
Run-Time Adaptation of Complex Event Forecasting
Manolis Pitsikalis
NCSR Demokritos
Athens, Greece

manospits@iit.demokritos.gr

Elias Alevizos
NCSR Demokritos
Athens, Greece

The American College of Greece
Athens, Greece

alevizos.elias@iit.demokritos.gr

Nikos Giatrakos
Technical University of Crete

Chania, Greece
ngiatrakos@tuc.gr

Alexander Artikis
NCSR Demokritos
Athens, Greece

University of Piraeus
Piraeus, Greece

a.artikis@iit.demokritos.gr

Abstract
Complex Event Forecasting (CEF) is a process whereby com-
plex events of interest are forecast over a stream of simple
events. CEF facilitates proactive measures by anticipating
the occurrence of complex events. This proactive property,
makes CEF a crucial task in many domains; for instance, in
maritime situational awareness, forecasting the arrival of
vessels at ports allows for better resource management, and
higher operational efficiency. However, our world’s dynamic
and evolving conditions necessitate the use of adaptive meth-
ods. For example, for safety reasons, maritime vessels may
adapt their routes to avoid powerful swell waves; in fraud an-
alytics, fraudsters evolve their tactics to avoid detection etc.
CEF systems typically rely on probabilistic models, trained
on historical data. This renders such CEF systems inherently
susceptible to data evolutions that can invalidate their un-
derlying models. To address this problem, we propose RTCEF,
a novel framework for Run-Time Adaptation of CEF, based
on a distributed, service-oriented architecture. We evaluate
RTCEF on two use-cases and our reproducible results show
that our proposed approach has significant benefits in terms
of forecasting performance without sacrificing efficiency.

CCS Concepts
•Computer systems organization→Real-time systems;
• Theory of computation → Formal languages and au-
tomata theory; •Mathematics of computing→ Bayesian
computation.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
DEBS ’25, Gothenburg, Sweden
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1332-3/25/06
https://doi.org/10.1145/3701717.3730539

Keywords
complex event forecasting, run-time adaptation, optimisation
ACM Reference Format:
Manolis Pitsikalis, Elias Alevizos, Nikos Giatrakos, and Alexander
Artikis. 2025. Run-Time Adaptation of Complex Event Forecasting.
In The 19th ACM International Conference on Distributed and Event-
based Systems (DEBS ’25), June 10–13, 2025, Gothenburg, Sweden.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3701717.
3730539

1 Introduction
Complex Event Forecasting (CEF) is akin to Complex Event
Recognition (CER) [17, 22], but with a forward-looking per-
spective. Both tasks operate on a stream of simple events,
while their output consists of Complex Events (CEs). For
example, in a maritime situational awareness [4], the stream
of simple events would contain positional messages of ves-
sels, while the output stream would contain maritime CEs
such as (illegal) fishing activities. The difference between
CER and CEF is that, in the former, elements of the output
stream refer to CE detections, while in CEF, elements of the
output stream refer to the probability of a CE happening in
the future. Consequently, CER enables reactive responses
upon CE detections, while CEF supports proactive measures
by anticipating future CEs. This proactive property renders
CEF systems highly desirable. CER and CEF applications
span diverse domains, such as maritime situational aware-
ness [2, 28] whereby CEs such as fishing are detected or
forecast over a stream of maritime data; credit card fraud
management [2, 32] whereby frauds are detected or forecast
over a stream of transaction data; and so on.

CEF operates over constantly evolving conditions. Take for
example the problem of maritime route optimisation. Vessels
may follow a different route depending on the swell wave
conditions, i.e., waves that can significantly affect navigation
and vessel stability [11]. Another example is financial fraud

https://orcid.org/0000-0003-2959-2022
https://orcid.org/0000-0002-9260-0024
https://orcid.org/0000-0002-8218-707X
https://orcid.org/0000-0001-6899-4599
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3701717.3730539
https://doi.org/10.1145/3701717.3730539
https://doi.org/10.1145/3701717.3730539

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Pitsikalis et al.

detection—fraudsters constantly adapt their tactics to avoid
getting caught [3]. Moreover, CEF systems rely on proba-
bilistic models trained on historical data [1, 25, 26]. This
renders CEF systems inherently susceptible to evolutions in
the input that can invalidate their underlying models—recall
the previous example relating maritime routes with weather.
Additionally, as with the majority of trainable models, CEF
models have hyperparameters that require fine tuning for op-
timal performance. Wayeb [2], a state-of-the-art CEF engine,
is no exception to the above.
To address the above challenges we propose RTCEF, an

open-source framework for Run-Time Adaptation of CEF
over constantly evolving data streams. RTCEF adopts a dis-
tributed architecture comprising targeted services to effec-
tively (a) enable run-time update of CEF models with little
to no downtime, (b) ensure that transition between mod-
els does not cause loss of forecasts. In other words, RTCEF
supports continuous adaptation to dynamic changes in the
input stream with little to no effect on efficiency. Further-
more, RTCEF provides a trend-based policy which acts as a
decision making mechanism to distinguish whether hyper-
parameter optimisation or CEF model retraining, without
changing hyperparameters, is the best way to maintain accu-
rate forecasts. In addition to RTCEF, we also present offCEF,
a baseline framework for CEF hyperparameter optimisation,
that in contrast to RTCEF, optimises CEF in an offline manner.
Our contributions are:
• we introduce RTCEF, an open-source1 framework address-
ing the challenges and requirements of run-time CEF over
evolving data streams through a distributed architecture
which enables CEF to seamlessly run on par with training
or optimisation tasks, ensuring no disruptions;
• we formally prove that RTCEF achieves lossless runtime
adaptation, i.e., no forecast is lost upon hyperparameter
optimisation or retraining decisions;
• we extensively evaluate RTCEF and offCEF on two real-
world critical use-cases from the maritime and financial
domains and our reproducible results validate that RTCEF,
compared to offCEF, can significantly improve forecasting
performance with little to no lag upon run-time changes.

2 Background
CEF is a task that allows forecasting CEs of interest, such as
fishing activities or vessel rendezvous, over an input stream
of simple events; e.g., timestamped position messages of mar-
itime vessels. Forecasts involve the occurrence of a CE in
the future accompanied by a degree of certainty [2]. This
behaviour is usually derived from stochastic models that
project into the future evolutions of the input that can cause
a detection of a CE. For the task of CEF, we utilise Wayeb,
1https://zenodo.org/records/15229227

Table 1: An example stream for a single vessel com-
posed of five events. Each event has a vessel identifier,
a value for that vessel’s speed and a timestamp.

vessel ID 78986 78986 78986 78986 78986 ...

speed 5 3 9 14 11 ...

timestamp 1 2 3 4 5 ...

a CEF engine introduced in [2], which employs symbolic
automata as its computational model. The user submits a
query/pattern to Wayeb which is then compiled into a sym-
bolic, streaming automaton. This automaton may be used to
perform event recognition, i.e., to detect instances of pattern
satisfaction upon a stream of input events. Whenever the
automaton reaches a final state, a complex event is reported
as having occurred. In order to perform forecasting, Wayeb
constructs a probabilistic model of the compiled automaton,
by using part(s) of a stream for training. The model allows
us to infer, at any given moment, the possible paths that the
automaton may follow in the future. By searching among the
possible future paths, we can estimate when the automaton
is expected to reach a final state and thus report a CE. The
output of Wayeb thus consists of two streams: a) one report-
ing the detected events, and b) one reporting the forecasts
of events expected to occur in the future.

