
A Tensor-Based Probabilistic Event Calculus

Efthimis Tsilionis1 , Alexander Artikis2,1 and Georgios Paliouras1
1Institute of Informatics & Telecommunications, NCSR “Demokritos”, Greece

2Department of Maritime Studies, University of Piraeus, Greece
eftsilio@iit.demokritos.gr, a.artikis@unipi.gr, paliourg@iit.demokritos.gr

Abstract

Complex Event Recognition (CER) systems receive as input
a stream of time-stamped events and identify situations of in-
terest that satisfy a given pattern. Streaming environments
are characterized by the high rate and volume of input data,
and thus, scalability is of crucial importance. At the same
time, noise and uncertainty are ubiquitous in temporal data,
and not considering them, leads to erroneous detections. To
confront these challenges, we present a tensor-based formal-
ization of the Event Calculus (EC) for probabilistic inference,
and demonstrate the scalability of our approach with the use
of CER datasets from two real-world application domains.
Moreover, we demonstrate the benefits of our approach, in
terms of processing time, by comparing it against a proba-
bilistic logic programming implementation of EC.

1 Introduction
Complex event recognition (CER) is query answering over
high-velocity and high-volume data streams. Queries are
called complex events (CEs) and answering/identifying them
consists of finding the time periods at which they hold. An
input stream is composed of time-stamped, simple derived
events (SDEs), such as events coming from sensors. A
CE definition expresses a pattern of SDEs and/or other CEs
(forming a hierarchy), where temporal and, possibly atem-
poral constraints, are imposed and may be combined with
static background knowledge. At the same time, to favor
real-time decision making, CER systems must detect the
CEs near to the actual time of their occurrence. Therefore,
scalability is of critical importance.

Logic-based approaches, due to their formal, declarative
semantics, allow the succinct definition of activities of in-
terest and at the same time support efficient reasoning. The
Event Calculus (EC) is a first-order logical temporal formal-
ism for representing and reasoning about events and their
effects. A key feature of EC is the axiomatization of inertia,
which states that the effect of an event holds continuously
in time if it is not disrupted by the effects of other events.
Logic programming implementations of EC have been ap-
plied successfully in many domains of interest, such as hu-
man activity recognition and maritime situational awareness
(Tsilionis, Artikis, and Paliouras 2022).

The need to cope with big data has also led to the develop-
ment of algebraic methods for logical inference (Sato 2017a;

Sato 2017b; Sakama, Inoue, and Sato 2021; Tsilionis, Ar-
tikis, and Paliouras 2024). Computing logic models with
the use of linear algebraic operations takes advantage of nu-
merical computation, which has been extensively studied
and efficiently implemented. Furthermore, scalability is fa-
vored by parallel algorithms of linear algebra and hardware
resources (e.g., GPUs).

However, the aforementioned techniques (symbolic or
not) assume that the input data are not affected by any
type of uncertainty. In CER, specifically, data uncertainty
is a frequent phenomenon (e.g., due to a sensor malfunc-
tion) and not considering it, leads to the erroneous detec-
tion of CEs. To handle uncertainty, various probabilis-
tic CER frameworks have been proposed (see (Alevizos et
al. 2017) for a survey). Regarding EC, probabilistic CER
implementations (Skarlatidis et al. 2015a; Artikis, Makris,
and Paliouras 2021; Mantenoglou, Artikis, and Paliouras
2023) consume events that are assigned a probability value,
called probabilistic facts, and compute the success proba-
bilities — weighted model count — of CEs to hold. All
these approaches are based on ProbLog (Fierens et al. 2015),
which performs probabilistic reasoning after grounding the
logic program expressing the EC specification, and apply-
ing knowledge compilation (Darwiche and Marquis 2002).
In streaming environments, these approaches fail to scale.

