require processing of continuously streaming data
from geographically dispersed sources. Complex event recognition
(CER) involves identifying events within these streams, enabling the
implementation of both reactive and proactive actions [15]. Beyond
their time efficiency, CER systems are valued for their emphasis on
trustworthy decision-making. This is achieved through well-defined
theoretical frameworks, such as logic specifications and automata,
and machine learning methods like Inductive Logic Programming
and structure learning, which provide symbolic pattern definitions,
sound pattern learning and efficient inference.

However, in applications involving sub-symbolic input, such as
video data, there is a need to integrate these symbolic methods with
sub-symbolic models to maintain performance. This necessity mo-
tivates the introduction of Neuro-Symbolic Artificial Intelligence
(NeSy) into the CER domain. NeSy systems integrate neural-based
learning with logic-based reasoning, combining sub-symbolic data
processing with symbolic knowledge representation. This integra-
tion aims to enhance interpretability, robustness, and generalization
of sub-symbolic methods, particularly improving their capacity to
handle out-of-distribution data.
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A relevant domain for the integration of NeSy methods and CER
is autonomous driving, since –given the mission-critical nature of
this domain– event recognition must be both efficient and reliable.
In this context, vehicles must interpret data from cameras and sen-
sors to quickly identify events that may require action. Many events
in this domain can be formally described using rules and enriched
with background knowledge, which can be effectively defined and
leveraged through CER methods.

In this setting, simple event predictors can be modeled using sub-
symbolic structures, while complex event recognition is addressed
through established symbolic CER frameworks. Several NeSy works
have been proposed that handle temporal dynamics present in data
sequences [34, 5, 31, 6, 7], but they are application specific and do
not offer a generalized framework that learns over a formalization
of simple events. On the other hand, generalizable NeSy frameworks
such as DeepStochLog [33], DeepProbLog [24], and NeurASP [35]
are not inherently designed to model temporal events and need to
be enforced with time-aware reasoning (e.g. timestamps, sequential
neural models, stochastic processes etc.). One model that addresses
both limitations is NeSyA (Neuro-Symbolic Automata) [23], which
combines symbolic automata with neural-based perception under
probabilistic semantics in an end-to-end differentiable framework.
NeSyA supports temporal reasoning while enabling the learning of
common symbolic structures used in CER.

This work represents an initial effort to address complex events
in autonomous driving with NeSy, and specifically NeSyA, with the
incentive to yield better results than purely neural approaches, focus-
ing on the recognition of overtake incidents between agents in the
ROAD dataset [29]. The remainder of the paper is structured as fol-
lows. Section 2 presents the necessary theoretical background, focus-
ing on CER and its relation to symbolic automata and autonomous
driving. Section 3 outlines our neuro-symbolic approach, explaining
the integration of the sub-symbolic models and symbolic automata
for training and inference. The complete dataset, the experimental
setup, results and analysis are provided in Section 4, for the chal-
lenging task of recognizing the complex event where a road agent
overtakes another. Finally, Section 5 concludes the paper and out-
lines directions for future work.

2 Background

2.1 Complex Event Recognition

Complex Event Recognition (CER), also known as complex event
pattern matching, refers to the detection of complex events in stream-
ing data by identifying temporal patterns composed of simple events,



Figure 1. Illustration of the inference and training procedure in NeSy-SFA. First, videos are processed through a neural network that outputs simple event
probability distributions (Output Layer). These probabilities help answer the probabilistic query of whether the sequence is in a certain state at a given frame
(Guards’ Probabilities), utilizing a compiled Boolean circuit (Logic compiled into an Arithmetic Circuit). Over time, each state accumulates probabilities, by

multiplying the probability distribution with the Transition Matrix, resulting in a final state probability distribution at the end of the sequence. We use this
distribution to compute the loss for the ‘overtake’ incident prediction and backpropagate the loss to train the network, repeating the process until we achieve the

minimum loss value.

i.e. low-level occurrences, or even other complex events [8]. Typi-
cally, CER systems operate on streams of event tuples [15, 16], which
are time-stamped collections of attribute-value pairs. Conceptually,
CER input can be seen as a multivariate sequence, with one sub-
sequence per event attribute. For example, an attribute might repre-
sent the output of a specific sensor, and its values correspond to the
sensor’s readings over time, whether numerical, categorical, and/or
sub-symbolic. Each event tuple serves as a observation of the joint
evolution of all relevant attributes at a specific time point. Complex
event patterns define both a temporal structure over these event tu-
ples and a set of constraints on their attributes. A pattern is matched
when a sequence of event tuples satisfies both the required temporal
ordering and the attribute constraints.

