
Sequencing in the Run-Time Event Calculus
Periklis Mantenogloua and Alexander Artikisb,c

aÖrebro University, Sweden, bNCSR “Demokritos”, Greece, cUniversity of Piraeus, Greece
periklis.mantenoglou@oru.se, a.artikis@iit.demokritos.gr

Abstract. Composite event recognition (CER) systems detect in-
stances of composite activities over streams of timestamped events.
A fundamental operator for CER is ‘sequencing’, expressing that two
activities take place one after the other. There is no consensus on
a universal definition for sequencing. We provide a set of required
properties for a sequencing operator for CER, i.e., an interval-based
semantics, required for durative activities, and associativity, required
to express activity hierarchies. We propose a sequencing operator that
satisfies all requirements, as opposed to the ones in the literature, and
we implement our operator in the CER engine RTEC. We compare
our operator both theoretically and empirically with state-of-the-art
approaches, demonstrating its benefits and limitations.

1 Introduction
Complex event recognition (CER) systems process high-velocity
streams in order to detect instances of (spatio-)temporal pattern sat-
isfaction with minimal latency [12]. CER has been applied to various
contemporary applications. In maritime situational awareness, e.g., a
CER system consumes streams of vessel position signals, in order to
detect instances of dangerous, suspicious and illegal vessel activities
in real time, thus supporting safe shipping [31].

CER systems are typically automata-based [17, 18, 30, 23]—
see Giatrakos et al. [17] for a survey. CORE and Wayeb, e.g., are
automata-based frameworks that have proven highly efficient com-
pared to the state-of-the-art [9, 1]. While automata-based systems
commonly include a sequencing operator, expressing phenomena
where activities take place one after the other, they do not always
agree on its intended semantics. For instance, several frameworks ex-
press sequencing only over instantaneous activities, and fail to sup-
port durative phenomena, which are common in CER [6, 21]. On
the other hand, frameworks that do support interval-based sequenc-
ing often do so using an operator that is not associative, leading to
semantic ambiguities when used in hierarchical patterns [16, 27, 35].

Logic-based CER frameworks support features that are not typ-
ically found in automata-based approaches, such as relational and
hierarchical patterns with background knowledge [8, 33, 34]. These
approaches, however, do not support inertial activities. The Event
Calculus is a logic programming formalism for reasoning about the
effects of events over time [22]. It features a built-in representation
of the law inertia, allowing the specification of the initiations and
the terminations of durative activities, which may persist over time.
Though several implementations of the Event Calculus have been
proposed [11, 29, 10, 19, 7, 3, 26, 15], the Run-Time Event Calculus
(RTEC1) has proven to be the most effective at reasoning over large

1 github.com/aartikis/rtec

data streams and complex temporal specifications [24, 25].
RTEC, however, does not support sequencing. While there is an

extension of RTEC that supports Allen’s interval algebra [25], this
extension does not capture an associative sequencing operator. To
tackle this issue, we propose RTECS, an extension of RTEC that sup-
port sequencing via an associative, interval-based operator, address-
ing the semantic issues raised about sequencing in CER [35].

Our contributions may be summarised as follows. First, we out-
line a set of requirements for sequencing in CER, i.e., maximal, dis-
joint interval representation and associativity. Second, we propose a
sequencing operator that, contrary to the ones in the literature, ful-
fills these requirements. Third, we propose RTECS, an extension of
RTEC that supports sequencing via our operator. RTECS is the only
CER system that captures both inertial and sequential phenomena.
We present the syntax, the semantics, and the reasoning algorithm
of RTECS, along with a discussion on correctness, complexity, and
accuracy under windowing. The proofs of all propositions are pro-
vided in the supplementary material2. Fourth, we compare the se-
quencing operator of RTECS with the ones found in state-of-the-art
CER frameworks, such as CORE and Wayeb. Fifth, we present a re-
producible empirical evaluation of RTECS on an artificial and a real
domain, including a comparison with a state-of-the-art system.

2 Background: RTEC
RTEC is a formal, logic programming framework that extends the
Event Calculus with optimisation techniques for CER [4, 24, 25].

Syntax. The language of RTEC includes sorts for representing
time, instantaneous events and fluents, i.e., properties whose val-
ues may change over time. RTEC employs a linear time-line with
non-negative integer time-points. A ‘fluent-value pair’ (FVP) F=V
denotes that fluent F has value V . In CER, FVPs are used to
express the composite activities that we are interested in detect-
ing. happensAt(E ,T) signifies that event E occurs at time-point
T . initiatedAt(F =V ,T) (resp. terminatedAt(F =V ,T)) expresses
that a time period during which a fluent F has the value V continu-
ously is initiated (terminated) at T . holdsAt(F =V ,T) states that F
has value V at T , while holdsFor(F =V , I) expresses that F=V
holds continuously in the intervals included in list I .

A formalisation of the activity definitions of a domain in RTEC
is called event description. An event description may contain rules
defining two types of FVPs: ‘simple’ and ‘statically determined’.
A simple FVP is defined using a set of initiatedAt and terminatedAt
rules, and is subject to the commonsense law of inertia, i.e., an FVP
F=V holds at a time-point T , if F=V has been ‘initiated’ by an

2 https://periklismant.github.io/appendices/ecai25.pdf

event at a time-point earlier than T , and not ‘terminated’ by another
event in the meantime.

Example 1 (Within area). In maritime monitoring, an activity may
be disallowed in certain areas, e.g., fisheries restricted areas. Thus, it
is desirable to compute the intervals during which a vessel is in such
an area. See the definition of a simple FVP below:

initiatedAt(withinArea(Vl ,AreaType)= true,T)←
happensAt(entersArea(Vl ,AreaID),T),
areaType(AreaID ,AreaType).

(1)

terminatedAt(withinArea(Vl ,AreaType)= true,T)←
happensAt(leavesArea(Vl ,AreaID),T),
areaType(AreaID ,AreaType).

(2)

withinArea(Vl ,AreaType) is a Boolean fluent denoting
that a vessel Vl is in an area of type AreaType , while
entersArea(Vl ,AreaID) and leavesArea(Vl ,AreaID), derived
by the online processing of vessel position signals, and their spatial
relations with areas of interest. areaType(AreaID ,AreaType)
is an atemporal predicate storing background knowledge regard-
ing the types of areas in a dataset. Rules (1) and (2) state that
withinArea(Vl ,AreaType) is initiated (resp. terminated) as soon
as vessel Vl enters (leaves) an area AreaID with type AreaType . ♢

The syntax of the rules defining simple FVPs is presented in [24].
A statically determined FVP F =V is defined via a rule with head

holdsFor(F =V , I). This rule computes the maximal, disjoint inter-
vals (MDIs) during which F =V holds continuously by applying a
set interval manipulation operations, i.e., union_all, intersect_all and
relative_complement_all, on the MDIs of other FVPs.