We propose tensor-pEC, a linear algebraic formulation of
EC for probabilistic CER. We adopt an EC dialect with two
types of constants, i.e., entities and time-points, and map
them to vectors. EC predicates, stating that an event/fluent
occurs/holds at a time-point, are represented by matrices or
tensors, according to the number of involved entities. More-
over, we show how to evaluate logical connectives using al-
gebraic operations, and solve a linear equation that produces
the weighted model count of a fluent holding at each time-
point separately. The contributions of this paper are summa-
rized below:

• We present tensor-pEC, i.e., a tensor-based formalization
of EC for probabilistic reasoning and show its equivalence
to the probabilistic logic programming counterpart.

• We present a theoretical evaluation of tensor-pEC and
demonstrate experimentally its efficiency on real data
from two application domains, where we simulate a
streaming environment and employ EC programs with

Predicate Meaning
happensAt(e(X,Y), T) Event e for variables X and Y occurs at time T

holdsAt(fl(X,Y)=v, T) Fluent fl takes value v for variables X and Y at T

initiatedAt(fl(X,Y)=v, T) At T the fluent fl(X,Y)=v is initiated

terminatedAt(fl(X,Y)=v, T) At T the fluent fl(X,Y)=v is terminated

Table 1: Main predicates of Event Calculus (EC).

many rules.

• We compare our method against the symbolic approach,
and show that the former improves reasoning time by or-
ders of magnitude.

2 Background

In this section, we present the EC dialect we adopt, as well
as the probabilistic logical inference procedure for CER.

2.1 Event Calculus

Representation The time model of EC is linear and in-
cludes integer time-points (Skarlatidis et al. 2015a). The
EC dialect also includes events and fluents, i.e., proper-
ties that are allowed to have different values at different
points in time. Variables start with an upper-case letter,
while predicates and constants start with a lower-case let-
ter. The term fl(X,Y)=v denotes that fluent fl has value v
for variables X and Y . Boolean fluents are a special case in
which the possible values are true and false. The predicate
holdsAt(fl(X,Y)=v, T) denotes that fl(X,Y)=v holds at
time-point T . A fluent fl takes at most one value at each
time-point. Event occurrences are expressed through the
happensAt predicate. happensAt(e(X,Y), T) denotes that
event e occurs at time-point T for variables X and Y . EC
events express the instantaneous input SDEs, while fluent-
value pairs express durative input SDEs and the output CEs,
which typically take place over intervals. Table 1 summa-
rizes the main predicates of this EC dialect. Without loss
of generality, we restrict our attention to events and fluents
with arity ≤ 2.

The application-specific part of a formalization in EC is
called event description.

Definition 1 (Event description). An event description com-
prises:

(a) Ground happensAt and holdsAt predicates. These are the
facts and constitute the input (SDEs) to the system.

(b) Domain-dependent rules with initiatedAt and terminate-
dAt predicates at the head, expressing the effects of events
on fluents. ■

CEs are defined by means of at least one initiatedAt and
one terminatedAt rule.

Definition 2 (Syntax). initiatedAt rules have the following

syntax:

initiatedAt(fl(X,Y)=v, T)←
happensAt(e(X,Y), T),[[

[not] happensAt(a(X,Y), T), . . . ,

[not] happensAt(b(X,Y), T),

[not] holdsAt(c(X,Y)=vc, T), . . . ,

[not] holdsAt(d(X,Y)=vd, T).
]]

(1)

Rule (1) comprises conjunctions, meaning that all body lit-
erals should be satisfied in order for the rule to fire. not de-
notes negation by failure (Clark 1977), while [not] denotes
that ‘not’ is optional. The variable T , present at the head
and all body literals, constrains all literals to be evaluated
at the same time-point. We use the term ‘positive’ to refer
to events and fluents that must occur or hold at T , and the
term ‘negative’ for events and fluents that should not occur
or hold at T (symbol not). The first body literal is a ‘pos-
itive’ happensAt predicate to express the effects of events
on fluents, which can then be followed by a possibly empty
set of ‘positive/negative’ happensAt and holdsAt predicates,
denoted by ‘

[[]]
’. Rules of type (1) are not restricted in

the number of body literals and the only requirement is that
the variables appearing in the head, must also appear in the
body literals. In other words, we do not allow existential
quantification. terminatedAt rules have a similar form. ■

Example 1. An example fluent definition from the field of
human activity recognition, is the following:

initiatedAt(moving(P1 ,P2)=true, T)←
happensAt(walking(P1), T),

happensAt(walking(P2), T),

holdsAt(close(P1 ,P2)=true, T),

holdsAt(similarOrientation(P1 ,P2)=true, T).

terminatedAt(moving(P1 ,P2)=true, T)←
happensAt(walking(P1), T),

holdsAt(close(P1 ,P2)=false, T).