Wayeb has clear, compositional semantics for the patterns
expressed in its language and can support most of the com-
mon operators [17]. Wayeb’s patterns are expressed as Sym-
bolic Regular Expressions (SREs), where terminal expressions
are Boolean expressions, i.e., logical formulae that use the
standard Boolean connectives of conjunction ‘∧’, disjunc-
tion ‘∨’ and negation ‘¬’ on predicates [2]. Wayeb SREs are
defined using the grammar below:

𝑅 ::= 𝑅1 + 𝑅2 (union) | 𝑅1 · 𝑅2 (concatenation)
| 𝑅∗1 (Kleene-star) | !𝑅1 (complement)
| 𝜓 (Boolean expression)

𝑅1, 𝑅2 are regular expressions, and𝜓 is a Boolean expression.
The semantics of the above operators are detailed in [2].
Evaluation of SREs on a stream of events requires first their
compilation into symbolic automata. Transitions in sym-
bolic automata are labeled with Boolean expressions. For
a symbolic automaton to move to another state, it first ap-
plies the Boolean expressions of its current state’s outgoing
transitions to the element last read from the stream. If an
expression is satisfied, then the corresponding transition is
triggered and the automaton moves to that transition’s tar-
get state. For example, in maritime situational awareness,
a domain expert could use Wayeb’s language to specify a
pattern 𝑅 := (𝑠𝑝𝑒𝑒𝑑 > 10) · (𝑠𝑝𝑒𝑒𝑑 > 10) for identifying

https://zenodo.org/records/15229227

Run-Time Adaptation of Complex Event Forecasting DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

0start 1 2

¬(speed > 10)

speed > 10

¬(speed > 10)

speed > 10

Figure 1: Streaming symbolic automaton created from
the expression 𝑅 := (𝑠𝑝𝑒𝑒𝑑 > 10) · (𝑠𝑝𝑒𝑒𝑑 > 10).

speed violations in specific areas where the maximum al-
lowed speed is 10 𝑘𝑛𝑜𝑡𝑠 . This pattern is satisfied when there
are two consecutive events where a vessel’s speed exceeds
the threshold. The compiled automaton corresponding to 𝑅
is illustrated in Figure 1. For an input stream consisting of
the events in Table 1, the automaton would run as follows.
For the first three input events, the automaton remains in
state 0. After the fourth event, it moves to state 1 and after
the fifth event it reaches its final state, state 2, triggering also
a CE detection for 𝑅 at timestamp = 5.

To perform CEF, Wayeb needs a probabilistic description
for a symbolic automaton derived from a SRE. For this pur-
pose, Wayeb employs Prediction Suffix Trees (PSTs) [30, 31]–
a form of Variable-order Markov Models. Variable-order
Markov Models, compared to fixed-order Markov models,
capture longer-term dependencies as in practice they allow
for higher order (𝑚) values than the latter. Each node in a
PST contains a “context” and a distribution that indicates
the probability of encountering a symbol, conditioned on
the context. Figure 4 (top left) shows an example of a PST.
Each “symbol” of a PST corresponds to a predicate of the
automaton for which we want to build a probabilistic model.
For example, the predicate (𝑠𝑝𝑒𝑒𝑑>10) may be such a “sym-
bol” for the pattern 𝑅. The same predicate, but negated i.e.,
¬(𝑠𝑝𝑒𝑒𝑑>10), may be another such “symbol”. Learning a PST
from data is an incremental process that adds new nodes cor-
responding to symbols only when necessary [2, 30, 32]. The
learning process involves two key hyperparameters. First,
the pMin ∈ [0, 1] hyper-parameter which corresponds to
a threshold determining which symbols are deemed to be
“too rare” to be taken under consideration by the learning
algorithm (symbols with a probability of appearance less
than pMin are discarded). Second, the 𝛾 hyperparameter is a
symbol distribution smoothing parameter.

With the resulting PST, for every state 𝑞 of an automaton
and the last𝑚 (order of the PST) symbols of the input stream,
we can calculate the waiting-time distribution (𝑊𝑞), that is,
the probability of reaching a final state in 𝑛 transitions from
a state 𝑞. Recall that a CE is detected whenever an automaton
reaches a final state. Figure 4 (middle and bottom left) shows
an example of an automaton and the waiting-time distribu-
tions learnt from a training dataset. Wayeb then performs
CEF as follows. Given the current state 𝑞 of an automaton,

using𝑊𝑞 , we compute the probability of reaching a final state
(𝑝𝐶𝐸) within the next 𝑛 transitions (or, equivalently, input
events). If 𝑝𝐶𝐸 exceeds a confidence threshold 𝜃fc ∈ [0, 1],
Wayeb emits a “positive” forecast (denoting that the CE is
expected to occur), otherwise a “negative forecast” (no CE is
expected) is emitted.

A forecast for a CE is characterised as a True Positive (TP)
if a positive forecast (i.e., the CE will occur in the future)
was emitted and the CE indeed occurred or, respectively, as a
False Positive (FP) if the CE did not occur. A forecast for a CE
is characterised as a True Negative (TN) if a negative forecast
is emitted (i.e., the CE will not occur in the future) and the
CE does not occur or, respectively, as a False Negative (FN) if
the CE does occur. Note that a forecast cannot be evaluated
as TP , FP , TN or FN upon its emission. It can be evaluated
as such after the next 𝑛 input events have arrived, at which
point we can know whether the forecast event did occur or
not. Given that Wayeb performs both CEF and CER, fore-
casts are evaluated on-the-fly. Using these classifications of
forecasts, the performance of CEF may be quantified through
Matthew’s Correlation Coefficient (MCC), defined as follows:

𝑀𝐶𝐶 =
√︁
Precision × Recall × Specificity × NPV
−
√
FDR × FNR × FPR × FOMR (1)

where NPV = TN
TN+FN , Specificity = TN

TN+FP , FDR = 1 −
Precision, FNR = 1 − Recall, FPR = 1 − Specificity and
FOMR = 1 − NPV . Precision and Recall are defined as usual.
Therefore,MCC ∈ [−1, 1] estimates the agreement, in which
case MCC = 1, (or disagreement, resp. MCC = −1) between
the emitted forecasts and observations. In contrast to F1-
Score, which takes into account only positive instances,MCC
takes into account both positive and negative instances. Since
Wayeb produces both positive and negative forecasts, MCC
is a fitting choice.

Given the above, the hyperparameters required for train-
ing Wayeb models, i.e., PSTs, are the following. The maxi-
mum order𝑚 of the PST, along with the symbol retaining
probability threshold pMin, the symbol distribution smooth-
ing parameter 𝛾 and the confidence threshold 𝜃fc . The naive
way to train a Wayeb PST is to manually fix the values of
these hyperparameters and then select a training dataset
from which a PST may be extracted. This process can be
performed offline and Wayeb may then employ the learnt
PST for online event forecasting. As we explain below, this
is not the proper way to go.

3 Challenges of CEF
Performing CEF over constantly evolving data streams ex-
hibits several significant challenges.
Challenge 1. CEF hyperparameter optimisation entails com-
plicated trade-offs.

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Pitsikalis et al.

5 10 15 20 25
0

0.2
0.4
0.6
0.8
1

Weeks (Maritime)

M
C
C

Wayeb

20 40 60 80
0

0.2
0.4
0.6
0.8
1

Weeks (Finance)

Wayeb

Figure 2: MCC scores of Wayeb for forecasting a CE
related to the arrival of vessels at a port over maritime
positional data (left), and forecasting the occurrence
of financial frauds over transactional data (right).
In Wayeb, although setting the maximum order m gen-

erally improves accuracy, it leads to longer training times.
Similarly, finding the optimal value for 𝜃fc , i.e., the proba-
bility threshold for emitting a forecast, is a crucial step as
overly low or high 𝜃fc values can cause many false posi-
tives or false negatives, respectively. Furthermore, pMin, the
threshold determining which symbols are “too rare” to be
included during training, can also affect accuracy. High pMin
values can produce simpler models but may discard useful
symbols. On the other hand, excessively low values of pMin
can degrade the accuracy of the forecasts due to overfitting
of the PSTs to insignificant symbols. The symbol distribution
smoothing parameter 𝛾 behaves in the same manner. Manu-
ally fixing the above combination of parameters would lead
to sub-optimal results. Moreover, exhaustive hyperparame-
ter space exploration is of high computational complexity
making it prohibitive for run-time settings where Wayeb’s
hyperparameters need to be tuned multiple times to adjust to
data evolutions that invalidate the deployed PSTs. To address
these issues,we propose RTCEF, a framework for the run-time
adaptation of CEF. RTCEF, presented in the following section,
employs Bayesian optimisation to efficiently explore only a
small fraction of the parameter space and learn the optimal
combination of hyperparameter values for the entire param-
eter space. Furthermore, in contrast to traditional Bayesian
optimisation setups, we do not start each optimisation run
from scratch, instead we leverage knowledge from previous
runs by constantly refreshing a sample set with new samples.

Challenge 2. Run-time CEF optimisation has inherently in-
creased complexity, while CEF applications typically involve
processing Big streaming Data with volatile statistical proper-
ties that can severely affect CEF performance.

Run-time optimisation of Wayeb is a complicated and
challenging task because it involves (a) training a Variable-
order Markov Model, that is, a PST (b) using it for estimating
waiting-time distributions and (c) subsequently performing
probabilistic, automaton-based pattern matching (Figure 4).
Consequently, employing an analytical formula to model the
performance of Wayeb for a given hyperparameter set and
input is impossible without training and testing Wayeb.

Although an initial optimal hyperparameter set can be
found for some historical dataset, in the run-time settings
environmental changes might happen that can invalidate
the deployed Wayeb’s PST. See for example Figure 2, which
shows the MCC score of Wayeb on forecasting two CE in a
maritime situational awareness setting and a financial fraud
detection setting. In both cases data evolutions in the input
stream cause significant fluctuations and drops in CEF scores.
Consequently, there is a need for continuous adaptation over
evolving data streams. RTCEF addresses this challenge with
run-time PST retraining or hyperparameter optimisation.
Challenge 3. Time-critical applications employing CEF re-
quire undisrupted production of forecasts.