Example 2 (Anchored and moored vessels). Consider the following
definition of a statically determined FVP:

holdsFor(anchoredOrMoored(Vl)= true, I)←
holdsFor(stopped(Vl)= farFromPorts, Isf),
holdsFor(withinArea(Vl , anchorage)= true, Ia),
intersect_all([Isf , Ia], Isfa),
holdsFor(stopped(Vl)=nearPorts, Isn),
union_all([Isfa , Isn], I).

(3)

anchoredOrMoored(Vl) is a Boolean statically deter-
mined fluent, defined in terms of three other FVPs:
stopped(Vl)= farFromPorts , stopped(Vl)=nearPorts and
withinArea(Vl , anchorage)= true. The multi-valued fluent
stopped(Vl) expresses the periods during which vessel Vl is idle
near some port or far from all ports. Rule (3) derives the intervals
during which vessel Vl is both stopped far from all ports and within
an anchorage area, by applying the intersect_all operation on the
lists of MDIs Isf and Ia . The output of this operation is list Isfa .
Subsequently, list I is derived by applying union_all on lists Isfa and
Isn . In this way, list I contains the MDIs during which vessel Vl has
stopped near some port or within an anchorage area. ♢

Definition 1 (Syntax of Rules Defining Statically Determined FVPs).
The definition of statically determined FVP F =V is a rule that has
the following syntax:

holdsFor(F =V , In+m)←
holdsFor(F1 =V1 , I1)[[, holdsFor(F2 =V2 , I2), . . .
holdsFor(Fn =Vn , In), intervalConstruct(L1 , In+1), . . .
intervalConstruct(Lm , In+m)]].

The first body literal of a holdsFor rule defining F =V is a
holdsFor predicate expressing the MDIs of an FVP other than

F =V . This is followed by a possibly empty list, denoted by
‘[[]]’, of holdsFor predicates and interval manipulation constructs,
expressed by intervalConstruct. intervalConstruct(Lj , In+j) may be
one of the following: union_all(Lj , In+j), intersect_all(Lj , In+j) or
relative_complement_all(Ik ,Lj , In+j). Ik , where k < n + j , is a list
of MDIs appearing earlier in the body of the rule, and list Lj contains
a subset of these lists. The output list In+m contains the MDIs during
which F =V holds continuously. ■

Semantics. An event description defines a dependency graph ex-
pressing the relationships between the FVPs of the event description.

Definition 2 (Dependency Graph). The dependency graph of an
event description is a directed graph such that:
1. Each vertex denotes a FVP F =V ;
2. There exists an edge (Fj =Vj ,Fi =Vi) iff:
• There is an initiatedAt or terminatedAt rule for Fi =Vi having

holdsAt(Fj =Vj ,T) as one of its conditions.
• There is a holdsFor rule for Fi =Vi having

holdsFor(Fj =Vj , I) as one of its conditions. ■

A stratification of the FVPs of an event description may be con-
structed by following the edges of the dependency graph bottom-up,
leading to the following result [25].

Proposition 1 (Semantics of RTEC). An event description in RTEC
is a locally stratified logic program [32]. ♦

Reasoning. The key reasoning task of RTEC is the computation of
holdsFor(F =V , I), i.e., the list of MDIs I during which a FVP ex-
pressing a composite activity holds continuously. For a simple FVP
F =V , RTEC first computes the initiations and the terminations of
F =V , by evaluating its initiatedAt and its terminatedAt rules, re-
spectively. Next, RTEC computes the MDIs of F =V by matching
each initiation Ts of F=V with the first termination Te of F=V
after Ts , ignoring every intermediate initiation between Ts and Te .
RTEC may then derive holdsAt(F =V ,T) by checking whether T
belongs to one of the MDIs of F=V . In the case of a statically deter-
mined FVP F =V , RTEC computes holdsFor(F =V , I) by evalu-
ating the conditions of the holdsFor rule with FVP F =V in its head.

RTEC supports hierarchical event descriptions, where it is possi-
ble to compute and cache the MDIs of FVPs in a bottom-up man-
ner, guided by the corresponding dependency graph [4]. This way,
the intervals of an FVP are computed and cached at most once, and
are retrieved from memory when required in the definitions of other
FVPs, thus avoiding re-computations.

3 Sequencing

In CER, it is common for a composite activity to be defined as a se-
quence of other activities. In banking, e.g., a sequence of transactions
of the same credit card in distant locations may indicate fraud [5]. In
cybersecurity, adversary tactics may be composed of several sequen-
tial steps, such as content injection and privilege escalation [2]. In
maritime monitoring, a fishing trip may be defined as a sequence of
(i) being moored in some port, (ii) entering a fishing area, (iii) fish-
ing, (iv) exiting the fishing area, (v) returning to the port. As a result,
activity specification formalisms require a sequencing operator “;”,
which receives as input two activities α1 and α2 and constructs an-
other activity α1 ;α2 , expressing the sequence of α1 and α2 .

Given an activity α and an input activity stream S , we use [[α]]S
to denote the occurrences of α given stream S . α may be an item
of the input stream S or a composite activity whose occurrences are
derived via temporal pattern matching over the items in S . For an

input activity α, we adopt the common assumption in CER that the
occurrences of α are non-overlapping.

Assumption 1 (Stream of Activity MDIs). Let S be a stream and α
an activity, where α is an item of S . [[α]]S is composed of MDIs. ✠

Note that the intervals in [[α]]S may be instantaneous.
We identify a set of requirements that a sequencing operator

should meet, in order to be suitable for CER. We start with the well-
documented need of interval-based semantics [35, 28].

Requirement 1 (Interval-based Semantics for Sequencing). Con-
sider a sequencing operator “;”, a stream S and activities α1 and
α2 . [[α1 ;α2]]S is composed of MDIs. ⋄

Associating MDIs with activities is both a prerequisite for support-
ing RTEC and a reasonable choice for CER due to the correspond-
ing complexity gains (these will be demonstrated in later sections).
A sequencing operator “;” that satisfies Requirement 1 is compo-
sitional, because an activity α1 ;α2 , constructed using “;”, is rep-
resented with same type of time-stamp, i.e., MDIs, as its building
block activities α1 and α2 . As a result, α1 ;α2 may be used as a
building block in a different activity definition that includes “;”. In
other words, a sequencing operator that fulfills Requirement 1 has
the following property.

Property 1 (Compositionality). Consider two activities α1 and α1

and an input stream S . Sequencing is compositional iff [[α1 ;α2]]S ,
i.e., the occurrences of activity α1 ;α2 based on stream S , have the
same type as both [[α1]]S and [[α2]]S . ♦

Compositionality is necessary for activity hierarchies, i.e., activ-
ities being defined in terms of other non-input activities, which are
common in CER [17].

In the presence of large hierarchies, activity definitions may be
composed via sequencing several other activities. Moreover, an ac-
tivity that is used as a building block for some definition may itself be
defined as the sequence of other activities. Consider, e.g., an activity
α123 , which is defined as the sequence of activities α1 , α2 and α3

There are two options for specifying α123—we can either compose
α123 as α12 ;α3 , where α12 is defined as α1 ;α2 , or as α1 ;α23 ,
where α23 is defined as α2 ;α3 . Deciding which is the preferred
representation may depend on complexity concerns, which in turn
may depend on the frequency of α1 , α2 and α3 [20, 14]. We need
to ensure correctness regardless of which of the two options is cho-
sen by the activity definition developer, i.e., both options should lead
to the same intervals for α123 . In other words, sequencing in CER
should be implemented using an associative operator.