(2)

Rule-set (2) detects when two people, P1 and P2, start and
stop moving together. The first rule in (2) states that mov-
ing is initiated if P1 and P2 are walking close to each other
and have a similar orientation. The second rule states that
moving is terminated when P1 and P2 start walking away
from each other. The complete definition includes more ter-
minatedAt rules, but they are not presented here to make the
presentation easier to follow.

The time-points produced by initiatedAt and terminatedAt
rules are used to specify the time-points a fluent has a partic-
ular value. EC provides an axiomatization of the common-
sense law of inertia, according to which, a fluent-value pair
holds continuously if it has been initiated in the past and
not ‘broken’ in the meantime. ‘Broken’ means that the flu-
ent has been terminated or initiated with a different value.
For example, if fl(X,Y)=v was initiated at Ts, broken at
Tf but not broken earlier, with Ts < Tf , fl(X,Y)=v holds
for every time-point between Ts and Tf , excluding Ts, i.e.,
Ts+1, Ts+2, . . . , Tf−1, Tf .

Definition 3 (Inertia axiom). The law of inertia is formal-
ized by the following axiom:

holdsAt(fl(X,Y)=v, T)←
next(Tprev ,T),

initiatedAt(fl(X,Y)=v, Tprev).

holdsAt(fl(X,Y)=v, T)←
next(Tprev ,T),

holdsAt(fl(X,Y)=v, Tprev), (3)
not broken(fl(X,Y)=v, Tprev).

broken(fl(X,Y)=v, Tprev)←
terminatedAt(fl(X,Y)=v, Tprev).

broken(fl(X,Y)=v, Tprev)←
initiatedAt(fl(X,Y)=v′, Tprev), v ̸= v′. ■

The inertia axiom (3) is a disjunction of two rules. The pred-
icate next(Tprev ,T) present in both rules, denotes that the
next time-point after Tprev is time-point T . The auxiliary
predicate broken(fl(X,Y)=v, Tprev) checks whether fluent
fl(X,Y)=v is terminated or fl(X,Y)=v′ is initiated with a
v′ other than v.

Reasoning In CER, the task is to compute the time-points
for which a fluent, representing a CE, has a particular value.
This takes place at specified query times q1, q2, . . . , where
the recognition at each qi is performed over the SDEs (input)
that fall within a specified interval, the ‘working memory’ or
window ω. All SDEs outside the window are discarded and
not considered during recognition. This means that at each
qi CER depends only on the SDEs that took place in the
interval (qi−ω, qi] and not on the complete stream. In order
to find the time-points at which a CE holds, we evaluate, for
each time-point included in (qi−ω, qi], the inertia axiom (3).
During the evaluation, variables X , Y and T are ground. We
repeat this evaluation for each fluent-value pair of the event
description.

The grounding of the variables is carried out based on
two sets of domain constants. The first set C={c1, . . . , cN},
contains N constants, called domain entities. For example,
in the fluent-value pair moving(P1 ,P2)=true in rule (2),
the variables P1 and P2 are mapped to person IDs. The
second set T ={t1, . . . , tΩ} is ordered and contains Ω con-
stants, corresponding to the time-points specified by the ap-
plication’s temporal window ω. The time variable T in the
holdsAt predicate in the head of inertia axiom (3) is mapped
to some time-point tk ∈ T , qi − ω < tk ≤ qi,∀ k :
1 ≤ k ≤ Ω. Recall from inertia axiom (3) the predicate
next(Tprev ,T). In case T → t1 (the first time-point of
window ω), Tprev cannot be mapped to a constant and thus
predicate next(Tprev , t1) returns false. This way fluents are
restricted to hold inside window ω.