In critical applications, such as maritime situational aware-
ness or credit card fraud management, updating the cur-
rently deployed PST with a new version should not stall
the production of CE forecasts, as such delays would halt
the proactive decision-making mechanisms of stakeholders.
Consequently, updating the deployed PST with newly re-
vised versions should happen in negligible time ensuring no
disruptions in CEF and no loss of forecasts. Finally, although
hyperparameter optimisation can result in high performing
models, it does not come without a cost. Hyperparameter op-
timisation is, resource-wise, an expensive procedure which
should only happen when necessary. The RTCEF framework
addresses the above challenges using a novel distributed,
service-oriented architecture.

4 Run-Time CEF Adaptation
We start by presenting offCEF, a baseline framework for
hyperparameter optimisation of CEF under the stationarity
assumption, i.e., assuming that there are no evolutions in the
input that might invalidate the CEF model. Subsequently, we
present RTCEF, which addresses all challenges of run-time
CEF mentioned in Section 3.

4.1 CEF Under the Stationarity Assumption
Under the stationarity assumption, a single PST, produced
through training on some historical, static dataset, will suffice
for future input. Consequently, in this setting, we may use
a framework for offline hyperparameter optimisation, here-
after offCEF. The aim of offCEF is the identification of an
optimal configuration 𝑐𝑜𝑝𝑡 that yields the best performance
for Wayeb, quantified by the MCC score (see Equation (1)).
A configuration 𝑐 is defined as follows:

𝑐 = [𝑚,𝜃fc, pMin, 𝛾]
where𝑚, 𝜃fc , pMin and 𝛾 are Wayeb’s hyperparameters (see
Section 2) with their domain empirically set as:

𝑚 ∈ [1, 5] 𝜃fc ∈ [0.0, 1.0]
pMin ∈ [0.0001, 0.01] 𝛾 ∈ [0.0001, 0.01]

Run-Time Adaptation of Complex Event Forecasting DEBS ’25, June 10–13, 2025, Gothenburg, Sweden
Pe

rf
or

m
an

ce
 M

et
ric

x
(a) Prior knowledge.

 Dinit

xPe
rf

or
m

an
ce

 M
et

ric

(b) 𝐷𝑖𝑛𝑖𝑡 samples (red lines).

x

a(
x)

 v
al

ue next micro-benchmark

(c) Sampling via 𝑎 (𝑥) .

Completed micro-

benchmarks

xPe
rf

or
m

an
ce

 M
et

ric

(d) BO conclusion.

Figure 3: Bayesian Optimisation Operation.

Model Factory (Offline) Controller (offline)

Wayeb Server
• Learn a prediction suffix tree

 • Estimate waiting time distributions

TR
A
IN

TE
ST

C

Sc
or

e

BO (GPR) Model

C

next micro-benchmark

Ac
q.

 fu
nc

. v
al

ue
 Acquisition function

BO optimiser

Historical
data

Saved
models

¬convergence ? new
micro-bench.:deploy

opt. model

Hyper-
parameters

[m, θfc,
 pMin, γ]

 MCC score

Report

Pe
rf

or
m

 C
EF

 u
nd

er
 th

e
st

at
io

na
rit

y
as

su
m

pt
io

n
• Construct forecasts

ε, (0.6, 0.4)
a, (0.7, 0.3) b, (0.5, 0.5)

aa, (0.75, 0.25) ba, (0.1, 0.9)

0st a r t 1 2 3 4
a b b b

a
a

a

b

b a

1 2 3 4 5 6 7 8 9 10 11 12
Number of future events

0

0.2

0.4

0.6

0.8

1

C
om

pl
et

io
n

Pr
ob

ab
ilit

y state:0
interval:5,12
state:1
state:2
state:3

Figure 4: Architecture of offCEF.

Given the infinite parameter combinations, exhaustive search
is computationally prohibitive. Furthermore, due to Wayeb’s
complexity, performance for a given parameter set cannot
be known beforehand. Consequently, to find the optimal
configuration 𝑐 we employ Bayesian optimisation (BO) [6, 14]
i.e., a stochastic method for optimising expensive-to-evaluate
objective functions that are complex or cannot be described
by analytic formulae. In our work, the objective function
is defined as 𝑓 (𝑐) = MCC𝑐 , where MCC𝑐 denotes the MCC
score of Wayeb given configuration 𝑐 .
The goal of BO is to find the vector of Wayeb’s hyperpa-

rameters that maximises CEF performance, using a minimal
set of Wayeb training-test runs, termed ‘micro-benchmarks’,
as training samples. Unlike other optimisation methods [34]
BO does not require a high number of micro-benchmarks
or an analytical formula [6, 14, 32]. BO employs a proba-
bilistic model—called surrogate model—to approximate the
unknown objective function, in our case CEF performance
quantified by MCC, and iteratively refines this model. We
employ a Gaussian Process Regressor (GPR) as the surrogate
model. Initial beliefs about the objective function must be
formulated before observing any data. In BO, priors are of-
ten specified for the mean and covariance functions of the
Gaussian Process model. For example, a prior belief might
suggest that the function is smooth and lies within a certain
range of values. Priors are represented as:

𝑓 (𝑐) ∼ GP(𝜇0 (𝑐), 𝑘0 (𝑐, 𝑐′))

where 𝜇0 (𝑐) and 𝑘0 (𝑐, 𝑐′) are the prior mean and covariance
(kernel) functions, respectively.

Every time we observe a new micro-benchmark and col-
lect CEF performance metrics by training and testing Wayeb
given a configuration 𝑐 , we acquire a new training sample
(𝑐,MCC𝑐), to fit on the GPR, thereby updating our posterior
belief in light of new evidence. The posterior distribution
represents our updated knowledge about Wayeb’s perfor-
mance and after observing 𝑛 new training samples, denoted
by Data, the posterior is given by:

𝑓 (𝑐) | Data ∼ GP(𝜇𝑛 (𝑐), 𝑘𝑛 (𝑐, 𝑐′))

𝜇𝑛 (𝑐) and 𝑘𝑛 (𝑐, 𝑐′) being the posterior mean and covariance
functions updated through Bayesian inference [6, 14].

For selecting training samples, we start by randomly pick-
ing points from the input parameter domain, and then exe-
cute the respective micro-benchmarks and observe Wayeb’s
MCC scores. We call this initial set of configurations 𝑐 , paired
with MCCc scores, 𝐷𝑖𝑛𝑖𝑡 . Subsequently, using Bayesian infer-
ence, the first posteriors are calculated and the expected re-
sult is illustrated by comparing the prior in Figure 3a against
the posterior in Figure 3b.

After 𝐷𝑖𝑛𝑖𝑡 , the next micro-benchmarks are selected using
an acquisition function 𝑎(𝑐). The acquisition function guides
the selection of the next evaluation point by quantifying the
utility of sampling a particular point 𝑥 in the input space
i.e., the domain of Wayeb’s configurations. 𝑎(𝑐) balances ex-
ploration and exploitation. Exploration involves sampling
𝑐 configurations in the input space that are not yet well-
explored or that have high uncertainty associated with them,
while exploitation involves sampling 𝑐 points that are likely
to yield the best objective function values exploiting the cur-
rent knowledge. For instance, in the plot of Figure 3c the
acquisition function chooses the point in the input domain
with the highest uncertainty. Different acquisition functions
introduce stochasticity in the BO process by incorporating
uncertainty estimates from the probabilistic model. BO con-
cludes either when a micro-benchmark budget is depleted
or when the value of 𝑓 (𝑐) converges. Figure 3d illustrates a
GPR with minimal uncertainty around its mean values, after
the microbenchmark budget has been depleted.

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Pitsikalis et al.

Figure 4 illustrates the architecture of offCEF, compris-
ing a Model Factory alongside a Controller. The Model Fac-
tory includes a Wayeb Server that utilises historical training
and validation datasets to construct and evaluate PSTs. The
Controller, includes the BO optimiser which is executed of-
fline on a historical dataset. The Controller initialises BO
by providing a set of configurations i.e., 𝑐 vectors to the
Model Factory, which, respectively, conducts the prescribed
micro-benchmarks, saves temporarily the candidate PSTs,
and sends reports to the Controller. The Controller will use
these reports for updating the GPR surrogate model of BO.

offCEF deploys the PST that is expected to maximiseMCC
based on the hyperparameter vector 𝑐𝑜𝑝𝑡 calculated by BO.
On the other hand, offCEF suffers from several disadvan-
tages: (i) it drives its decisions by attributing equal impor-
tance to cumulative performance metric statistics, while in
a streaming setup we often need to take into consideration
only a sliding window of recent measurements and defy
obsolete ones; (ii) it cannot optimise CEF hyperparameters
at run-time which is a crucial limitation, since fluctuations
in the input’s statistical properties in streaming settings is
the norm rather than an infrequent situation; (iii) it cannot
distinguish whether the hyperparameters for training PSTs
should be adjusted through BO or if it is only the Wayeb’s
PST that should be retrained, without changing hyperparam-
eters. RTCEF, presented below, addresses these issues.