Requirement 2 (Associativity). Given a stream S and activities α1 ,
α2 and α3 , [[(α1 ;α2);α3]]S is equal to [[α1 ; (α2 ;α3)]]S . ⋄

Notice that associativity implies compositionality.
The example below illustrates a problematic behavior of a non-

associative sequencing operator [16, 35].

Example 3 (Non-Associative Sequencing). Consider an activity
α123 , which is defined as the sequence of activities α1 , α2 and α3 ,
and a sequencing operator “;” such that, for every pair of activities
αa and αb and stream S , we have [[αa ;αb]]S =[[αb]]S .

Let S be a stream such that [[α1]]S ={(5 , 7)}, [[α2]]S ={(1 , 3)}
and [[α3]]S ={(9 , 11)}. Based on the sequencing operator
we employ in this example, we have [[α1 ;α2]]S = ∅ and
[[α2 ;α3]]S ={(9 , 11)}. Therefore, we may compute [[α123]]S as
[[(α1 ;α2) ;α3]]S = ∅ or [[α1 ;(α2 ;α3)]]S ={(9 , 11)}. ♢

The behavior exemplified above is undesirable; based on the in-
tervals associated with activities α1 , α2 and α3 , according to which

α2 occurs earlier than α1 , α123 does not take place, and the order of
applying the sequencing operator should not alter this result.

An associative sequencing operator allows for optimisations [35].
Consider again the example of activity α123 , and a stream S where
activity α1 occurs infrequently. In this case, the preferred option is to
define α123 as (α1 ;α2) ;α3 , and not as α1 ;(α2 ;α3). Computing
first [[α2 ;α3]]S for each sequence of α2 and α3 to only then reject
the match on the grounds that there is no instance of α1 may lead
to redundant computations. Instead, starting with the computation of
[[α1 ;α2]]S should improve efficiency as α1 appears infrequently,
and thus fewer potential matches for α123 are considered.

4 A Naive Approach to Sequencing under MDIs
Our goal is to define an activity sequencing operator “;” that abides
by Requirements 1 and 2. Following [35], we start with an abstract
sequencing model, which includes the main components of “;”.

Definition 3 (Abstract Sequencing Model). An abstract sequencing
model is a tuple (T ,≺,S,⊗), where
• T is a set of time-stamps.
• ≺ is a partial order on T .
• S : T × 2T → 2T is a successor function. It receives as input a

time-stamp t and a set of candidate time-stamps F and returns a
subset of F , i.e., a set of immediate successor time-stamps for t .

• ⊗ : T × T → T is a composition operator. Given t1 , t2 ∈ T ,
t1 ⊗ t2 is the time-stamp of the sequence of two activities with
time-stamps t1 and t2 . ■

Based on the abstract sequencing model of Definition 3, it is possi-
ble to specify a concrete sequencing model by providing definitions
for T , ≺, S and ⊗. The proposal of [35] for a concrete sequencing
model is the one incorporated in the Cayuga framework [13]. We
outline this model below, using s(i) and e(i) to denote the starting
point and the ending point of an interval i .

Definition 4 (Sequencing Model of Cayuga). The sequencing model
of Cayuga is (Tcy ,≺cy , Scy ,⊗cy), where
• Tcy is the set of all intervals defined over the positive integers.
• for i1 , i2 ∈ Tcy , i1 ≺cy i2 iff e(i1) < s(i2).
• Scy(i1 , I2)={i2 ∈ I2 | i1 ≺ i2∧

∄i ′2 ∈ I2 : i1 ≺cy i ′2 ∧ e(i ′2) < e(i2)}.
• ∀i1 , i2 ∈ Tcy such that i1 ≺cy i2 , we have i1 ⊗cy i2 = i , where

s(i)= s(i1) and e(i)= e(i2). ■

Based on the above sequencing model, we define the sequencing
operator [[.]]cyS of Cayuga over some stream S . If α is an item of
S , we have [[α]]cyS =[[α]]S . For a sequencing activity, we follow the
definition below:

Definition 5 (Sequencing Operator in Cayuga). Consider two activi-
ties α1 and α2 and a stream S . We have:

[[α1 ;α2]]
cy
S ={i1 ⊗cy i2 |i1∈[[α1]]

cy
S ∧ i2∈Scy(i1 , [[α2]]

cy
S)} ■

Unfortunately, this sequencing operator cannot be incorporated in
RTEC because it does not abide by Requirement 1; for a stream S and
activities α1 and α2 , it is possible for [[α1 ;α2]]

cy
S to be composed

of intervals that are not MDIs. Consider the following example.

Example 4. Consider activities α1 and α2 , and a stream S
such that [[α1]]S ={i11 , i12}, where i11 =(1 , 3) and i12 =(5 , 6),
and [[α2]]S ={i2}, where i2 =(9 , 11). Following Definition 4,
we have i11 ≺cy i2 , i12 ≺cy i2 , Scy(i11 , {i2})={i2},
Scy(i12 , {i2})={i2}, i11⊗cy i2 =(1 , 11) and i12⊗cy i2 =(5 , 11).
Therefore, according to Definition 5, the sequencing operator of

Cayuga computes the following intervals for α1 ;α2 :

[[α1 ;α2]]
cy
S ={(1 , 11), (5 , 11)} ♢

Example 4 illustrates that, starting from two activities occurring
in lists of MDIs, Cayuga may construct overlapping intervals for the
sequence of these two activities.

White et al. [35] present a set of desired axioms for a sequenc-
ing model, which are fulfilled by Cayuga, and prove that there is no
interval-based sequencing model that satisfies these axioms and is
also associative. These axioms concern the more general case where
the intervals of an activity may be overlapping, as opposed to be-
ing MDIs. Below, we define an associative sequencing operator for
activities that take place in MDIs, thus fulfilling Requirements 1–2.

5 Sequencing in RTEC
We propose a sequencing operator that fulfills Requirements 1 and
2 and may be used in RTEC. Our operator functions under the as-
sumption that the activities participating in sequencing are mutually
exclusive, which is a common assumption in CER. In maritime situa-
tional awareness, e.g., the sequence of activities constituting a fishing
trip—being moored, leaving a port, etc.—are mutually exclusive.