These patterns are typically specified by domain experts using
event specification languages [16]. Such languages must support a
core set of event-processing operators [2, 15, 37], including: (a) se-
quence, indicating that specific events must occur in temporal succes-
sion; (b) iteration (Kleene Closure), requiring one or more repeated
occurrences of an event type; (c) filtering, which restricts matches to
events satisfying predefined predicates.

These operators naturally align with a computational model based
on Symbolic Finite Automata (SFAs) [12]. Unlike classical au-
tomata, which assume finite alphabets, SFAs generalize transitions to
be governed by logical predicates over potentially infinite domains,
represented using effective Boolean algebras [32, 30]. This enables
expressive and compact representations of complex event structures.
As a result, most existing CER systems rely on SFA-based pattern
representations [1, 37, 17, 3, 11, 4, 10]. In these systems, patterns are
typically written in declarative languages (e.g., SQL-like syntax) and
compiled into symbolic (often non-deterministic) automata.

2.2 CER in Autonomous Driving

Existing work in the autonomous driving domain typically describes
activities as driving events, i.e., events occurring during driving [25,
21, 36]. The connection to the CER theory is evident: autonomous
vehicles must process numerical and/or sub-symbolic sensor data to

recognize driving events. For example, sudden braking may follow a
sequence in which a car stops at a red light, accelerates when it turns
green, and then brakes abruptly as a deer crosses the road.

Framing these problems as CER tasks is motivated by the fact that
many target patterns are either known or can be explicitly defined.
When such patterns are not predefined, learning-based methods can
be used to discover patterns compatible with CER systems. A rel-
evant example is the ROAD dataset [29, 28], a richly annotated au-
tonomous driving dataset based on the RobotCar dataset [22]. ROAD
provides frame-level annotations for agents, including their identity
(e.g., vehicle, pedestrian), action(s) (e.g., overtaking, turning left),
and semantic location(s) (e.g., left pavement, incoming lane).

From a CER perspective, certain actions, such as ‘overtake’, con-
stitute complex events, while others, such as ‘green traffic light’, rep-
resent states. Among these, ‘overtake’ is particularly notable due to
its temporal extent, involvement of multiple (simple) sub-events, and
significant impact on the scene, making it a compelling CER task.
However, the ‘overtake’ pattern is not predefined. Given the com-
plexity of scenes-multiple agents, dynamic locations, and concurrent
actions, and the lack of domain experts, manual specification is in-
feasible. Section 4 details the learning approach used to extract such
patterns.

3 Neuro-Symbolic Approach

To perform CER on the video input, we combine ideas from (sequen-
tial) NeSy frameworks and standard CER pipelines: neural networks
process sub-symbolic input to detect simple events (actions and se-
mantic locations), while symbolic automata handle pattern matching
to recognize ‘overtake’ incidents. In this Section we will describe
in detail the NeSy integration in our work, by outlining the NeSyA
framework and its theoretical basis and connecting it to our decisions,
driven by the task at hand.



Table 1. Labels and locations for agents, along with available actions for both agents and the autonomous vehicle.

Agent Labels AV Actions Agent Actions Agent Locations
Pedestrian Stop Move away, towards AV lane
Motorbike Move Move right, left Outgoing lane
Bus Turn right,left Move Outgoing cycle lane
Car Move right, left Brake Incoming lane
Medium vehicle Overtake Stop Incoming cycle lane
Large vehicle Indicating left, right Pavement
Cyclist Hazard lights on Left pavement
AV traffic light Turn left, right Right pavement
Other traffic light Push object Junction
Emergency vehicle Reversing Crossing location

Overtake Parking
Red, Green, Amber light Bus stop
Wait to cross / Crossing / Cross from left, right

3.1 SFAs and Markov Models

In sequence modeling, it is often reasonable to assume that recent
observations are more predictive than distant ones. This motivates
the use of Markov models, where future states depend only on a lim-
ited history, typically just the current or previous state [9]. In these
models, transitions between states are governed by probabilities. A
model is considered non-stationary if these transition probabilities
change over time.