4.2 CEF Over Evolving Data Streams
We propose RTCEF, which is built with three major goals in
mind. First, it updates at run-time PSTs according to input
data evolutions; second, it performs CEF without disruptions,
i.e., PST updating does not cause delays on CEF; and third,
it does not overuse resources for producing new PSTs. The
architecture of RTCEF consists of five main services, acting as
Kafka producers and consumers, running synergistically to
ensure undisrupted CEF and dynamic PST retraining or hy-
perparameter optimisation. Figure 5 illustrates these services
and the communication links between them. Synchronisa-
tion of the various services is denoted by dotted arrows in
Figure 5. Below with details the processing of each service
comprising our framework.
Observer. In order to determine whether the MCC score
of Wayeb has deteriorated, the quality of its forecasts must
be monitored. This task is handled by the Observer service
(right of Figure 5) which consumesMCC scores from the ‘Re-
ports’ topic and, produces ‘retrain’ or ‘optimise’ instructions
as indicated in Algorithm 1. Essentially, a retrain instruction
requests a new PST for Wayeb without changing training hy-
perparameters. An optimisation instruction, requests a new
PST, produced through hyperparameter optimisation. Note

Collector

Datasets

Output
stream

Input
stream Wayeb

Models Reports

Model Factory

Commands Scores

Controller

Observer

Instructs

Data
collection Optimisation and re-training

Complex event forecasting

Metrics
 monitoring

Figure 5: Architecture of RTCEF. Cylinders and rounded
rectangles denote topics and services respectively. For
simplicity, we omit synchronisation topics; instead we
use gray arrows.

Algorithm 1 Observer service
Require: 𝑘, guard_n,𝑚𝑎𝑥_𝑠𝑙𝑜𝑝𝑒,min_score
1: scores← []
2: guard ← −1
3: while True do
4: score𝑖 ← consume(Reports)
5: scores.update(score𝑖 , k)
6: pit_cond ← score𝑖 < min_score
7: slope_cond ← False
8: if guard ≥ 0 then guard ← guard − 1
9: if len(|𝑠𝑐𝑜𝑟𝑒𝑠 |)> 2 then
10: (𝑎𝑖 , 𝑏𝑖) ← fit_trend(scores)
11: slope_cond ← 𝑎𝑖 < max_slope
12: if (slope_cond and guard ≥ 0) or pit_cond then
13: send(“instructions”, “optimise”)
14: guard ← guard_n ⊲ New guard period
15: else if slope_cond then
16: send(“instructions”, “retrain”)
17: guard ← guard_n ⊲ New guard period

that hyperparameter optimisation will provide the best pos-
sible hyperparameters, but can be costly procedure, whereas
retraining on an updated dataset is a cheaper process. We
describe Algorithm 1 following its illustrative execution ex-
ample for maritime situational awareness presented in Fig-
ure 6. The Observer continuously consumes MCC scores
from Wayeb and retains the 𝑘 most recent MCC scores to
evaluate the performance trend. In the example of Figure 6,
Wayeb begins with a PST, referred to as PST𝑤0 , created using
configuration 𝑐𝑤0 . The Observer records the MCC Score at
𝑤0, however at this point no decision is made since fewer
than 𝑘 = 3 scores have been collected. Once the Observer
has at least 𝑘 scores, it computes the first degree polynomial
𝑧𝑖 (𝑥) = 𝑎𝑖𝑥 + 𝑏𝑖 (a trend line) so that 𝑎𝑖 and 𝑏𝑖 minimise

Run-Time Adaptation of Complex Event Forecasting DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

0.4

0.6

0.8

𝛼𝑤2 ≃ −0.04𝛼𝑤4 ≃ −0.05

guard guard

Weeks

M
C
C

Wayeb
rt opt

trend trend

Figure 6: Execution example of the Observer. ‘opt’ and
‘rt’ stand for ‘optimisation’ and ‘retraining’ respec-
tively. Dashed lines correspond to the trend lines as-
sociated with the Observer’s instructions at𝑤2 and𝑤4,
and black lines correspond to guard periods.

the squared error 𝐸 =
∑𝑗=𝑘

𝑗=0
[
𝑧𝑖 (𝑥 𝑗) − 𝑦 𝑗

]2 for 𝑥 𝑗 = 𝑗 and
𝑦 𝑗 = score𝑖−𝑘+𝑗 , where 𝑖 is an increasing integer denoting the
ID of the current score (lines 9, 10). If the slope (𝑎𝑖) of 𝑧𝑖 (𝑥) is
negative, indicating decrease in performance, and less than
a max_slope ∈ R− parameter (line 11) then a ‘retrain’ in-
struction is produced (lines 15-17). In the example, by week
𝑤2, the Observer has MCC scores for𝑤0,𝑤1,𝑤2. Using these
points, the Observer computes the trend line 𝑧𝑤2 with a slope
𝛼𝑤2 = −0.04 which is steeper than max_slope = −0.02. To
remedy this behaviour, the Observer issues a retrain instruc-
tion. As a result, a new PST, referred to as PST𝑤2 , is created
using the same configuration as PST𝑤0 , i.e., 𝑐𝑤0 . This oc-
curs because retraining updates the PST without modifying
Wayeb’s hyperparameters.

Intuitively, forecasting performance deterioration, demon-
strated by 𝑎𝑖 < max_slope, shortly after a new PST deploy-
ment, indicates that the new PST failed and hyperparameter
optimisation should thus be performed. To this end, we place
each newly deployed PST in a guard period (lines 14,17). A
guard period starts after a PST is deployed, and ends after
guard_n performance reports. If the performance of a PST
under a guard period deteriorates (𝑎𝑖 < max_slope) then a
hyperparameter optimisation instruction is produced (lines
12,13). If on the other hand, 𝑎𝑖 < max_slope is satisfied af-
ter guard_n reports, then a ‘retrain’ instruction is produced
for which a new “guard” period begins. In the example of
Figure 6, a guard period begins at week 𝑤2 and will last
for guard_n = 4 reports, i.e., until 𝑤5. While PST𝑤2 shows
improvement at 𝑤3, at 𝑤4 performance drops again. The
performance drop is also confirmed by the slope of -0.05
computed by the Observer using the MCC scores from 𝑤2
to 𝑤4. Since the slope 𝛼𝑤4 is again below max_slope, but
this time a guard period is active, the Observer issues a hy-
perparameter optimisation instruction instead of retraining.
Consequently, a new PST𝑤4 is produced through hyperpa-
rameter optimisation, resulting in an updated configuration

𝑐𝑤4 , and a new guard period starting at𝑤4. Finally, to avoid
pitfalls whereby the score drops suddenly very low, we em-
ploy an additional condition: if the score of a report is lower
than a threshold min_score (line 6) then the Observer asks
directly for ‘optimisation’ and omits a ‘retrain’ instruction.
Wayeb. The CEF part of RTCEF (top of Figure 5) contains
Wayeb. In addition to reading timestamped simple events
from the input stream and producing an output stream of CE
forecasts, Wayeb produces a stream CEF forecasting perfor-
mance reports, equally distanced by reporting_distance, and
continuously monitors the ‘Models’ topic, which contains
updated PSTs. When a new PST is made available in the Mod-
els topic, Wayeb replaces its PST with the latest available
version. Recall that, to produce a CE forecast, Wayeb will
utilise both the automaton corresponding to the symbolic
regular expression defining a CE and the PST (see Section 2).
The automaton retains information about the current state
(𝑞) and the next states that can lead to an accepting run, while
the PST is used for producing the next symbol probabilities
and therefore the waiting-time distribution for state 𝑞 (𝑊𝑞).
Below, we show Wayeb PST update is “lossless” i.e., upon
PST replacement, any run can continue from its current state
and produce forecasts using the new PST.