Assumption 2 (Mutually Exclusive Activities). Consider two activ-
ities α1 and α2 . If there is a pattern combining α1 and α2 using a
sequencing operator, then α1 and α2 are mutually exclusive, i.e., for
every stream S , [[α1]]S ∩ [[α2]]S = ∅. ✠

Towards a sequencing operator for RTEC, we define a new type
of successor function, compared to the one in Definition 3. Based
on this new successor function, each interval is assigned at most one
successor and at most one predecessor. This is motivated by the issue
of Example 4, where, in the computation of α1 ;α2 , the two intervals
of α1 are assigned the same successor interval, leading to overlap-
ping intervals for α1 ;α2 . We may avoid this by designating each
interval of α2 as the successor of at most one interval of α1 , i.e.,
each interval of α2 has at most one predecessor. We pair ‘adjacent’
activity intervals as follows:

Definition 6 (Adjacency Mapping). Consider a stream S and two ac-
tivities α1 and α2 . We define the adjacency mapping of an interval
i1 ∈ [[α1]]S as follows:

A(i1 , [[α1]]S , [[α2]]S)=


i2 if ∃i2 ∈ [[α2]]S : i1≺rt i2∧
(¬∃i ′2 ∈ [[α2]]S : i1≺rt i

′
2≺rt i2)∧

(¬∃i ′1 ∈ [[α1]]S : i1≺rt i
′
1≺rt i2)

∅ otherwise ■

According to Definition 6, interval i1 ∈ [[α1]]
rt
S is adjacent with

interval i2 ∈ [[α2]]
rt
S if i1 ends before the start of i2 , and there is no

interval in [[α1]]
rt
S or [[α2]]

rt
S that is situated between i1 and i2 .

Now we may define a sequencing model for RTEC. This model is
based on the abstract sequencing model of Definition 3, with the ex-
ception of employing the adjacency mapping of Definition 6 instead
of a weaker successor function.

Definition 7 (Temporal Sequencing Model for RTEC). The temporal
sequencing model of RTEC is (Trt ,≺rt ,A,⊗rt), where
• Trt is a set of intervals over the positive integers.
• ≺rt is a partial order on Trt , such that, for i1 , i2 ∈ Trt , we have

i1 ≺ i2 iff e(i1) < s(i2).
• A : Trt × 2Trt × 2Trt → Trt is the mapping in Definition 6.
• ∀i1 , i2 ∈ Trt : i1 ≺rt i2 , we have i1 ⊗rt i2 = i , where

s(i)= s(i1) and e(i)= e(i2). ■

Based on the temporal sequencing model of Definition 7, we de-
fine a sequencing operator for RTEC.

Definition 8 (Sequencing Operator for RTEC). Consider two activi-
ties α1 and α2 and a stream S . We have:

[[α1 ;α2]]
rt
S ={i1 ⊗rt i2 | i1 ∈ [[α1]]

rt
S ∧

i2 =A(i1 , [[α1]]
rt
S , [[α2]]

rt
S) ∧ i2 ̸= ∅} ■

The sequencing operator in Definition 8 may not lead to overlap-
ping intervals. Below, we illustrate this for the input intervals over
which Cayuga generated overlapping intervals (see Example 4).

Example 5. Consider activities α1 and α2 , and a stream S
such that [[α1]]S ={i11 , i12}, where i11 =(1 , 3) and i12 =(5 , 6),
and [[α2]]S ={i2}, where i2 =(9 , 11). Following Definition 7,
we have i11 ≺rt i2 , i12 ≺rt i2 , A(i11 , {i11 , i12}, {i2})= ∅,
A(i12 , {i11 , i12}, {i2})= i2 , and i12 ⊗cy i2 =(5 , 11). Therefore,
according to Definition 8, we have [[α1 ;α2]]

rt
S ={(5 , 11)}. ♢

Proposition 2 ([[α1 ;α2]]
rt
S consists of MDIs). Consider a stream S

and activities α1 and α2 . The intervals in [[α1 ;α2]]
rt
S are MDIs. ♦

Proposition 2 shows that our sequencing operator (Definition 8)
fulfills Requirement 1. This implies that our sequencing operator is
compositional (see Property 1).

Next, we study associativity (Requirement 2).

Proposition 3 ([[(α1 ;α2) ;α3]]
rt
S =[[α1 ;(α2 ;α3)]]

rt
S). Consider a

stream S and activities α1 , α2 and α3 . It holds that

i ∈ [[(α1 ;α2) ;α3]]
rt
S iff i ∈ [[α1 ;(α2 ;α3)]]

rt
S ♦

Based on Propositions 2 and 3, our sequencing operator is indeed
compatible with RTEC, and it is associative, thus avoiding the cor-
responding correctness issues (see, e.g., Example 3), and paving the
way for reasoning optimisations.

6 Comparative Study
We present a comparison of the sequencing operator of RTEC with
operators that are used in well-known CER approaches.

6.1 Sequencing with Allen relations

RTECA is a extension of RTEC that supports the relations of Allen’s
interval algebra in composite activity definitions [25]. We focus on
the implementation of the before relation in RTECA, which may be
viewed as a form of sequencing. Given two activities α1 and α2 ,
RTECA determines the intervals in before(α1 , α2) in two steps. First,
for each interval i1 of α1 and interval i2 of α2 , RTECA checks
whether interval pair (i1 , i2) satisfies before, i.e., whether i1 and i2
satisfy condition e(i1) < s(i2). Subsequently, for the set of interval
pairs satisfying before, RTECA employs an “output mode”, in order
to compute MDIs during which before(α1 , α2) takes place. RTECA

supports three output modes: “source”, selecting interval i1 of an in-
terval pair (i1 , i2) for inclusion in before(α1 , α2), “target”, selecting
interval i2 , and “union”, selecting both intervals i1 and i2 .

In order to formulate before as a sequencing operator, we use the
following temporal sequencing model:

Definition 9 (Temporal Sequencing Model for RTECA). The tempo-
ral sequencing model for RTECA is (Ta ,≺a , Sa ,⊗a), where
• Ta is a set of intervals over the positive integers.
• ≺a is a partial order on Ta , such that, for i1 , i2 ∈ Ta , we have

i1 ≺a i2 iff e(i1) < s(i2).

• Sa(i1 , I2)={i2 ∈ I2 | i1 ≺a i2}.
• ∀i1 , i2 ∈ Ta : i1 ≺a i2 , we have: (i) i1 ⊗a i2 = i1 if output

mode is source, (ii) i1 ⊗a i2 = i2 if output mode is target, or (iii)
i1 ⊗a i2 = i1 ∪ i2 if output mode is union. ■

before may be defined as a sequencing operator as follows:

Definition 10 (Sequencing Operator in RTECA). Consider two activ-
ities α1 and α2 and a stream S . We have:

[[α1 ;α2]]
a
S ={i1 ⊗a i2 | i1 ∈ [[α1]]

a
S ∧ i2 ∈ Sa(i1 , [[α2]]

a
S)} ■

The sequencing operator of RTECA is not associative
(Requirement 2). Consider, e.g., activities α1 , α2 and
α3 . For output mode source and a stream S such that
[[α1]]

a
S ={(1 , 3)}, [[α2]]

a
S ={(9 , 11)} and [[α3]]

a
S ={(5 , 7)}, we

have [[(α1 ;α2) ;α3]]
a
S ={(1 , 3)} and [[α1 ;(α2 ;α3)]]

a
S = ∅. For

output mode target and a stream S such that [[α1]]
a
S ={(5 , 7)},

[[α2]]
a
S ={(1 , 3)} and [[α3]]

a
S ={(9 , 11)}, we have

[[(α1 ;α2) ;α3]]
a
S = ∅ and [[α1 ;(α2 ;α3)]]

a
S ={(9 , 11)}. For

output mode union and a stream S such that [[α1]]
a
S ={(1 , 3)},

[[α2]]
a
S ={(9 , 11)} and [[α3]]

a
S ={(5 , 7)}, we have

[[(α1 ;α2) ;α3]]
a
S ={(1 , 3), (5 , 7)} and [[α1 ;(α2 ;α3)]]

a
S = ∅. In

contrast, our sequencing operator is associative.