2.2 Probabilistic Event Calculus
The EC dialect has been expressed in the probabilistic logic
programming framework ProbLog (Fierens et al. 2015), and
it is called Prob-EC after (Skarlatidis et al. 2015a). ProbLog
employs the possible world semantics, where each world is

constructed by including or not probabilistic facts. A prob-
abilistic fact is denoted by p :: f , and indicates that (for spe-
cific groundings of the variables) atom f is true in a world
with probability p ∈ [0, 1]. If f is not included in a world,
then ¬f is included with probability 1 − p. Probabilistic
facts are considered as independent random Boolean vari-
ables. Hence, the product of the probabilities of the facts
(positive or negative) that constitute a world, is the proba-
bility of the world. Non-probabilistic facts are part of every
world and are silently given probability 1.

Let P denote the initiatedAt/terminatedAt rules along with
the inertia axiom (3). The SDEs, that is, the ground hap-
pensAt and holdsAt predicates serving as input to the sys-
tem (see Def. 1), are the probabilistic facts. A specific
selection of SDEs, i.e., a world, along with P constitute
a program L. The probability of L, P (L), is the proba-
bility of the world (the product of the probabilities of the
included probabilistic facts). If there are n probabilistic
facts, there are 2n different programs L. The ProbLog se-
mantics is defined only for programs that have a unique
model, that is, they are locally stratified (Fierens et al. 2015;
Przymusinski 1987). Note that local stratification is a stan-
dard assumption in EC (Tsilionis, Artikis, and Paliouras
2022) and in CER (Giatrakos et al. 2020) in general.

CE probability computation Recall from Section 2.1 that
the CER process depends only on the SDEs falling inside
the current window. This means that at each qi the possi-
ble programs L change. To compute the probability that a
CE/query q holds at a specific time-point — success prob-
ability P (q) — we have to find those programs L that their
model entails q, i.e. ML |= q, and sum their probabili-
ties, P (q) =

∑
ML|=q

P (L). The latter, known as weighted

model counting (WMC) (Chavira and Darwiche 2008), in-
volves summing through an exponential number of sum-
mands, since the number of possible programs L is 2n.

The computation of P (q) can also be achieved by com-
puting the probability that at least one of the proofs of q is
sampled. This can be expressed as:

P (q) = P (∨
p ∈ Proofs(q)

∧
rule r ∈ p

∧
bi ∈ body(r)

) (4)

Eq. (4) is the probability of a disjunctive normal form
(DNF). In EC, this corresponds to computing the proba-
bility of the inertia axiom (3) for q. However, in order to
compute the correct value of P (q), one has to ensure that
the different proofs of q are disjoint, meaning that they rep-
resent mutually exclusive possible worlds. In the general
case, the proofs of q are not disjoint since they may have
overlapping conjuncts. Consider, for example, the predicate
happensAt(walking(P1), T) in rule-set (2), which is com-
mon among the initiatedAt and terminatedAt rules. Making
the proofs disjoint is known as the disjoint-sum problem and
is known to be ♯P -hard (Valiant 1979).

Eq. (4) in this form is computationally intractable.
ProbLog handles this problem by transforming the DNF
into a deterministic decomposable negation normal form (d-
DNNF) circuit. This is known as the knowledge compilation
step (Darwiche and Marquis 2002). Due to the two proper-

ties of d-DNNF, determinism and decomposability, the prob-
abilistic inference procedure has linear time complexity.
Example 2. Assume we want to compute the probability of
holdsAt(moving(c1 , c2)=true, t + 1). Furthermore, con-
sider the following shorthand notation of grounded proba-
bilistic predicates:

ht+1 → holdsAt(moving(c1 , c2)=true, t+ 1)

0.2 :: ht → holdsAt(moving(c1 , c2)=true, t)

1 :: ut+1 → next(t, t+ 1)

0.3 :: wlk t
1 → happensAt(walking(c1), t)

0.6 :: wlk t
2 → happensAt(walking(c2), t)

1 :: clstT → holdsAt(close(c1 , c2)=true, t)