Proposition 1. Given a stream 𝑆 = {𝜎0, 𝜎1, ..., 𝜎𝑘 } where 𝜎𝑖
are symbols, a SRE 𝑅, its corresponding automaton 𝐴𝑅 , and
a PST 𝑇 with order𝑚 ∈ [𝑚𝑙 ,𝑚𝑢], the replacement of 𝑇 with
a 𝑇 ′ of order𝑚′ ∈ [𝑚𝑙 ,𝑚𝑢] is lossless at any position 𝑖 of
the stream 𝑆 if the last𝑚𝑢 symbols from the 𝜎𝑖 are available.

Proof. We prove Proposition 1 by contradiction. Given
𝑆 , 𝑅, 𝐴𝑅 and 𝑇 with order 𝑚 ∈ [𝑚𝑙 ,𝑚𝑢], assume that 𝑇 is
replaced with a PST 𝑇 ′ with order𝑚′ at a position 𝑖 . Now,
assume that there exists a run that cannot continue from its
current state 𝑞. This is not possible as the SRE 𝑅 remains
the same and therefore the automaton 𝐴𝑅 is also the same,
consequently the run can continue from 𝑞. Next, we assume
that there exists a run with current state 𝑞 for which the
next symbol probabilities and the corresponding waiting-
time distribution cannot be computed at position 𝑖 under
𝑇 ′. Recall, that for an automaton run at position 𝑗 and a
current state 𝑞, the next symbol probability (and𝑊𝑞) can
be computed using the PST 𝑇 and 𝑆 [𝑗−𝑚+1, 𝑗] , denoting the
subset of 𝑆 containing the symbols {𝜎 𝑗−𝑚+1, ..., 𝜎 𝑗 }. Since,
𝑆 [𝑖−𝑚𝑢+1,𝑖] is available, again the next symbol probabilities
as well as the waiting-time distribution for any state 𝑞 can
be computed with 𝑇 ′ as 𝑆 [𝑖−𝑚′+1,𝑖] ⊆ 𝑆 [𝑖−𝑚𝑢+1,𝑖] . □

Proposition 1 states that updating a PST 𝑇 with a new 𝑇 ′

can be lossless if: first, the order𝑚 of any new PST lies within
the same range [𝑚𝑙 ,𝑚𝑢]; and, second, the last 𝑚 symbols
up to the moment of the replacement are available. RTCEF
ensures both conditions are satisfied. Consider, for example,

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Pitsikalis et al.

𝜖
(0.6, 0.4)

𝑎
(0.7, 0.3)

𝑎𝑎
(0.9, 0.1)

𝑏𝑎
(0.6, 0.4)

𝑏
(0.5, 0, 5)

(a) PST 𝑇 with𝑚 = 2.

𝜖
(0.6, 0.4)

𝑎
(0.6, 0.4)

𝑎𝑎
(0.9, 0.1)

𝑏𝑎
(0.7, 0.3)

𝑎𝑏𝑎
(0.8, 0.2)

𝑏𝑏𝑎
(0.2, 0.8)

𝑏
(0.5, 0, 5)

(b) PST 𝑇 ′ with𝑚′ = 3.

Figure 7: PST 𝑇 with𝑚 = 2 and updated PST 𝑇 ′ with
𝑚 = 3, for 𝑅 := (𝑠𝑝𝑒𝑒𝑑 > 10) · (𝑠𝑝𝑒𝑒𝑑 > 10) and the
symbols 𝑎 =‘(𝑠𝑝𝑒𝑒𝑑 > 10)’ and 𝑏 = ‘¬(𝑠𝑝𝑒𝑒𝑑 > 10)’.

the regular expression 𝑅 := (𝑠𝑝𝑒𝑒𝑑 > 10) · (𝑠𝑝𝑒𝑒𝑑 > 10),
presented earlier in Section 2 as well as its corresponding au-
tomaton illustrated Figure 1. A PST𝑇 with order𝑚 = 2, along
with a revised PST𝑇 ′ with order𝑚′ = 3, and𝑚′ < 𝑚𝑢 , for 𝑅
are illustrated in Figures 7a and 7b respectively. Here, ‘𝑎’ cor-
responds to the symbol ‘(speed > 10)’, while ‘𝑏’ corresponds
to the symbol ‘¬(speed > 10)’. Assume that CEF begins with
PST 𝑇 and processes an input stream 𝑆 = {𝑏, 𝑎, 𝑏, 𝑎}. After
consuming 𝑆 , the current state of the automaton of Figure 1
is 1, while the probability of completion in one step, i.e., re-
ceiving another 𝑎, is 0.6 (see the 𝑏𝑎 node in 7a). At this point,
if we choose to replace 𝑇 with 𝑇 ′, for a lossless transition
we need at most the last 3 symbols from 𝑆—the order of 𝑇 ′
is 3. Since these symbols are available and the current state
is 1, the new probability of completion in one step after con-
suming 𝑆 , and by considering 𝑇 ′, is 0.8 (see the 𝑎𝑏𝑎 node
in Figure 7b). Notably, PST replacement, can be executed in
linear time with respect to the number of automata runs and
in practice happens in negligible time.
Collector. Training datasets evolve over time. Therefore,
the data collection part of RTCEF (left of Figure 5) includes
the Collector service, a data processing module organising
and storing subsets of the input stream that may be used for
retraining or hyperparameter optimisation. The Collector
service consumes the input stream (see ‘Data collection’ in
Figure 5), in parallel to Wayeb, and stores subsets of it in
time buckets of fixed bucket_size. The Collector gathers data
in a sliding window manner, emitting a new dataset version,
containing dt_size buckets, to the ‘Datasets’ topic as soon as
the last bucket in the range is full. Old buckets that no longer
serve a purpose for training, are deleted for space economy.
Controller.The Controller service, based on the instructions
of the Observer, initialises hyperparameter optimisation pro-
cedures, duringwhich it also serves as the Bayesian optimiser,
or retraining procedures, where it supplies Wayeb configura-
tions. When optimisation is required, the Controller initiates
the following three phases.

Initialisation phase: The Controller sets up the Bayesian
optimiser. Similar to [10], we reuse micro-benchmarks from
previous runs. Using the retain_fraction ∈ [0, 1] parameter,
we uniformly keep ⌊retain_fraction ∗ all_samples⌋ observa-
tions from the last BO run, where all_samples is the total
number of micro-benchmarks. This speeds up optimisation
while preserving useful information from previous runs.

Step phase: The Controller issues ‘train & test’ commands
along with the hyperparameters suggested by the acquisition
function—in our case the acquisition function is a combina-
tion of lower confidence bound, expected improvement, and
probability of improvement. After each ‘train & test’ com-
mand, the Controller awaits the corresponding performance
report i.e., the value of theMCC (c) objective function. Upon
receiving the performance report, the optimiser is updated
with the new sample and the hyperparameters for the next
step are suggested. The step phase ends when all micro-
benchmarks are completed or if convergence is achieved.
Finalisation phase: Once optimisation concludes and the

best hyperparameters are acquired, the Controller sends a
finalisation message containing the ID of the best PST. Addi-
tionally, the Controller updates the previously best hyperpa-
rameters with the newly acquired ones, ensuring availability
of the latter for subsequent ‘retrain’ instructions.
Model Factory. Similar to offCEF, the primary function of
the Model Factory service is to train, test and send up-to-date
PSTs to Wayeb. To do this, it will assemble and use the latest
dataset version produced by the Collector. Upon receiving
a ‘train’ command, the Model Factory trains a PST on the
latest dataset and shares this new PST version with Wayeb.

For PST production through hyperparameter optimisation,
upon receiving an ‘initialisation’ message, the Model Factory
‘locks’ the most recent assembled dataset so that the same
dataset is used throughout the optimisation procedure. Next,
during the ‘step’ phase, the Model Factory trains, saves and
tests candidate PSTs on the locked dataset and reports MCC
scores to the Controller. Finally, when the BO ‘finalisation’
message is received, the Model Factory sends the best per-
forming PST to Wayeb. It is only at this point, that Wayeb
will stop momentarily for PST replacement.

5 Experimental Evaluation
We evaluate our framework on two real-world use-cases.
First, in maritime situational awareness, maritime CEs of
interest are forecast over real vessel position streams. Sec-
ond, in credit card fraud management, fraudulent activity
is forecast over synthetic transaction data. We describe our
experimental setup and then we present our findings.

5.1 Experimental Setup
5.1.1 Datasets & patterns. We present the datasets we em-
ploy and the patterns we use for forecasting CEs of interest.