6.2 Sequencing in Automata-based CER

CORE is an automata-based CER engine in which a composite activ-
ity may be constructed by sequencing an arbitrary number of activi-
ties from the input stream. Given input activities α1 and α2 , CORE
computes that α1 ;α2 holds in an interval (s(i1), e(i2)) if α1 oc-
curs in i1 , α2 occurs in i2 and i1 ends before the start of i2 . CORE
defines the following temporal sequencing model:

Definition 11 (Temporal Sequencing Model for CORE). The tempo-
ral sequencing model for CORE is (Tco ,≺co ,Sco ,⊗co), where
• Tco is the set of all intervals defined over the positive integers.
• for i1 , i2 ∈ Tco , i1 ≺co i2 iff e(i1) < s(i2).
• Sco(i1 , I2)={i2 ∈ I2 | i1 ≺co i2}.
• ∀i1 , i2 ∈ Tco such that i1 ≺co i2 , we have i1 ⊗co i2 = i , where

s(i)= s(i1) and e(i)= e(i2). ■

The sequencing operator of CORE may be defined as follows:

Definition 12 (Sequencing Operator in CORE). Consider two activ-
ities α1 and α2 and a stream S . We have:

[[α1 ;α2]]
co
S ={i1 ⊗co i2 |i1∈[[α1]]

co
S ∧ i2∈Sco(i1 , [[α2]]

co
S)} ■

The sequencing operator of CORE cannot be used in RTEC be-
cause it violates Requirement 1. Consider an input stream S , where
activity α1 holds in i11 =(1 , 3) and i12 =(5 , 6), activity α2 holds
in i2 =(8 , 11), and activity α3 holds in i3 =(15 , 22). Based on
Definitions 11 and 12, [[α1 ;α3]]

co
S contains intervals (1 , 22) and

(5 , 22), thus not being a set of MDIs.
The language of CORE supports a collection of operators imple-

menting so-called “selection strategies”, which impose constraints
on the detected composite activities [18]. We leave the study of se-
quencing with selection strategies for future work.

Wayeb is an another state-of-the-art automata-based CER engine.
While there are similarities in the semantics of sequencing in Wayeb
and CORE, the underlying formalisms of these frameworks differ in
their temporal representation of composite activities. CORE marks a
composite activity occurrence using an interval starting from the first
item of the input stream that participates in the activity and ending at
the last such item. In contrast, Wayeb represents a composite activity

occurrence using the set of time-stamps of the input items of the
stream that constitute the composite activity.

Definition 13 (Temporal Sequencing Model for Wayeb). The tempo-
ral sequencing model for Wayeb is (Tw ,≺w , Sw ,⊗w), where
• Tw is a set containing all finite subsets of the positive integers.
• ≺w is a partial order on Tw , such that, for τ1 , τ2 ∈ Tw , we have

τ1 ≺w τ2 iff last(τ1) < first(τ2), i.e., the last time-point in τ1
is less than the first time-point in τ2 .

• Sw (τ1 ,T2)={τ2 ∈ T2 | τ1 ≺w τ2}.
• ∀τ1 , τ2 ∈ Tw : τ1 ≺w τ2 , we have τ1 ⊗w τ2 = τ1 ∪ τ2 . ■

Definition 14 (Sequencing Operator in Wayeb). Consider two activ-
ities α1 and α2 , and a stream S . We have:

[[α1 ;α2]]
w
S ={τ1 ⊗w τ2 |τ1∈[[α1]]

w
S ∧ τ2∈Sw (τ1 , [[α2]]

w
S)} ■

Wayeb represents activity occurrences with sets of time-points,
and not intervals. Thus, it does not fulfill Requirement 1.

Suppose that, in an attempt to express an interval-based se-
mantics for Wayeb, we were to revise its sequencing operator as:
rev [[α1 ;α2]]

w
S ={(first(τ), last(τ))| τ ∈ [[α1 ;α2]]

w
S }. However,

rev [[α1 ;α2]]
w
S still fails at satisfying Requirement 1, because, for

similar reasons as Definition 12, rev [[α1 ;α2]]
w
S may not be com-

posed of MDIs. Thus, rev [[α1 ;α2]]
w
S is not suitable for RTEC.

7 RTECS: RTEC with Sequencing

We propose RTECS, i.e., an extension of RTEC that supports se-
quencing via the operator we introduced in Definition 8. We present
the syntax, the semantics and the reasoning algorithms of RTECS.

Syntax. Recall that activities are expressed in RTEC by means of
fluent-value pairs (FVPs). RTECS extends RTEC with a sequencing
construct in statically determined FVP definitions.

Definition 15 (Syntax of statically determined FVP definitions in
RTECS). A holdsFor(F =V , I) rule defining a FVP F =V may
additionally contain body predicates in the form of seq(I1 , I2 , I),
where I1 and I2 are input lists of MDIs, and I is an output list of
MDIs. Given two FVPs F1 =V1 and F2 =V2 taking place in the
MDIs of I1 and I2 , I contains the MDIs during which the sequence
of F1 =V1 and F1 =V2 takes place, following Definition 8. ■

Consider the following rule describing part of a fishing trip:

holdsFor(fishingTripStart(Vl)= true, I)←
holdsFor(anchoredOrMoored(Vl)= true, Iam),
holdsFor(withinArea(Vl ,fishing)= true, If),
seq(Iam , If , I).

(4)

FVP anchoredOrMoored(Vl)= true denotes that vessel Vl is ei-
ther anchored or moored near some port (rule (3)), while FVP
withinArea(Vl ,fishing)= true expresses that Vl is within a fishing
area (rules (1) and (2)). In rule (4), seq(Iam , If , I) computes the list
of MDIs I where the vessel is said to be at first anchored or moored,
and then within a fishing area, indicating the start of a fishing trip.

Semantics. The introduction of seq in holdsFor rules does not
affect the definition of a dependency graph (Definition 2). Therefore,
our extension of RTEC does not affect its semantics.