0 :: clstF → holdsAt(close(c1 , c2)=false, t)

1 :: sot → holdsAt(similarOrientation(c1 , c2)=true, t)

In the above narrative of probabilistic predicates, all of
them, except ht+1 (the probability of which we want to com-
pute), are also accompanied by their probability value. The
weight of ut+1 is 1, since it is a crisp fact, the weight of
ht is assumed to be known and equal to 0.2, and the re-
maining weights are the probabilities of the corresponding
facts. Additionally, we have assumed that C and T have
two entities and two time-points respectively, and have ap-
plied the substitutions P1 7→ c1, P2 7→ c2, and T 7→ t + 1.
To compute P (ht+1), Prob-EC, through ProbLog, will first
construct the d-DNNF circuit presented in Fig. 1. The nodes
of the circuit in Fig. 1 correspond to disjunctions and con-
junctions. The leaves of the circuit, represented by rect-
angles in Fig. 1, correspond to the grounded body literals
(the above list of predicates) of the inertia axiom (3) and the
initiatedAt/ terminatedAt rules of rule-set (2).

The resulting d-DNNF circuit may be even simpler, since
ProbLog proceeds to compilation after grounding the pro-
gram and pruning inactive rules. To compute the probabil-
ity of the d-DNNF, ProbLog transforms it to an arithmetic
circuit by assigning to the leaves the probabilities of the
Boolean variables (grounded predicates of Ex. 2) and replac-
ing ∧ and ∨ with × and + operations, respectively (see the
parentheses in Fig. 1). By evaluating the arithmetic circuit
in a bottom-up fashion until we arrive at the root node, we
get the success probability (WMC) of the CE/query q. The
value of the root in the arithmetic circuit of Fig. 1, where
q 7→ holdsAt(moving(c1 , c2)=true, t+ 1) is:

P (q) = P (ht+1) =

P (ut+1)×
[(

P (ht)× P (¬wlk t
1)
)
+ P (wlk t

1)×[[[
(P (¬ht)× P (wlk t

2)× P (clstT)× P (sot)) + P (ht)
]
×

P (¬clstF)
]
+ (P (clstF)× P (wlk t

2)× P (clstT)× P (sot))

]]
=

0.344 .

(5)

Notice that the procedure described above has to be
performed at each query time qi, for every time-point

∧ (×)

ut+1 ∨ (+)

∧ (×)

ht ¬wlk t
1

∧ (×)

∨ (+)

∧ (×)

∨ (+)

∧ (×)

¬ht wlk t
2 cls tT sot

ht

¬cls tF

∧ (×)

cls tF wlk t
2 cls tT sot

wlk t
1

Figure 1: The d-DNNF (arithmetic) circuit of ht+1 from Ex. 2.

included in T (but the first, see Section 2.1). As-
sume, for example, we want to compute the probability of
holdsAt(moving(c1 , c2)=true, t+2). Then, the constructed
circuit at t + 2 will contain as a sub-circuit the circuit of
ht+1 in Fig. 1, leading to redundant operations both during
compilation and evaluation. Prob-EC includes the compi-
lation mechanism of ProbLog, which in combination with
the recursive nature of the inertia axiom (3), makes such
computations redundant. To overcome this issue, Prob-
EC employs a minimal window of size |ω|=2 along with
a caching technique, according to which the probability of
holdsAt(fl(X,Y)=v, Tprev) is stored in memory, and then
it is checked how this probability is affected at the next time-
point T by the initiation and termination conditions fired at
Tprev . This technique simplifies the structure of the arith-
metic circuit, constructed at each time-point, by not having
to expand it for several past time-points. In Section 5, we
show that the performance of Prob-EC is enhanced when
|ω|=2 and caching is applied.

3 Probabilistic Linear Algebraic Approach
We present our method, tensor-pEC, for computing the suc-
cess probabilities (WMC) of the fluents of an EC event de-
scription in tensor spaces. Before we delve into the details
of the approach, we provide terminology and notation used
henceforth.