Run-Time Adaptation of Complex Event Forecasting DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

Maritime situational awareness. We use a real-world,
publicly available, maritime dataset containing 18M spatio-
temporal positional AIS (Automatic Identification System)
messages transmitted between October 1st 2016 and 31st
March 2016 (6 months), from 5K vessels sailing in the At-
lantic Ocean around the port of Brest, France [29]. AIS allows
the transmission of information such as the current speed,
heading and coordinates of vessels, as well as, ancillary static
information such as destination and ship type. We evaluate
RTCEF on a maritime pattern, which expresses the arrival
of a vessel at the main port of Brest [32]. This pattern is
derived after discussions with domain experts from a large,
European maritime service provider [27, 28]:

𝑅port := (¬InPort (Brest))∗ · (¬InPort (Brest)) ·
(¬InPort (Brest)) · (InPort (Brest)) (2)

InPort (Brest) is true when a vessel is within 5 km from the
port of Brest. Recall that ‘¬’, ‘∗’ and ‘·’ correspond to nega-
tion, iteration (Kleene star) and sequence respectively (see
Section 2). Consequently, 𝑅port is satisfied if a sequence of
at least three events occur. At least two require the vessel
to be away from the port—thus limiting false positives from
noisy entrances—, while the last denotes that the vessel has
entered the port. This CE is important for port management
and logistics reasons. We also perform experiments for a CE
named 𝑅fish defined as follows:

𝑅fish := (¬InArea(Fishing))∗ · (¬InArea(Fishing)) ·
(¬InArea(Fishing)) ·
(InArea(Fishing) ∧ ¬SpeedRange(Fishing))∗ ·
(InArea(Fishing) ∧ SpeedRange(Fishing))

(3)

InArea(Fishing) is true when a vessel is within a fishing area,
while speedRange is a predicate satisfied when the vessel has
fishing speed [28]. Therefore, 𝑅fish is satisfied when initially
a vessel is outside a fishing area, then the vessel enters the
fishing area and; at some point while it is within the fish-
ing area, it has fishing speed. Monitoring (illegal) fishing is
important for environmental and sustainability reasons.

To cross validate our approach, we create 6 datasets MD𝑖 ,
𝑖 ∈ [0, 5] by shifting the starting month in a cyclic manner:

MD𝑖 =

𝑗=5
𝑗=0month(𝑗+𝑖) mod 6

where ∥ denotes the operation of concatenating two
datasets, and monthk corresponds to month 𝑘 of the orig-
inal dataset.
Credit card fraudmanagement.Weuse a synthetic dataset
provided by Feedzai2 containing 1M credit card transaction
events taking place over a period of 82 weeks. Each event
contains, among others, the card ID, the amount and time
of the transaction. We evaluate RTCEF on a pattern repre-
senting a fraudulent behaviour as a sequence of consecutive
increasing transactions. Again, this pattern was determined

2https://feedzai.com

after discussions with domain experts from a large European
credit card management service provider [3]:

𝑅cards := (amDiff > 0) · (amDiff > 0) · (amDiff > 0)·
(amDiff > 0) · (amDiff > 0) · (amDiff > 0)·
(amDiff > 0)

(4)

We enrich events of the input stream with an additional at-
tribute amDiff which is equal to the difference between the
previous transaction and the current one. Therefore, 𝑅cards
is satisfied when 8 consecutive transactions happen with
increasing amounts. In order to simulate evolving fraud,
we modify the financial dataset by changing randomly ev-
ery 4 to 8 weeks the range of the highly correlated feature
amountDiff . Similar to the maritime dataset, for validating
our results, we create 21 datasets FD𝑖 , 𝑖 ∈ [0, 20] by shifting
4 weeks the start of each dataset in a cyclic manner.

5.1.2 Initialisation. We perform offline hyperparameter op-
timisation with offCEF on the first four weeks of each
dataset FD/MD𝑖 and use the resulting PST, hyperparame-
ters and micro-benchmark samples for initialising RTCEF. To
showcase the benefit of RTCEF, we also perform CEF with
static PSTs yielded by offCEF (see Section 4.1): i.e., for each
FD𝑖 /MD𝑖 we adopt the stationarity assumption and perform
CEF using the corresponding initial PST of each dataset.
In what follows, the experiments that utilise the run-time
adaptation framework are labelled with ‘RTCEF’ while exper-
iments that are performed only with offline optimised static
PSTs models are labelled with ‘offCEF’. Both offCEF and
RTCEF ingest the input stream with the maximum speed of
Kafka.

offCEF and RTCEF are implemented in Python 3.9.18,
while the Kafka version was 3.5.2. Messages are formatted
in JSON, and serialised/deserialised using Apache AVRO for-
mat. For BO, we use the scikit-optimize library 0.9.0. The
experiments are conducted on a server running Debian 12
with an AMD EPYC 7543 32-Core Processor and 400G of
RAM. Each service of RTCEF runs on its own dedicated core.
Our framework is open-source and our experiments are re-
producible.

5.2 Experimental Results
Figures 8 and 10 show MCC over time for 𝑅port and 𝑅cards
(see Definitions (2) and (4) respectively), along with the score
improvements when using RTCEF as opposed to offCEF for
the maritime MD0/2/3/5 and financial FD0/1/8/17 datasets re-
spectively. Results concerning MD0 and FD0—the datasets
in their original order—show that offCEF demonstrates, in
both cases, poor performance and significant fluctuations in
MCC scores over time. RTCEF, on the other hand, improves
scores and reduces fluctuations in both cases.
Maritime situational awareness. For MD0—the maritime
dataset in its original order—RTCEF drammatically improves

https://feedzai.com

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Pitsikalis et al.DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Pitsikalis et al.

0
0.2
0.4
0.6
0.8
1

M
C
C

offCEF RTCEF rt opt

4 8 12 16 20 24

0
200

Week (MD0)

Im
pr
ov
.(
%) 0

0.2
0.4
0.6
0.8
1

12 16 20 24 2 6

0
200

Week (MD2)

0
0.2
0.4
0.6
0.8
1

16 20 24 2 6 10

0
2K

Week (MD3)

0
0.2
0.4
0.6
0.8
1

24 2 6 10 14 18

0
200

Week (MD5)

Figure 8: Experimental results for maritime datasets MD0/2/3/5 with 𝑅port . ‘rt’ and ‘opt’ stand for ‘retrain’ and
‘optimisation’ respectively. The plots showMCC (upper part) andMCC improvement (lower part) of ‘RTCEF’ relative
to ‘offCEF’ over time.

0 1 2 3 4 5
0

0.5

1

MD𝑖 - 𝑅port

Av
g.
M
CC

RTCEF offCEF

0 1 2 3 4 5
0

0.5

1

MD𝑖 - 𝑅fish

Av
g.
M
C
C RTCEF offCEF

0 4 8 12 16 20 24
0

0.5

1

1.5

Week (MD0) - 𝑅port

Co
un

t(
x1
00
0) v vw/m m

0 1 2 3 4 5
0

0.1

0.2

MD𝑖 - 𝑅port

M
PP
T
(%
) opt rt

Figure 9: Cumulative results for the maritime situa-
tional awareness use-case. Avg MCC (top) per MD𝑖 for
Rport and Rfish. Dataset and CER characteristics (bottom
left). ‘v’, ‘vw/m’ and ‘m’ stand for ‘vessels’, ‘vessels with
matches’ and matches respectively. MPPT i.e., mean
percentage of time spent every four weeks for produc-
tion of PSTs per MD𝑖 for 𝑅port (bottom right).

behaviour is immediately cured when the Observer requests
optimisation in the first running week (see orange dot on
week 16 of Figure 8 - MD3)—this is due to the score being
less than min_score (see Algorithm 1). We attribute the low
scores of the initial PST of theMD3 dataset on the lack of ves-
sels passing through the monitoring area on that period (see
Figure 9 bottom-left). Figure 9 top-left, shows that the aver-
ageMCC for each datasetMD𝑖 (𝑖 ∈ [0, 5]) when using RTCEF
is consistently higher than that achieved via a single PST
trained only on the first four weeks of each dataset (offCEF).
In Figure 9 (top-right) we report results concerning the 𝑅fish
CE (see Definition (3)). For the 𝑅fish pattern there are no data

evolutions in the input that affect CEF performance, there-
fore in this case, the results show that when data evolutions
that affect PST performance at run-time are not present, the
use of RTCEF does not affect forecasting performance.
Concerning processing efficiency, interruptions in CEF

are minimal (see Proposition 1) as new PSTs are produced
in parallel to CEF, thus efficiency and throughput of CEF
remain unaffected. However, when a new PST request arises,
new PST versions arrive with some delay. Recall, that until
a new PST is available, Wayeb consumes the input stream,
in parallel to the PST creation procedures, with the already
deployed PST. Figure 9 (bottom-right) shows the mean per-
centage of time spent every four weeks for production of
PSTs (we denote this value as MPPT) involving the 𝑅port pat-
tern. The results show that every four weeks, on average
less than 0.2 % of time is spent for PST production (roughly
80 minutes in a period of four weeks) for all datasets MD𝑖 .
Consequently, RTCEF spends minimal time every four weeks
for PST production, thus ensuring minimal delays and a
resource-friendly behaviour.
Financial fraud management. Figure 10 shows that for
FD0 RTCEF overcomes input data evolutions, and significantly
outperforms offCEF. A similar pattern is observed also for
datasets FD8 and FD17 (Figure 10), where changes in the input
stream drop the MCC score of offCEFto almost 0. Again in
this case, RTCEF, adapts and maintains overall a steadyMCC
over time. An interesting experiment is that of dataset FD1
(Figure 10 - FD1). Here, after hyperparameter optimisation
is requested on week 26, RTCEF produces steadily an MCC
score of∼ 0.75. Conversely, offCEF onweeks 35-55 and 61-71
produces a score of ∼ 0.85, thus outperforming RTCEF. In this
case, RTCEF fails to detect input data evolutions as after week
26 there are no major fluctuations in MCC. Figure 11, shows
that for FD1 our framework has slightly less average MCC
than the offline approach. However, for all other datasets
FD𝑖 , RTCEF significantly outperforms the offline approach
(see Figure 11 top).