Proposition 4 (Semantics of RTECS). An event description in
RTECS is a locally stratified logic program. ♦

Reasoning. Algorithm 1 illustrates the steps followed by RTECS

to compute seq(I1 , I2 , I). I in holdsFor(F =V , I) is a sorted list of
MDIs (even if the items of the stream are not sorted) [4]. Therefore,

Algorithm 1 Sequencing in RTECS

Require: Sorted lists I1 and I2 of MDIs
Ensure: Sorted list I of MDIs

1: j1 ← 1 , j2 ← 1 , I ← []
2: while j1 ≤ |I1 | and j2 ≤ |I2 | do
3: i1 ← I1 [j1], i2 ← I [j2]
4: if end(i2) < start(i1) then j2 ← j2+1
5: else if j1 = |I1 | then ▷ we have i1 ≺rt i2 hereafter
6: I .append(i1 ⊗rt i2), return I
7: else ▷ j1 is not pointing to the last interval in I1
8: inext1 ← I1 [j1+1]
9: if end(i2) < start(inext1) then

10: I .append(i1 ⊗rt i2), j2 ← j2+1

11: j1 ← j1+1

12: return I

I1 and I2 in seq(I1 , I2 , I) are also sorted lists of MDIs (see Defini-
tion 1). In order to compute I , we iterate over interval pairs from the
lists of MDIs I1 and I2 , following an ascending temporal order, us-
ing indices j1 and j2 (see lines 1–3). Our goal is to find interval pairs
that are adjacent based on Definition 6, so that we may construct the
intervals in I by composing these adjacent intervals using ⊗rt .

For an interval pair i1 ∈ I1 and i2 ∈ I2 , if i2 ends before the start
of i1 , i.e., i2 ≺rt i1 , then i1 and i2 are not adjacent, and, since I1
and I2 are sorted in ascending temporal order, i2 may not be adjacent
with any interval in I1 that is after i1 . Thus, we move to the next
interval in I2 (line 4). Otherwise, if i2 ⊀rt i1 , then, since i1 and i2
are non-overlapping (see Assumption 2), we have that i1 ≺rt i2 . In
this case, based on the interval ordering in I1 and I2 , we are certain
that i2 is the earliest interval in I2 that is after i1 , i.e., there is no
interval i ′2 ∈ I2 such that i1 ≺rt i ′2 ≺rt i2 . Therefore, in order to
check whether i1 and i2 are adjacent, it suffices to examine whether
there is an interval i ′1 ∈ I1 such that i1 ≺rt i

′
1 ≺rt i2 . There are two

cases: If i1 is the last interval in I1 , then there is no interval i ′1 in I1
such that i1 ≺rt i

′
1 , and thus we add i1 ⊗rt i2 in I and return I (lines

5–6). Otherwise, if i1 is not the last interval in I1 , we check whether
the interval inext1 that is right after i1 in I1 satisfies i2 ≺rt inext1 .
If so, then there is no interval in I1 that is both after i1 and before
i2 . Therefore intervals i1 and i2 are adjacent; we add i1 ⊗rt i2 in
I and increment j1 and j2 , towards identifying the next MDI for
I , if any (lines 7–11). In the case that i2 ⊀rt inext1 , which implies
that i1 ≺rt inext1 ≺rt i2—and thus i1 and i2 are not adjacent—we
increment j1 and not j2 (line 11). This is because i2 may be adjacent
with an interval of I1 that is after i1 , and thus should be considered
in the next iteration. We return I when all intervals in I1 or I2 have
been processed (line 2). Afterwards, RTECS caches list I in order to
be able to resolve patterns requiring I very efficiently.

Example 6 (Sequencing in RTECS). Consider two sorted lists
of MDIs I1 =[i11 , i12] and I2 =[i21 , i22], where i11 =(8 , 9),
i12 =(12 , 18), i21 =(1 , 3) and i22 =(25 , 26). We outline an ex-
ecution of Algorithm 1 on I1 and I2 , leading to an output list of
MDIs I . We start by processing interval pair i11 and i21 , i.e., index
j1 points to i11 and index j2 points to i21 (lines 1–3). Since i11 is
after i21 , i11 is not adjacent with i21 , and we move j2 over the next
interval of I2 , i.e., i22 (line 4). The next interval pair consists of i11
and i22 ; i11 is not adjacent with i22 because i11 ≺rt i12 ≺rt i22 .
Thus, we move j1 over the next interval of I1 , i.e., i12 (lines 7–9 and
11). Subsequently, we verify that i12 is adjacent with i22 , because
i12 is before i22 and there is no interval in I1 that is between i12 and
i22—in fact, i12 is the last interval in I1—and thus we add interval

i12 ⊗rt i22 =(12 , 26) in list I , and return I (lines 5–6). ♢

Proposition 5 (Correctness of Sequencing in RTECS). Consider ac-
tivities α1 and α2 , and a stream S . Given the sorted lists of MDIs I1
and I2 of α1 and α2 , RTECS computes a list of MDIs I for α1 ;α2

such that i ∈ I iff i ∈ [[α1 ;α2]]
rt
S . ♦

Proposition 6 (Complexity of Sequencing in RTECS). Consider
activities α1 and α2 , and a stream S . The worst-case time
complexity of RTECS for computing the MDIs of α1 ;α2 is
O(|[[α1]]

rt
S |+|[[α2]]

rt
S |). ♦

Proposition 6 states that RTECS computes sequencing patterns
with a single pass over the streaming data.

8 RTECS with Windowing
To handle streaming applications, RTEC operates in a windowing
mode, i.e., at each ‘query time’ qj , it takes into consideration the
items of the input stream S that fall within a specified sliding win-
dow with size ω [4]. All items of S that took place before or at
qj−ω are discarded/‘forgotten’. Using windowing, reasoning effi-
ciency depends on the size ω, instead of the size of S , leading to
significant cost reductions. In this section, we outline the conditions
under which RTECS performs correct reasoning over windows.

A window w =(qj−ω, qj] delimits a finite, continuous subset Sw

of a stream S on which temporal pattern matching may be performed.
For an input activity α, the set of occurrences [[α]]rtSw

of α in Sw is
composed of all intervals i ∩w such that i ∈ [[α]]rtS . Given activities
α1 and α2 , computing α1 ;α over Sw is correct iff [[α1 ;α2]]

rt
Sw

contains the intervals in set {i ∩ w | i ∈ [[α1 ;α2]]
rt
S }, i.e., the set

of intervals produced by evaluating α1 ;α2 over the entire stream S ,
and then keeping only the intersection of each of these intervals with
w . We use [[α1 ;α2]]

rt
S ↓w as a shorthand for this set.

Proposition 7 (Correctness of Sequencing over Windows). Consider
a window w over a stream S , and activities α1 and α2 . Moreover,
suppose that if and il are, respectively, the earliest and the most re-
cent interval in [[α1]]

rt
Sw
∪ [[α2]]

rt
Sw

. [[α1 ;α2]]
rt
Sw

=[[α1 ;α2]]
rt
S ↓w

if if ∈ [[α1]]
rt
Sw

and il ∈ [[α2]]
rt
Sw

. ♦

If the earliest interval if of α1 or α2 in a window w is an interval
of α1 , then there is a no interval i1 of α1 before w that is adjacent
to an interval i2 of α2 in w , because i1 ≺rt if ≺rt i2 . Thus, there is
no interval of α1 ;α2 that overlaps the start of w and is not included
[[α1 ;α2]]

rt
Sw

. For similar reasons, we guarantee correctness when
the latest interval of α1 or α2 in w is an interval of α2 .