3.1 Preliminaries
Vectors are represented by bold lower case letters, e.g., x. A
vector of all ones is represented by 1. x•y = x⊤y is the dot
product while x ◦ y = xy⊤ is their outer product. Matrices
are written by bold upper case letters like X and the identity

matrix is denoted by I. An order-k tensor (k specifies the
number of dimensions, where k > 2) is written as X. X⊙Y
is the Hadamard product (element-wise multiplication) of
two tensors and is defined only on two tensors of the same
order and size. We refer to an element of a vector x or an
order-k tensor X, as xi and Xi1,...,ik

, respectively.
Definition 4 (mode-(n,m) product). Let X and Y be two
order-k and order-l tensors, respectively. The mode-(n,m)
contracted product X×n,m Y of X and Y is defined as:

(X×n,m Y)i1,...,in−1,in+1,...,ik,j1,...,jm−1,jm+1,...,jl =∑
z

Xi1,...,in−1,z,in+1,...,ik
Yj1,...,jm−1,z,jm+1,...,jl

. ■

In Def. 4, (n,m) index the dimensions of the two
operands. Then, each element of the resulting tensor is the
dot product of the fibers of size |z| of the n-th dimension of
X and the fibers of size |z| of the m-th dimension of Y.

3.2 Encoding Prob-EC in Tensor Spaces
The EC language contains the sets of constants, C and T
(Section 2.1), events/fluents, and the predicates outlined in
Table 1. We encode entities ci from C in one-hot vectors
ci, i.e., vectors that have one at the i-th position and zeros
elsewhere. Similarly, we encode time-points tk from T in
one-hot vectors tk. The EC sets of constants now become
C′ = {c1, . . . , cN} and T ′ = {t1, . . . , tΩ}, forming the
standard basis of RN and RΩ, respectively. When it is not
clear from the context, we will specify the size of a vector x
with xN or xΩ.

EC probabilistic predicates are translated into matrices
or tensors. The shape/order of a matrix/tensor equals the
arity of events/fluents plus 1 for the temporal dimension.
For illustration purposes, we restrict attention to binary
events/fluents.
Definition 5 (EC predicates encoding). An EC probabilis-
tic predicate r is encoded by an order-3 tensor R ∈
[0, 1]N×N×Ω, where:

R i,j,k =

{
p, if P (∨

Proofs(r)
) = p for ci, cj , tk

0, ∄ Proof (r) for ci, cj , tk
∀ i, j : 1 ≤ i, j ≤ N, ∀ k : 1 ≤ k ≤ Ω . ■

Element Ri,j,k equals p, that is, the probability of the dis-
junction of proofs of r for variable groundings ci, cj , tk, and
0 if there is no proof of r for these variable groundings. The
example below illustrates this encoding.
Example 3. Assume that C={c1, c2} has two entities, say
person IDs, and T ={t1, t2} has two time-points. Then,
C′={c1, c2} and T ′={t1, t2}. Furthermore, assume the
following ground probabilistic EC facts, expressing the
probabilities that two persons are close to each other:

0.3 :: holdsAt(close(c1, c2)=true, t1)

0.6 :: holdsAt(close(c1, c2)=true, t2)

0.7 :: holdsAt(close(c2, c1)=true, t2) .

Below we present, the one-hot vector of c1 (left), the one-
hot vector of t2 (middle), and the tensor C encoding the

probabilistic EC predicate holdsAt(close(X,Y)=true, T)
(right):

c1 =

[
1
0

]
, t2 =

[
0
1

]
, CT =

[
0 0.3
0 0

∣∣∣∣ 0 0.6
0.7 0

]
. (6)

The vertical line in the above tensor representation serves
the separation of the temporal dimension, i.e., it separates
the two temporal slices. In this example, t1 is expressed by
the left slice while t2 is expressed by the right slice. The
rows and columns of the tensor correspond to entities c1 and
c2. For example, the first row and column of each temporal
slice refer to c1. When we want to refer to a slice i of a
tensor CT, we use the notation CT

:,:,i . In the tensor rep-

resentation in (6), the value of an element of CT signifies
the probability the predicate to be true for specific ground-
ings of the variables. For example, the probabilistic fact
0.6 :: holdsAt(close(c1, c2)=true, t2) corresponds to the el-
ement CT

1,2,2 of CT, and states that the probability of flu-
ent close = true to hold at t2, for entities c1 and c2, is 0.6.