Markov models represent sequences using a state space and a tran-
sition function in the form of a matrix that defines the likelihood of
moving from one state to another. At each time step, the distribu-
tion over states is updated based on the previous distribution and the
current transition probabilities. This formulation allows for efficient
modeling of temporal dynamics in data.

A seemingly different approach comes from SFAs. Rather than
using probabilities, SFAs define transitions using logical conditions
over structured inputs. Specifically, inputs are interpreted as truth as-
signments over a set of propositional variables and transitions occur
when the current input satisfies a logical formula attached to an edge
in the automaton.

Both frameworks process sequences by transitioning through
states in response to observed inputs, whether those inputs are nu-
meric symbols or logical interpretations and when SFAs are applied
to data streams (where input patterns or variable co-occurrences
can be estimated) transitions can be interpreted probabilistically,
much like in a non-stationary Markov chain. So, SFAs can subsume
Markov models by encoding structured dependencies while remain-
ing amenable to probabilistic analysis.

3.2 Differentiable Probabilistic Inference via SFAs

Probabilistic reasoning over structured domains typically involves
modeling uncertainty using joint probability distributions over finite
sets of variables [14, 26]. While expressive, these distributions grow
exponentially with the number of variables, rendering exact infer-
ence intractable. A widely used approach to address this is Weighted
Model Counting (WMC), which encodes the probabilistic model as a
weighted logical theory, consisting of a propositional formula and a
function assigning weights (probabilities) to literals [27]. The proba-
bility of a query is then computed by summing the weights of all sat-
isfying assignments, generalizing the classical model counting prob-
lem.

This process underlies probabilistic logical inference, where one
computes the probability that a logical formula holds under uncertain
inputs. Since WMC is a #P -complete problem, practical inference
relies on Knowledge Compilation, which transforms formulas into
tractable representations, such as deterministic decomposable nega-
tion normal form (d-DNNF) circuits [13]. Once compiled, inference

becomes linear in the size of the circuit and differentiable.
Symbolic automata define transitions between states using propo-

sitional formulas over input variables. When inputs are uncertain or
noisy, each transition can be evaluated probabilistically by applying
WMC to the corresponding formula. If the automaton is constructed
using compiled circuits for each transition, the entire system be-
comes a differentiable probabilistic model, enabling integration with
gradient-based learning methods.

3.3 End-to-end training

Let us present in this section the NeSy pipeline in both inference and
learning scenarios. Note that the process of probabilistic inference
and learning is embedded in NeSyA, but we will not distinguish it
here so that the pipeline is more coherent. We begin by outlining the
inference process –a single feed-forward pass from input to predic-
tion.

A video is processed by simple event recognition networks, which
output probability distributions over simple events, specifically each
two agents’ actions and semantic locations for every frame. These
distributions are then used to classify (ground) the agents discrete
actions and locations for the evaluation of the symbolic automaton.
Next, a smooth d-DNNF circuit is compiled from the ASP represen-
tation of the automaton. The circuit includes one variable for each
possible action and location value, and supports probabilistic queries
corresponding to the automatons transitions. These queries form the
transition matrix by computing weighted model counts that accumu-
late probabilities in the states of the automaton.

For each video, a row vector representing the probability distribu-
tion over automaton states at each time step is maintained. It is ini-
tialized such that the start state has probability mass 1, with all others
set to 0. As each frame is processed, the state vector is updated by
multiplying it with the current transition matrix. Each column of the
transition matrix represents the probability of transitioning into a par-
ticular state at a given frame. Because the transition matrix is com-
puted from neural network outputs, which vary at every timestep, we
consider our symbolic automata non-stationary. The final output is
the state distribution after processing the last frame.