In the case that if is an interval of α2 , then there may be an interval
i1 of α1 before w that is adjacent with if , implying that [i1 ⊗rt if]∩
w ∈ [[α1 ;α2]]

rt
S ↓w and [i1 ⊗rt if] ∩ w /∈ [[α1 ;α2]]

rt
Sw

. We may
avoid such false negatives by caching intervals of activities appearing
in the left-hand side of sequencing operators.

Corollary 1 (Interval Caching for Sequencing). Consider a stream S ,
a window w , and activities α1 and α2 . If the most recent interval il in
[[α1]]

rt
Sw
∪ [[α2]]

rt
Sw

is an interval of α1 and il ⊗rt i
′ ∈ [[α1 ;α2]]

rt
S ,

then caching il in a memory C guarantees that that there is a window
w ′ after w such that il ⊗rt i

′ ∈ [[α1 ;α2]]
rt
Sw′∪C . △

9 Experimental Analysis
9.1 Experimental Setup

We present an experimental evaluation of RTECS, including a com-
parison with CORE, i.e., a state-of-the-art CER system with highly
optimised pattern matching techniques [9]. We did not equip CORE

Parameters Reasoning Time Computed Intervals

N D RTECS CORE RTECS CORE

3 10K 19 1K 500 148K
6 10K 23 7K 402 669K
12 10K 30 2K 35 109K

3 50K 82 109K 500 19M
6 50K 87 >600K 500 >30M
12 50K 107 >600K 500 >30M

Reasoning Time Computed Intervals

N RTECS RTECS-f CORE RTECS RTECS-f CORE

3 31 39 2K 1.5K 1.5K 193K
6 63 84 18K 6.6K 6.6K 1.5M
12 240 400 48K 12.4K 12.4K 1.6M

Window Size Reasoning
Time

Computed
Intervals

Days D RTECS RTECS

1 73K 2K 18K
2 145K 6K 33K
4 272K 14K 61K
8 545K 32K 119K
16 1M 79K 236K

Table 1. CER over one abstract sequencing pattern (left), multiple abstract sequencing patterns (middle) and real maritime activities (right). We evaluated
only RTECS on the maritime event description because there is no other CER engine that supports both sequencing and inertial activities. N and D denote the

number of input activity types and the number of input activity instances in the dataset/window. Time is in milliseconds.

with any selection strategy. We constructed a domain with ab-
stract activities, and generated synthetic datasets for this domain,
for the purpose of stress testing RTECS and CORE. The event
description of this domain includes sequencing patterns on activ-
ities with the same Id , such as α1 (Id) ;α2 (Id) ;α3 (Id). More-
over, we employed an event description for maritime situational
awareness, defining maritime activities using both simple and stat-
ically determined fluents. We used streams of events that were de-
rived from Automatic Identification System (AIS) signals, contain-
ing information about vessels’ location, speed and heading. The
task was to compute intervals for various types of dangerous, sus-
picious or illegal vessel activities, such as a ship-to-ship transfer of
goods in the open sea [31]. We used a publicly available dataset
[https://zenodo.org/record/1167595], containing 18M AIS signals,
emitted by 5K vessels sailing around the port of Brest, France, be-
tween October 2015–March 2016.

Our experiments are reproducible; the code of RTECS, as well
as the datasets and the patterns we used, are publicly available3.
RTECS operated on SWI-8.4 Prolog, while CORE was evaluated us-
ing C++23 with the Clang++ compiler. Both engines ran on a PC
with Ubuntu 22, Ryzen 7 5700U and 16GB RAM.

9.2 Experimental Results

In our first set of experiments, we evaluated RTECS and CORE on
datasets from our abstract activity domain, including 500 possible en-
tity ids. The sequencing pattern was α1 (Id) ;α2 (Id) ; . . . ;αN (Id).
Table 1 (left) presents our results for values of N ranging from 3 to
12. First, we ran RTECS and CORE over datasets of 10K activities.
Both systems operated directly over the entire dataset, i.e., no win-
dows were used. Our results show that RTECS is faster than CORE by
orders of magnitude. For each entity id, CORE computed all possible
sequencing combinations on the input activities, leading to thousands
of overlapping intervals, whereas RTECS considered only combina-
tions of adjacent activity intervals, which were drastically fewer. To
stress test further RTECS and CORE, we evaluated them on a dataset
containing 50K abstract activities, again with 500 possible entity ids.
The results are in the last 3 rows of Table 1 (left). Due to the increased
number of input activities, the number of possible combinations of
activities with the same id rose sharply, leading to an explosion in
the number of intervals computed by CORE, as well as its reasoning
time. In contrast, RTECS focused only on adjacent intervals, leading
to much more stable performance.

In our second set of experiments, our goal was to investigate the
potential benefits of the caching mechanism of RTECS when pro-
cessing hierarchies of sequencing patterns. We employed event de-

3 https://github.com/Periklismant/rtecs_ecai25_supplementary

scriptions including abstract activities and multiple patterns. For each
value of parameter N , we constructed an event description that was
composed of pattern α1 (Id) ;α2 (Id) ; . . . ;αN (Id), as well as all its
possible subpatterns. In the case of N = 3 , e.g., the event descrip-
tion included patterns α1 (Id) ;α2 (Id) ;α3 (Id), α1 (Id) ;α2 (Id)
and α2 (Id) ;α3 (Id). By construction, the patterns in these event
descriptions share several common subpatterns, indicating that we
may benefit from compositionality and caching intermediate results.
To investigate such benefits, we included in our evaluation RTECS-f,
i.e., a version of RTECS that flattens the activity hierarchy before rea-
soning, and thus, contrary to RTECS, is unable to cache intermediate
results. CORE also lacks such a caching mechanism. We evaluated
RTECS, RTECS-f and CORE on such event descriptions, where N
ranged from 3 to 12. The datasets included 10K input activities and
500 entity ids. Table 1 (middle) displays our results. We observe that
RTECS was more efficient than RTECS-f at MDI computation. For
N = 12 , i.e., our largest activity hierarchy, including 66 patterns,
RTECS yielded a 40% benefit in reasoning efficiency compared to
RTECS-f, while computing the same MDIs as RTECS-f. Similarly to
the previous experiments, CORE computed large numbers of over-
lapping intervals, requiring much more reasoning time than RTECS.

The goal of our final set of experiments was to test the efficacy of
RTECS on a real domain, including millions of input activities and
an event description with both inertial and sequential activity defini-
tions. To do this, we evaluated RTECS on real maritime data from
the Brest area. We could not include CORE in these experiments
because it does not support inertial activities. We evaluated RTECS

for an increasing window size, spanning from 1 to 16 days. Table 1
(right) displays our results, demonstrating that RTECS is able to de-
tect both inertial and sequential activities over large, real data streams
efficiently. For the largest window of 16 days we employed, which in-
cluded, on average, about 1 million input activities, RTECS was able
to compute about 236K MDIs for composite maritime activities per
window, requiring an average reasoning time of about 79 seconds.