To query the probability value of a specific variables’
grounding, e.g. holdsAt(close(ci, cj)=true, tk), we use the
following:

holdsAt(close(ci, cj)=true, tk) =

CT ×1,1 ci ×2,1 cj ×3,1 tk =

CT
i,j,k ∈ [0, 1],

∀ i, j : 1 ≤ i, j ≤ N, ∀ k : 1 ≤ k ≤ Ω .

(7)

3.3 Probabilistic Inference in Tensor Spaces
To compute the WMC (success probability) of a fluent to
hold at each of the time-points specified by T , we need to
combine the initiatedAt/terminatedAt rules with the inertia
axiom (3). In rule (1), we presented the general syntax of
initiatedAt and terminatedAt rules, while in Section 2.2 we
showed, with the use of an example (see Ex. 2), how Prob-
EC transforms the inertia axiom (3) into a circuit.

In tensor-pEC, similarly to Prob-EC, we compile the iner-
tia axiom (3) to an arithmetic circuit. In contrast to Prob-EC,
we compile the inertia axiom (3) into a circuit once for each
fluent, without employing grounding. This means that the
obtained structure includes all the proofs of a fluent as op-
posed to Prob-EC, where grounding may lead to pruning of
proofs (see Section 2.2). Then we evaluate the circuit until
the end of the CER process. This compile-once-evaluate-
often paradigm has gained a lot of attention recently in prob-
abilistic inference (Maene, Derkinderen, and Martires 2025;
Fierens et al. 2015). Before we discuss the evaluation of the
compiled circuits, we first need to show how we treat nega-
tion, conjunction, and disjunction.

EC predicates that participate negatively in the body of
a rule (symbol not in rule (1)), imply that an event or flu-
ent should not occur or hold at a specific time-point. To
obtain a tensor representing the probability of a negative lit-
eral, we subtract from 1 each element of the tensor encoding
the probability of the corresponding positive literal. Con-
sider the negative literal not happensAt(a(X,Y), T). The
tensor ¬A used to represent the probability of this negative
literal is computed as per Def. 6.

Definition 6 (Tensor Negation). Negation is defined as:

¬A = 1N ◦ 1N ◦ 1Ω −A ∈ [0, 1]N×N×Ω . ■

In Def. 6, notice that the outer product of all-ones vectors
results in an all-ones order-3 tensor. ¬A is the result of sub-
tracting from 1 all the elements of the positive counterpart
tensor, i.e., A.

Example 4. The negation of CT from (6) is:

¬CT =

[
1 0.7
1 1

∣∣∣∣ 1 0.4
0.3 1

]
.

Multiplication is used to evaluate the conjunction of liter-
als. In the EC dialect employed, conjunctive literals in the
body of rules are evaluated at the same time-point, and on
the same entities. Consider the following conjunction:

happensAt(a(X,Y), T), holdsAt(b(X,Y) = vB , T) .

We denote the probabilities of each literal with tensors A
and B, respectively, and define tensor conjunction as per
Def. 7.

Definition 7 (Tensor Conjunction). Conjunction is defined
as the Hadamard product of two tensors:

A⊙B ∈ [0, 1]N×N×Ω . ■

Example 5. Consider the following tensors A and B:

A =

[
0 0.5
0.6 0

∣∣∣∣ 0 0.2
0 0

]
, B =

[
0 0
0 0

∣∣∣∣ 0 0.5
0.3 0

]
.

Their conjunction would be:[
0 0
0 0

∣∣∣∣ 0 0.1
0 0

]
,

stating that event a and fluent b can both be true with a prob-
ability of 0.1 only at time-point t2 and for entities c1 and c2.

Disjunction is treated by tensor addition. Consider that
we want to compute the following disjunction of literals:

happensAt(a(X,Y), T) ∨ holdsAt(b(X,Y), T) .