We now turn to the learning procedure. After each forward pass,
the computed state probability distribution can be used to evaluate
the prediction loss over the complex event. This loss can be defined
over the entire distribution or based solely on the acceptance proba-
bility –that is, the probability mass assigned to the automatons final
(accepting) state. Since the compiled symbolic automaton is differ-
entiable, the loss can be backpropagated through the symbolic layer.
This enables end-to-end training of the simple event recognition net-
works via gradient descent. As a result, the model learns to adjust
its predictions of simple events in a way that improves recognition
of complex events, which in our task is the ‘overtake’ event through



Figure 2. A bicycle approaches from behind the AV, overtakes it while the AV moves forward, and stops at a red light. It then continues to overtake a car that
is stopped ahead of the AV at the traffic light.

distant supervision. A visualization of the proposed pipeline is pre-
sented in Figure 1.

4 Experiments

4.1 Sequential datasets

ROAD dataset consists of 22 real-world 8-minute videos recorded
between November 2014 and December 2015 in central Oxford, cov-
ering a range of routes and seasonal conditions. Of these, 20 videos
are currently available for training and evaluation.

Road events are defined as a series of bounding boxes linked in
time (frames), annotated with the agents label, action(s), and se-
mantic location(s) (cf. Table 1). Regarding the autonomous vehicle
(AV), we only know its unique ego-action (Table 1). Each agent has a
unique identifier per video. The dataset includes approximately 122K
annotated frames (12 fps) at 1280× 960 resolution with a multitude
of agents per frame.

Regarding the complex ‘overtake’ actions, the dataset contains 30
unique overtakes, performed either by the AV or other agents. Du-
rations range from 2 to 164 frames (mean: 49.83; std: 41.87), all
occurring within 9 videos. Figure 2 illustrates an overtaking instance
from the ROAD dataset.

To enable neurosymbolic integration and construct a pipeline that
extracts sub-symbolic information from video and feeds it into a
symbolic reasoning module for overtake recognition, we extract two
aligned sequential datasets from the complete dataset: one symbolic
and one sub-symbolic, in one-to-one correspondence. We differen-
tiate between overtakes involving the AV and those involving two
external agents. This distinction is necessary, as each type exhibits
different visual and symbolic patterns. When the AV is involved, its
position is fixed, and its visual representation is not relevant, unlike
scenarios where the AV is not part of the overtake. The dataset con-
sists of sequences ranging from 6 to 10 frames (approximately 0.5 to
1 second), a duration sufficient for humans to recognize overtakes in
both symbolic and sub-symbolic modalities.

We define three classes: 0 for negative examples (no overtake), 1
when the first agent overtakes the second, and 2 when the second
agent overtakes the first. This labeling explicitly captures the direc-
tionality of the overtake. Positive instances were generated by se-
lecting video segments with a maximum length of 10 frames, using
non-overlapping chunks to prevent overfitting during NeSy training.
A sliding window approach was avoided due to the limited number
of positive examples, which would result in highly similar instances.
This process yielded 92 positive instances, each concluding with and
containing an overtake event.

Selecting negative instances is inherently more challenging, as any
sequence not classified as an overtake could theoretically serve as a

negative. To ensure informative training, we focused on close nega-
tives: sequences that initially resemble overtakes but do not culmi-
nate in one vehicle passing another. To construct these, we identi-
fied the action pairs performed by agents prior to overtakes, along
with their frequency, and stochastically searched the dataset for sim-
ilar sequences that do not result in overtakes. Only one instance per
agent pair was included, and both agents were required to appear
for at least 6 frames. This process yielded approximately 2,000 neg-
ative instances. While downsampling negative examples could bal-
ance the dataset, we deliberately avoided this approach. Overtake
events are inherently sparse, and artificially balancing the dataset
would introduce unrealistic conditions. Also training on simplified,
artificially balanced data would lead to poor performance, given the
sub-symbolic complexity of the task.

The symbolic dataset provides a structured, logic-based represen-
tation of events occurring within each frame. Each instance encodes
facts describing the two agents involved, including their identity
(e.g., AV, large vehicle), actions, semantic locations, and normalized
bounding box coordinates at each timepoint (frame). The instance’s
class label is also included. This representation enables the ground-
ing of the complex overtake event in terms of simple events, defined
by combinations of agent actions and locations within the symbolic
framework. The sub-symbolic includes the corresponding images of
the frames that consist the symbolic dataset.