10 Summary and Further Work
We presented RTECS, an extension of the CER engine RTEC with
a sequencing operator. RTECS is the only CER system that cap-
tures both inertial and sequential phenomena. We assessed our se-
quencing operator theoretically, proving compositionality, associa-
tivity and correctness, and demonstrating its benefits for interval-
based CER with activity hierarchies. Moreover, we presented a re-
producible empirical evaluation of RTECS on artificial and real data,
including a comparison with CORE, showcasing the caching and
windowing features of RTECS, which are essential for CER.

In the future, we will implement the caching mechanism that guar-
antees correctness of sequencing over windows.

Acknowledgements

Periklis Mantenoglou was supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation. Alexander Artikis was sup-
ported by the EU-funded CREXDATA project (No 101092749).

References
[1] E. Alevizos, A. Artikis, and G. Paliouras. Complex event recognition

with symbolic register transducers. Proc. VLDB Endow., 17(11):3165–
3177, 2024.

[2] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,
and D. Xu. ATLAS: A sequence-based learning approach for attack
investigation. In M. D. Bailey and R. Greenstadt, editors, USENIX,
pages 3005–3022, 2021.

[3] J. Arias, M. Carro, Z. Chen, and G. Gupta. Modeling and reasoning in
event calculus using goal-directed constraint answer set programming.
Theory Pract. Log. Program., 22(1):51–80, 2022.

[4] A. Artikis, M. J. Sergot, and G. Paliouras. An event calculus for event
recognition. IEEE Trans. Knowl. Data Eng., 27(4):895–908, 2015.

[5] A. Artikis, N. Katzouris, I. Correia, C. Baber, N. Morar, I. Skarbovsky,
F. Fournier, and G. Paliouras. A prototype for credit card fraud man-
agement: Industry paper. In DEBS, pages 249–260. ACM, 2017.

[6] A. Awad, R. Tommasini, S. Langhi, M. Kamel, E. D. Valle, and S. Sakr.
D2IA: User-defined interval analytics on distributed streams. Inf. Syst.,
104:101679, 2022.

[7] P. Baumgartner. Combining event calculus and description logic rea-
soning via logic programming. In FroCoS, pages 98–117, 2021.

[8] H. Beck, M. Dao-Tran, and T. Eiter. LARS: A logic-based framework
for analytic reasoning over streams. Artif. Intell., 261:16–70, 2018.

[9] M. Bucchi, A. Grez, A. Quintana, C. Riveros, and S. Vansummeren.
CORE: a complex event recognition engine. Proc. VLDB Endow., 15
(9):1951–1964, 2022.

[10] F. Chesani, P. Mello, M. Montali, and P. Torroni. Representing and
monitoring social commitments using the event calculus. Auton. Agents
Multi Agent Syst., 27(1):85–130, 2013.

[11] L. Chittaro and A. Montanari. Efficient temporal reasoning in the
cached event calculus. Comput. Intell., 12(3):359–382, 1996.

[12] G. Cugola and A. Margara. Processing flows of information: From data
stream to complex event processing. ACM Comput. Surv., 44(3), 2012.

[13] A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M. White.
Towards expressive publish/subscribe systems. In EDBT, volume 3896,
pages 627–644. Springer, 2006.

[14] C. Dousson and P. L. Maigat. Chronicle recognition improvement using
temporal focusing and hierarchisation. In IJCAI, pages 324–329, 2007.

[15] N. Falcionelli, P. Sernani, A. B. de la Torre, D. N. Mekuria, D. Calvaresi,
M. Schumacher, A. F. Dragoni, and S. Bromuri. Indexing the event
calculus: Towards practical human-readable personal health systems.
Artif. Intell. Medicine, 96:154–166, 2019.

[16] A. Galton and J. C. Augusto. Two approaches to event definition. In
DEXA, volume 2453, pages 547–556, 2002.

[17] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, and M. N.
Garofalakis. Complex event recognition in the big data era: a survey.
VLDB J., 29(1):313–352, 2020.

[18] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren. A formal frame-
work for complex event recognition. ACM Trans. Database Syst., 46
(4):16:1–16:49, 2021.

[19] Ö. Kafali, A. E. Romero, and K. Stathis. Agent-oriented activity recog-
nition in the event calculus: An application for diabetic patients. Com-
put. Intell., 33(4):899–925, 2017.

[20] I. Kolchinsky and A. Schuster. Real-time multi-pattern detection over
event streams. In SIGMOD, pages 589–606. ACM, 2019.

[21] M. Körber, N. Glombiewski, A. Morgen, and B. Seeger. TPStream:
low-latency and high-throughput temporal pattern matching on event
streams. Distributed Parallel Databases, 39(2):361–412, 2021.

[22] R. Kowalski and M. Sergot. A logic-based calculus of events. New Gen.
Computing, 4(1):67–96, 1986.

[23] S. Liu, H. Dai, S. Song, M. Li, J. Dai, R. Gu, and G. Chen. ACER:
Accelerating complex event recognition via two-phase filtering under
range bitmap-based indexes. In KDD, pages 1933–1943. ACM, 2024.

[24] P. Mantenoglou, M. Pitsikalis, and A. Artikis. Stream reasoning with
cycles. In KR, pages 544–553, 2022.

[25] P. Mantenoglou, D. Kelesis, and A. Artikis. Complex event recognition
with allen relations. In KR, pages 502–511, 2023.

[26] M. Montali, F. M. Maggi, F. Chesani, P. Mello, and W. M. P. van der
Aalst. Monitoring business constraints with the event calculus. ACM
Trans. Intell. Syst. Technol., 5(1):17:1–17:30, 2013.

[27] A. Paschke. ECA-RuleML: An approach combining ECA rules with
temporal interval-based KR event/action logics and transactional update
logics. Technical Report 11, TU München, 2005.

[28] A. Paschke and M. Bichler. Knowledge representation concepts for au-
tomated SLA management. Decis. Support Syst., 46(1):187–205, 2008.

[29] A. Paschke and M. Bichler. Knowledge representation concepts for
automated SLA management. Decision Support Systems, 46(1):187–
205, 2008.

[30] D. Pinto and C. Riveros. Complex event recognition meets hierarchi-
cal conjunctive queries. Proc. ACM Manag. Data, 2(5):216:1–216:26,
2024.

[31] M. Pitsikalis, A. Artikis, R. Dreo, C. Ray, E. Camossi, and A. Jous-
selme. Composite event recognition for maritime monitoring. In DEBS,
pages 163–174, 2019.

[32] T. C. Przymusinski. On the declarative semantics of deductive databases
and logic programs. In Foundations of Deductive Databases and Logic
Programming, pages 193–216. Morgan Kaufmann, 1988.

[33] P. A. Walega, M. Kaminski, D. Wang, and B. C. Grau. Stream reasoning
with DatalogMTL. J. Web Semant., 76:100776, 2023.

[34] D. Wang, P. Hu, P. A. Walega, and B. C. Grau. MeTeoR: Practical
reasoning in datalog with metric temporal operators. In AAAI, pages
5906–5913, 2022.

[35] W. M. White, M. Riedewald, J. Gehrke, and A. J. Demers. What is
"next" in event processing? In PODS, pages 263–272. ACM, 2007.