Figure 8: Experimental results for maritime datasets MD0/2/3/5 with 𝑅port . ‘rt’ and ‘opt’ stand for ‘retrain’ and
‘optimisation’ respectively. The plots showMCC (upper part) andMCC improvement (lower part) of ‘RTCEF’ relative
to ‘offCEF’ over time.

0 1 2 3 4 5
0

0.5

1

MD𝑖 - 𝑅port

Av
g.
M
CC

RTCEF offCEF

0 1 2 3 4 5
0

0.5

1

MD𝑖 - 𝑅fish

Av
g.
M
C
C RTCEF offCEF

0 4 8 12 16 20 24
0

0.5

1

1.5

Week (MD0) - 𝑅port

Co
un

t(
x1
00
0) v vw/m m

0 1 2 3 4 5
0

0.1

0.2

MD𝑖 - 𝑅port

M
PP
T
(%
) opt rt

Figure 9: Cumulative results for the maritime situa-
tional awareness use-case. Avg MCC (top) per MD𝑖 for
Rport and Rfish. Dataset and CER characteristics (bottom
left). ‘v’, ‘vw/m’ and ‘m’ stand for ‘vessels’, ‘vessels with
matches’ and matches respectively. MPPT i.e., mean
percentage of time spent every four weeks for produc-
tion of PSTs per MD𝑖 for 𝑅port (bottom right).

MCC up to ∼ 300% following retraining and optimisation
procedures in weeks 5 and 6, respectively. A similar pattern
is observed on the MD5 dataset. On dataset MD2, although
improvement is not as prominent as with MD0/3/5, on aver-
age RTCEF improves significantlyMCC (see Figure 9 top-left).
On theMD3 case, results show that the initial PST, generated
by offCEF underperforms on weeks 16 to 19. However, this
behaviour is immediately cured when the Observer requests
optimisation in the first running week (see orange dot on
week 16 of Figure 8 - MD3)—this is due to the score being
less than min_score (see Algorithm 1). We attribute the low
scores of the initial PST of theMD3 dataset on the lack of ves-
sels passing through the monitoring area on that period (see

Figure 9 bottom-left). Figure 9 top-left, shows that the aver-
ageMCC for each datasetMD𝑖 (𝑖 ∈ [0, 5]) when using RTCEF
is consistently higher than that achieved via a single PST
trained only on the first four weeks of each dataset (offCEF).
In Figure 9 (top-right) we report results concerning the 𝑅fish
CE (see Definition (3)). For the 𝑅fish pattern there are no data
evolutions in the input that affect CEF performance, there-
fore in this case, the results show that when data evolutions
that affect PST performance at run-time are not present, the
use of RTCEF does not affect forecasting performance.
Concerning processing efficiency, interruptions in CEF

are minimal (see Proposition 1) as new PSTs are produced
in parallel to CEF, thus efficiency and throughput of CEF
remain unaffected. However, when a new PST request arises,
new PST versions arrive with some delay. Recall, that until
a new PST is available, Wayeb consumes the input stream,
in parallel to the PST creation procedures, with the already
deployed PST. Figure 9 (bottom-right) shows the mean per-
centage of time spent every four weeks for production of
PSTs (we denote this value as MPPT) involving the 𝑅port pat-
tern. The results show that every four weeks, on average
less than 0.2 % of time is spent for PST production (roughly
80 minutes in a period of four weeks) for all datasets MD𝑖 .
Consequently, RTCEF spends minimal time every four weeks
for PST production, thus ensuring minimal delays and a
resource-friendly behaviour.
Financial fraud management. Figure 10 shows that for
FD0 RTCEF overcomes input data evolutions, and significantly
outperforms offCEF. A similar pattern is observed also for
datasets FD8 and FD17 (Figure 10), where changes in the input
stream drop the MCC score of offCEFto almost 0. Again in
this case, RTCEF, adapts and maintains overall a steadyMCC
over time. An interesting experiment is that of dataset FD1
(Figure 10 - FD1). Here, after hyperparameter optimisation
is requested on week 26, RTCEF produces steadily an MCC
score of∼ 0.75. Conversely, offCEF onweeks 35-55 and 61-71
produces a score of ∼ 0.85, thus outperforming RTCEF. In this
case, RTCEF fails to detect input data evolutions as after week

Run-Time Adaptation of Complex Event Forecasting DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

0
0.2
0.4
0.6
0.8
1

M
C
C

offCEF RTCEF rt opt

4 16 28 40 52 64 76

0
200

Week (FD0)

Im
pr
ov
.(
%) 0

0.2
0.4
0.6
0.8
1

8 20 32 44 56 68 2

0
200

Week (FD1)

0
0.2
0.4
0.6
0.8
1

44 56 64 76 10 22 34

0
2K

Week (FD8)

0
0.2
0.4
0.6
0.8
1

72 6 18 30 42 54 66

0
2K

Week (FD17)

Figure 10: Experimental results for financial datasets FD0/1/8/17 with 𝑅cards. ‘rt’ and ‘opt’ stand for ‘retrain’ and
‘optimisation’ respectively. The plots showMCC (upper part) andMCC improvement (lower part) of ‘RTCEF’ relative
to ‘offCEF’ over time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

0.5

1

FD𝑖 - 𝑅cards

Av
g.
M
C
C

RTCEF offCEF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.03

0.06

FD𝑖 - 𝑅cards

M
PP
T
(%
) opt rt

Figure 11: Cumulative results for the financial fraud
management use-case i.e., avg MCC per FD𝑖 for Rcards
(top). MPPT i.e., mean percentage of time spent for PST
production every four weeks per FD𝑖 for 𝑅cards (bottom).

26 there are no major fluctuations in MCC. Figure 11, shows
that for FD1 our framework has slightly less average MCC
than the offline approach. However, for all other datasets
FD𝑖 , RTCEF significantly outperforms the offline approach
(see Figure 11 top).

Similar to the experiments concerning maritime situa-
tional awareness, we report MPPT—i.e., the average time
spent every four weeks for PST production (which takes
place in parallel to CEF) due to retraining or optimisation—
for all datasets FD𝑖 and 𝑅cards . Again, MPPT stays very low,
with the maximum value being at most ∼ 0.05%. In other
words, only 0.05% of time (∼20 minutes) is spent for PST
production every four weeks. Therefore, again RTCEF spends
minimal time for PST production, thus ensuring an efficient
resources use without sacrificing efficiency and throughput.

6 Related Work
Forecasting covers several areas such as time-series forecast-
ing [24], general sequence prediction [5, 31], event sequence

prediction and point-of-interest recommendations [7, 21].
However, such methods focus on input event forecasting
rather than CEF. Process mining, closely related to CEF [33],
involves learning processes from activity logs and predicting
process completions [13, 23]. Unlike CEF, which declaratively
defines CEs, process mining focuses on transition systems
and traces, typically consisting of long event sequences. Ex-
isting proposals in these areas often overlook CE patterns
and primarily target input events or simple patterns, and can-
not handle multiple variables of different types effectively.
CEF aims to address such challenges, as outlined in various
conceptual frameworks [8, 9, 15]. In our work specifically, we
address these challenges by utilising Wayeb, a CEF engine
that employs high-order Markov models [1, 2]. Furthermore,
none of existing proposals (e.g., [20, 25, 26]) automate run-
time adaptation without optimisation via exhaustive search,
a gap addressed by our work, in addition to the fact that our
approach optimises at run-time in a resource-friendly way.