To ensure unbiased evaluation, we enforced a strict separation be-
tween training and testing sets, preventing overlap of augmented pos-
itives or negatives from the same video segments. We performed an
80/20 train/test split, analogous to k-fold cross-validation, using dis-
joint sets of videos for positive samples. This resulted in up to 36
splits, allowing testing on out-of-distribution data. While we initially
applied the same strategy to negative samples, we observed a draw-
back: videos vary significantly in visual characteristics (e.g., snow-
covered vs. leafy junctions), and training solely on one type reduces
generalization. To mitigate this, we allowed negatives from all videos
but enforced a minimum temporal distance of 100 frames between
any two selected instances, avoiding redundancy while maintaining
visual diversity.

To simplify the task, we focused only on one positive class and
overtakes not involving the AV. As a result, not all data splits re-
mained suitable, since some lacked relevant positives or exhibited
more positives in the testing set. We randomly selected four viable
splits for training and evaluation. Across these splits, the number of
positive sequences in the training set ranges from 46 to 75, and from
17 to 46 in the test set. The corresponding number of negative se-
quences is approximately 550 for training and 250 for testing.

4.2 Extracting Background Knowledge



1start 3 2 4

f(1, 1)

f(1, 2)

f(1, 4)

f(2, 2)

f(2, 3)

f(2, 4)

f(3, 3)

f(3, 1)

f(4, 4)

% State 1 -> 2: if agent 2 is moving towards
% the AV and not transitioning to State 4.
f(1,2) :- action_2(movtow), not f(1,4).
% State 1 -> 4: if agents are in the same lane
% and the agent 2 is moving away from the AV.
f(1,4) :- same_lane(l1, l2), action_2(movaway).
% Stay in State 1: if not moving to State 2 or 4.
f(1,1) :- not f(1,2), not f(1,4).

% State 2 -> 3: if agent 2 is moving towards
% the AV and not transitioning to State 4.
f(2,3) :- action_2(movtow), not f(2,4).
% State 2 -> 4: if agent 1 is stopped and
% agent 2 is in the incoming lane.
f(2,4) :- action_1(stop), location_2(incomlane).
% Stay in State 2: if not moving to State 3 or 4.
f(2,2) :- not f(2,3), not f(2,4).

% State 3 -> 1: if agent 1 is in the incoming lane.
f(3,1) :- location_1(incomlane).
% Stay in State 3: if not moving to State 1.
f(3,3) :- not f(3,1).

% Stay in State 4: always; absorbing state.
f(4,4) :- #true.

Figure 3. Learned automaton from symbolic dataset. l1 and l2 denote
the agents’ (with the respective index) locations. It achieves an F1-score of

approximately 0.87 on the test set. The actual ASP syntax has been
simplified for clarity of the illustration.

Since ‘overtake’ patterns were not predefined, we employed the
ASAL framework [19] to learn the patterns from the symbolic se-
quential dataset. ASAL learns Answer Set Automata, an extension of
SFAs tailored for CER over multivariate event streams, where transi-
tion predicates are defined via ASP rules. Through declarative learn-
ing with symbolic reasoning it produces compact models with strong
generalization performance.

We used ASAL with the objective of maximizing generalization
on the test set. We learned a general automaton from the different
symbolic splits. This led to the selection of a subset of simple events
most relevant for complex event recognition. The selected actions
were: moving away, moving towards, stop, and other (none of the
above). The selected semantic locations were: incoming lane, vehicle
lane, junction, and other. Intuitively, this aligns with human reason-
ing: recognizing an ‘overtake’ primarily requires understanding the
orientation and motion direction of the vehicle.

The above process resulted in the automaton shown in Figure 3.
This learned symbolic automaton accepts multiple patterns as valid
instances of overtakes, represented by different paths leading to
the accepting state. Examples of such paths include: f(1,1) →
f(1,1) → f(1,2) → f(2,4) or f(1,1) → f(1,4). Let us
give an intuitive overtaking pattern that is validated by the shortest
accepting path f(1,4):

• AV detects two vehicles in the same lane as itself (vehicle lane)
• Both vehicles are visible in front of the AV, meaning they are po-

sitioned side by side without overlapping in the AV’s field of view
• If one of these vehicles is detected as moving, while the other is

static or moving slower, the moving vehicle is classified as over-
taking the other

4.3 Experimental Setup

In a higher level of abstraction, the task is framed as a binary
sequence classification problem: determining whether a given se-
quence of frames constitutes an ‘overtake’. Experiments were con-
ducted on the four (sub-symbolic) data splits described in Sec-
tion 4.1. We trained NeSy models and compared their performance
against purely neural baselines.

For simple event recognition, we employed two architectures: a
2D-CNN for semantic location prediction and a 3D-CNN for action
recognition, both with multiple convolutional layers. The temporal
modeling capability of the 3D-CNN is particularly important for rec-
ognizing motion-based actions. Each module outputs eight predic-
tions per frame: probability distributions over the actions and loca-
tions of each agent. Although the annotations are multi-label (e.g.,
an agent may simultaneously move toward the AV and signal a left
turn), the task is cast as multi-class due to the requirement in the
NeSy pipeline for probability distributions over mutually exclusive
classes. Both networks receive the same input: a 10-frame video seg-
ment and bounding boxes of the two agents of interest per frame.

To evaluate the temporal reasoning capabilities of our NeSy
model, we compare it against a standard spatio-temporal neural ar-
chitecture: a Long Short-Term Memory (LSTM) network [18]. In
this baseline, the outputs of the simple event recognition modules
are passed to an LSTM (hidden size 10), whose output is used to
predict the final classification probability.

For training, we used the Adam optimizer [20] with a batch size of
8. Due to the differing temporal context –80 frames for the semantic
location network versus 8 for the action recognition network– we
set distinct learning rates for each. Empirically, we found that the
semantic location module required a lower learning rate, so we used
10−5 for the 3D-CNN action recognizer and halved it for the location
module.

All CER models were trained for a fixed 40 epochs. The neural
baseline took approximately 20 seconds per epoch, whereas for the
NeSy approach took 30 seconds. Given the scarcity of positive exam-
ples in the training set, we did not employ a validation set. Instead,
model selection was based on training loss dynamics: we normalized
losses to the [0, 1] range using the first epoch’s loss as the maximum
and 0 as the minimum, then selected the model at the earliest epoch
where the loss plateaued, defined as a change of less than 0.05 across
a window of two consecutive epochs.

Since ‘overtake’ instances are sparse, comprising only 10% of
the dataset, the task becomes a highly imbalanced binary classifi-
cation problem. To address this, we evaluated two loss functions for
NeSy and baseline training: weighted binary cross-entropy (weighted
BCE) and focal loss. While weighted BCE increases the contribu-
tion of the minority class by reweighting class loss terms, focal loss
down-weights easy examples, focusing learning on harder, misclas-
sified ones.

In the neural baseline, outputting a complex event probability is
straightforward. In contrast, the NeSy model produces a state proba-
bility distribution over the automaton. The first and last entries in this
vector correspond to the start and accepting states, respectively. We
experimented with two approaches for mapping this distribution to a
classification probability: (a) using only the acceptance probability,
and (b) comparing the full state distribution to the target distribu-
tion (0, 0, 0, 1) using the Kolmogorov-Smirnov (KS) distance. The
KS distance provides a bounded [0, 1] similarity score between cu-
mulative distributions, offering a principled, interpretable metric to
evaluate whether the final state is reached.



4.4 Results and Discussion

4.4.1 End-to-end NeSy

Our primary objective is to evaluate complex event recognition, i.e.,
the recognition of the ‘overtake’ event, across the four sub-symbolic
data splits. To ensure a fair comparison across splits with imbalanced
class distributions, we adopt the micro-averaged F1 score as our eval-
uation metric across all data splits. Table 2 presents the comparative
results on complex events for the NeSy and baseline for all loss con-
figurations.

Table 2. Micro-F1 scores by model type, loss function, and NeSy
probability variant. ‘States’ uses the full state distribution; ‘Final’ uses only
the acceptance probability. A random 50% predictor yields 0.13 micro-F1.

Metric
Baseline NeSy

Focal Weighted BCE Focal Weighted BCE
States Final States Final

Micro F1 0.15 0.14 0.55 0.42 0.31 0.39

Overall, the NeSy counterpart outperforms the neural baseline by a
large margin across all configurations. Additionally, focal loss yields
better performance than weighted BCE in both model types. How-
ever, no single acceptance probability computation strategy consis-
tently outperforms the other across all loss types within the NeSy
configurations. Specifically, using the full state probability distribu-
tion is superior when employing focal loss, whereas relying solely on
the acceptance probability yields better results under weighted BCE.