The problem we address in this paper pertains to concept
drift, i.e., evolutions in the data that invalidate the deployed
model [16]. Our work is the first that tackles this problem
specifically for CEF. For example, the work of Stavropoulos et
al. [32] allows for offline CEF optimisation but does not allow
run-time adaptation on dynamically evolving data streams,
while concerning CEF optimisation itself, compared to our
framework, it offers only a very restricted set of functional-
ities. EasyFlinkCEP [18], similar to RTCEF, uses BO to opti-
mise the parallelism of FlinkCEP programs but lacks support
for forecasting, focusing only on system-oriented metrics
(e.g., throughput). Herodotou et al. [19] offer a comprehen-
sive survey of machine learning-based techniques, including
BO, for tuning the performance of Big Data management
systems. Existing CER optimisation techniques focus on en-
hancing throughput i.e., the number of tuples processed per
unit of time [12] while others focus on reducing processing
latency and efficiently managing memory utilisation [12].
These approaches typically adapt traditional query optimisa-
tion techniques such as early predicate evaluation and query

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Pitsikalis et al.

rewriting to suit the context of CER. Giatrakos et al. [17]
discuss techniques for executing parallel CER efficiently in
geo-distributed settings. Notably, none of these approaches
address run-time adaptation of CEF.

7 Summary
We presented, RTCEF, a novel framework for run-time adap-
tation of CEF. RTCEF involves several services running syn-
ergistically for undisrupted run-time CEF and improved fore-
casting performance via lossless dynamic model updating.
We evaluated our approach on two use-cases involving real-
world and synthetic data and our experimental results show
that there is a clear benefit using our framework as opposed
to performing CEFwith a singlemodel in ‘offline’ fashion.We
release publicly our framework in an open-source fashion.

Acknowledgments
This work was supported by the CREXDATA project, which
received funding from the European Union’s Horizon Europe
Programme, under grant agreement No 101092749.

References
[1] Elias Alevizos, Alexander Artikis, and George Paliouras. 2018. Wayeb:

a Tool for Complex Event Forecasting. In LPAR.
[2] Elias Alevizos, Alexander Artikis, and Georgios Paliouras. 2022. Com-

plex event forecasting with prediction suffix trees. VLDB J. 31, 1 (2022),
157–180.

[3] Alexander Artikis, Nikos Katzouris, Ivo Correia, Chris Baber, Natan
Morar, Inna Skarbovsky, Fabiana Fournier, and Georgios Paliouras.
2017. A Prototype for Credit Card Fraud Management: Industry Paper.
In DEBS. 249–260.

[4] Alexander Artikis and Dimitris Zissis (Eds.). 2021. Guide to Maritime
Informatics. Springer.

[5] Ron Begleiter, Ran El-Yaniv, and Golan Yona. 2004. On Prediction
Using Variable Order Markov Models. J. Artif. Intell. Res. 22 (2004),
385–421.

[6] Eric Brochu, Vlad M. Cora, and Nando de Freitas. 2010. A Tutorial on
Bayesian Optimization of Expensive Cost Functions, with Application
to Active User Modeling and Hierarchical Reinforcement Learning.

[7] Buru Chang, Yonggyu Park, Donghyeon Park, Seongsoon Kim, and
Jaewoo Kang. 2018. Content-Aware Hierarchical Point-of-Interest
Embedding Model for Successive POI Recommendation. In IJCAI.

[8] Maximilian Christ, Julian Krumeich, and Andreas W. Kempa-Liehr.
2016. Integrating Predictive Analytics into Complex Event Processing
by Using Conditional Density Estimations. In EDOC Workshops.

[9] Yagil Engel and Opher Etzion. 2011. Towards proactive event-driven
computing. In DEBS.

[10] Matthias Feurer, Jost Springenberg, and Frank Hutter. 2015. Initializing
Bayesian Hyperparameter Optimization via Meta-Learning. AAAI 29
(2015).

[11] Giannis Fikioris, Kostas Patroumpas, Alexander Artikis, Georgios
Paliouras, and Manolis Pitsikalis. 2020. Fine-Tuned Compressed Rep-
resentations of Vessel Trajectories. In CIKM.

[12] Ioannis Flouris, Nikos Giatrakos, Antonios Deligiannakis, Minos N.
Garofalakis, Michael Kamp, andMichael Mock. 2017. Issues in complex
event processing: Status and prospects in the Big Data era. J. Syst.
Softw. 127 (2017), 217–236.

[13] Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi, and
Fredrik Milani. 2018. Predictive Process Monitoring Methods: Which
One Suits Me Best?. In BPM.

[14] Peter I. Frazier. 2018. A Tutorial on Bayesian Optimization.
[15] Lajos Jeno Fülöp, Árpád Beszédes, Gabriella Toth, Hunor Demeter,

László Vidács, and Lóránt Farkas. 2012. Predictive complex event
processing: a conceptual framework for combining complex event
processing and predictive analytics. In BCI.

[16] João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola
Pechenizkiy, and Abdelhamid Bouchachia. 2014. A survey on concept
drift adaptation. ACM Comput. Surv. 46 (2014), 189:1–189:38.

[17] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligian-
nakis, and Minos N. Garofalakis. 2020. Complex event recognition in
the Big Data era: a survey. VLDB J. 29, 1 (2020), 313–352.

[18] Nikos Giatrakos, Eleni Kougioumtzi, Antonios Kontaxakis, Antonios
Deligiannakis, and Yannis Kotidis. 2021. EasyFlinkCEP: Big Event
Data Analytics for Everyone. In CIKM.

[19] Herodotos Herodotou, Yuxing Chen, and Jiaheng Lu. 2020. A Survey
on Automatic Parameter Tuning for Big Data Processing Systems.
ACM Comput. Surv. 53, 2 (2020), 43:1–43:37.

[20] Yan Li, Tingjian Ge, and Cindy X. Chen. 2020. Data Stream Event
Prediction Based on Timing Knowledge and State Transitions. Proc.
VLDB Endow. 13, 10 (2020), 1779–1792.

[21] Zhongyang Li, Xiao Ding, and Ting Liu. 2018. Constructing Narrative
Event Evolutionary Graph for Script Event Prediction. In IJCAI.

[22] Alessandro Margara and Gianpaolo Cugola. 2011. Processing flows of
information: from data stream to complex event processing. In DEBS.

[23] Alfonso Eduardo Márquez-Chamorro, Manuel Resinas, and Antonio
Ruiz-Cortés. 2018. Predictive Monitoring of Business Processes: A
Survey. IEEE Trans. Services Computing 11, 6 (2018), 962–977.

[24] Douglas C Montgomery, Cheryl L Jennings, and Murat Kulahci. 2015.
Introduction to time series analysis and forecasting. John Wiley & Sons.

[25] Vinod Muthusamy, Haifeng Liu, and Hans-Arno Jacobsen. 2010. Pre-
dictive publish/subscribe matching. In DEBS.

[26] Suraj Pandey, Surya Nepal, and Shiping Chen. 2011. A test-bed for the
evaluation of business process prediction techniques. In Collaborate-
Com.

[27] Kostas Patroumpas, Alexander Artikis, Nikos Katzouris, Marios Vodas,
Yannis Theodoridis, and Nikos Pelekis. 2015. Event Recognition for
Maritime Surveillance. In EDBT.

[28] Manolis Pitsikalis, Alexander Artikis, Richard Dreo, Cyril Ray, Elena
Camossi, and Anne-Laure Jousselme. 2019. Composite Event Recogni-
tion for Maritime Monitoring. In DEBS.

[29] Cyril Ray, Richard Dréo, Elena Camossi, Anne-Laure Jousselme, and
Clément Iphar. 2019. Heterogeneous integrated dataset for Maritime
Intelligence, surveillance, and reconnaissance. Data in Brief 25 (2019),
104141.

[30] Dana Ron, Yoram Singer, and Naftali Tishby. 1993. The Power of
Amnesia. In NIPS.

[31] Dana Ron, Yoram Singer, and Naftali Tishby. 1996. The Power of Am-
nesia: Learning Probabilistic Automata with Variable Memory Length.
Machine Learning 25, 2-3 (1996), 117–149.

[32] Vasileios Stavropoulos, Elias Alevizos, Nikos Giatrakos, and Alexander
Artikis. 2022. Optimizing complex event forecasting. In DEBS.

[33] Wil Van Der Aalst. 2011. Process mining: discovery, conformance and
enhancement of business processes.

[34] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization
of machine learning algorithms: Theory and practice. Neurocomputing
415 (2020), 295–316.

	Abstract
	1 Introduction
	2 Background
	3 Challenges of CEF
	4 Run-Time CEF Adaptation
	4.1 CEF Under the Stationarity Assumption
	4.2 CEF Over Evolving Data Streams

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Summary
	Acknowledgments
	References