This discrepancy can be attributed to the characteristics of each
loss function. Focal loss is particularly effective at emphasizing hard,
misclassified examples, especially from the minority class. In such
cases, the richer information provided by the full automaton state
distribution enables finer-grained adjustments that help reduce loss
more effectively. The KS-derived score, computed from the full dis-
tribution, provides a softer, less confident prediction signal that is less
biased and better reflects uncertainty across states. Focal loss bene-
fits from this nuance, as it is designed not for probability calibration
but for modulating loss based on prediction confidence. In contrast,
weighted BCE operates as a weighted maximum likelihood estimator
under asymmetric class priors, assuming calibrated, true probabilities
as input. Consequently, it performs best when provided with a single,
well-defined probability –such as the acceptance probability– rather
than a heuristic proxy derived from distributional similarity.

4.4.2 Evaluation on Simple Events

However, as seen in Table 2, the F1 scores on the testing set re-
main relatively low. Again, as mentioned in Section 4.1, the com-
puter vision task itself is difficult, so low scores in the distant super-
vision task of classifying an ‘overtake’ is expected. Additionally, for
the neural baseline, this outcome is expected due to the high vari-
ability among ‘overtake’ instances, which hinders generalization. In
contrast, the reduced performance of the NeSy model suggests defi-
ciencies in simple event recognition, since the symbolic automaton,
demonstrates high generalization on the testing set.

To investigate this hypothesis, we overfit a NeSy model on the
training set and then evaluate its simple event predictors directly on
the training data. As shown in Table 3, although the model achieves
perfect recognition of ‘overtake’ instances, it relies on what can be
described as reasoning shortcuts: it learns to exploit superficial cues

in the input to satisfy the automaton transitions without truly under-
standing or modeling the intended semantics of the simple events.
Note that in preliminary experiments we also used pre-trained sim-
ple event predictors, but the complex event training still managed to
find the best training shortcut.

Table 3. Trained complex event predictor evaluated on simple events for
only one split. The model is overfitted on the training set to isolate the

symbolic components behavior. Evaluation is reported as per-class F1 scores
(one-vs-all) for each simple event category.

Complex Event (F1-Score) - Training Set 0.99

Action Location

Class Micro-F1 Support Class Micro-F1 Support

Move away 0.301 1335 Vehicle Lane 0.000 1321
Move towards 0.273 6752 Incoming Lane 0.137 7194
Stop 0.301 2350 Junction 0.000 1967
Other 0.000 3963 Other 0.687 3918

4.4.3 Loosely coupled NeSy

Given the sub-optimal performance of the NeSy model, one natural
consideration is to decouple training and reasoning, i.e., to first train
the simple event predictors independently, and then incorporate the
symbolic component only at inference time.

Two approaches are possible: (a) utilizing the entire dataset for the
simple event prediction task, and (b) utilizing only the sub-symbolic
dataset splits defined for the end-to-end NeSy task, as described in
Section 4.1. The evaluation results for the simple event predictors
trained using these two approaches are presented in Table 4. As ex-
pected, leveraging a larger portion of the dataset for training leads to
improved performance in simple event recognition. However, since
our primary evaluation pertains to the NeSy training and inference
process, we proceed with the simple event predictors trained on the
dataset used for the end-to-end NeSy component. This configuration
serves as the baseline for the current task definition and dataset setup.

If we evaluate ‘overtake’ recognition using the pre-trained simple
event recognizers by appending the symbolic automaton, the results
show that relying solely on this sequential setup, without end-to-end
training, yields a complex event F1 score of 0.0, indicating that end-
to-end training is essential for achieving non-trivial performance.

However, while the overall complex event performance is low,
a score of exactly zero suggests further investigation. We there-
fore conduct an additional experiment in Table 5, where we evalu-
ate complex event recognition while selectively fixing some simple
event predictions to their ground-truth labels. This allows us to as-
sess whether the accurate prediction of specific simple events has
a disproportionately large influence on complex event recognition
and whether certain errors in simple event prediction are particularly
detrimental.

If we provide the symbolic automaton with the ground-truth distri-
bution of all simple events, as expected, we recover the automaton’s
maximum F1 score on the testing set (cf. Figure 3). When providing
only the ground truth for the agents’ actions, the ‘overtake’ recogni-
tion F1 score increases to 0.43. In contrast, supplying only the ground
truth for the agents’ semantic locations yields a much lower score of
0.01. Interestingly, when fixing agent 1’s action and agent 2’s loca-
tion to their true values, the F1 score rises to 0.81, very close to the
automaton’s upper limit.

This observation highlights that not all simple event predictions
contribute equally to complex event recognition. Intuitively, one



Table 4. Simple event training and F1 scores for action and semantic location recognition on the testing set using two training configurations: (a) (left)
models trained on a randomly selected 60% of the dataset, validated on 20% with early stopping, and tested on the remaining 20%; (b) (right) models trained

on the four sub-symbolic splits used for the complex event task. Actions and locations for both agents are evaluated jointly to keep the table simple.

(a) Trained on the whole dataset
Action Location

Class F1 Score Class F1 Score

Move away 0.980 Vehicle Lane 0.767
Move towards 0.857 Incoming Lane 0.822
Stop 0.889 Junction 0.905
Other 0.861 Other 0.715

(b) Trained on the complex event dataset
Action Location

Class Micro-F1 Class Micro-F1

Move away 0.328 Vehicle Lane 0.504
Move towards 0.686 Incoming Lane 0.408
Stop 0.573 Junction 0.491
Other 0.158 Other 0.532

Table 5. Results on the loosely coupled NeSy structure. Simple event
predictors trained on the NeSy dataset splits are evaluated on the complex

event. Some simple events are given their true labels during evaluation.
action_1 refers to agent 1’s action, location_1 to their location, etc.

Fixed Simple Events Micro F1

None 0.00
All 0.87

action_1, action_2 0.43
location_1, location_2 0.01
action_1, location_2 0.81

might expect that accurate semantic location predictions would sig-
nificantly improve performance, as predicates such as same_lane,
location_1, and location_2 appear in multiple transitions
within the automaton, but that is not the case. On the contrary,
examining the learned automaton reveals that action_1 is in-
volved only in the transition f(2,4), where it is conjuncted with
location_2(incomlane). Accurately predicting this specific
conjunction appears to be critical for achieving high complex event
recognition performance. These results indicate that certain transi-
tions in the symbolic automaton are more crucial for temporal rea-
soning than others, and accurate prediction of the literals involved in
these key transitions has a disproportionately large impact on overall
complex event recognition.

5 Conclusions and Future Work
In this work, we presented a Neuro-Symbolic (NeSy) pipeline for
Complex Event Recognition, focusing on the recognition of overtake
incidents between two vehicles from video data. Our experiments
demonstrate that the NeSy model significantly outperforms its purely
neural counterpart across all configurations.

We also evaluated the learned simple events as well as a loosely
coupled NeSy setting. Interestingly, our findings show that the end-
to-end NeSy model does not rely solely on accurate simple event pre-
dictions for correct complex event recognition; instead, it is subject to
reasoning shortcuts. In the loosely coupled setting, we observed that
the importance of specific simple events depends more on their role
in key automaton transitions rather than on their frequency within the
automaton structure.

A primary direction for future work is the reformulation and ex-
pansion of the dataset. Incorporating more data and a broader range
of complex events would address one of the main limitations of our
study, namely, the limited training data combined with the inherent
complexity of the computer vision tasks involved.

Another promising direction is the systematic study of the relation-
ship between symbolic automaton structure and NeSy training dy-
namics. It is plausible that certain automaton architectures are more
suitable for guiding the neural component. For instance, automata
with fewer conjunctive conditions in their transitions may make the

simple event training easier, while more complex automata could of-
fer smoother convergence or improved generalization.

Finally, a highly relevant avenue is the joint learning of both
the neural and symbolic components. Instead of fixing background
knowledge in advance, we could provide a flexible knowledge base
and allow the system to learn both the automaton structure and
the neural network parameters simultaneously. While this approach
poses considerable challenges, it holds the potential for creating
more flexible and powerful models that can incorporate symbolic
knowledge without introducing domain-specific biases.
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