Definition 8 (Tensor Disjunction). Disjunction is defined
as:

A+B ∈ [0, 1]N×N×Ω . ■

Notice that in case of tensor disjunction, the value of an el-
ement is guaranteed to be inside the interval [0, 1], due to
the compilation into d-DNNF form (Darwiche and Marquis
2002; Fierens et al. 2015). Next, we discuss the evaluation
of the compiled circuits.

The leaves of each circuit are replaced by the ten-
sors encoding the probabilistic predicates. For ex-
ample, the leaf wlk t

1 in Fig. 1, which corresponds
to the atom happensAt(walking(c1), t), is replaced by
a matrix W ∈ [0, 1]N×Ω, that now encodes the prob-
abilities of all the possible variable groundings of
predicate happensAt(walking(P1), T). The possible
groundings also include leaf wlk t

2, referring to atom

happensAt(walking(c2), t). If a leaf corresponds to a neg-
ative predicate, e.g., ¬wlk t

1, the negative version of the ma-
trix/tensor is used, i.e., ¬W ∈ [0, 1]N×Ω, computed as per
Def. 6.

Conjunction (multiplication) and disjunction (addition)
nodes of the circuit are handled by the Hadamard product
and tensor addition, respectively. However, Hadamard prod-
uct and addition are defined only on tensors of the same or-
der and size. Matrix W, discussed above, is an order lower
than the tensors representing the remaining leaves of the cir-
cuit in Fig. 1. To deal with this issue, we perform the fol-
lowing outer product:

W ◦ 1N = W1 ∈ [0, 1]N×N×Ω ,

which transforms W to an order-3 tensor, i.e., W1. W1

is now encoding the probabilities of the artificial predicate
happensAt(walking(P1 ,P2), T). Regardless the grounding
of P2, the elements of W1 correspond to the groundings of
predicate happensAt(walking(P1), T). We use the super-
script 1 in W1, to differentiate from tensor W2. W2 is the
result of pre-multiplying matrix W with the all-ones vec-
tor 1N . W2, similarly to W1, represents the same artificial
predicate, but its elements correspond now to groundings of
predicate happensAt(walking(P2), T). The reason we need
both tensors W1 and W2, is the fact that the probabilities
of the same predicate and at the same time-point, but for dif-
ferent entity substitutions, have to be multiplied or added in
the arithmetic circuit of Fig. 1, e.g., P (wlk t

1)× P (wlk t
2).

However, simply replacing the leaves by the correspond-
ing tensors/matrices and applying the operations dictated by
the circuit (see Eq. (5)), does not produce the WMC of a
fluent to hold. In the next section, we elaborate on how to
obtain WMC algebraically.

4 Algebraic Weighted Model Counting
In Eq. (5), we have shown the series of operations needed to
evaluate the circuit of Fig. 1. This evaluation computes the
probability of the fluent to hold at the next time-point, i.e.,
P (ht+1), given the probability of the fluent to hold at the
previous time-point, i.e., P (ht). In general, when compiling
the inertia axiom (3) for a fluent to an arithmetic circuit, one
can observe by inspecting the structure, that P (ht) can be
taken out as a common factor for some of the terms. Let
P (dt) denote the multiplicand of P (ht) and P (st) the rest
of the terms. Then, Eq. (5), but also any evaluation of a
circuit referring to a fluent, can be written as:

P (ht+1) = P (st)×P (ut+1)+P (ht)×P (dt)×P (ut+1) .
(8)

Notice that P (st) and P (dt) are the result of multiplications
and additions. For example, P (st) and P (dt) of Eq. (5),
after simplifying terms, are the following:

P (st) = P (wlk t
1)× P (wlk t

2)× P (clstT)× P (sot) ,

P (dt) = 1 + (P (st)× P (clstF))− P (st)− P (wlk t
1)× P (clstF) .

(9)
In the algebraic approach, P (st) and P (dt) are represented
by tensors S,D ∈ [0, 1]N×N×Ω, respectively. Let, also,

W1,W2,CT,CF,O ∈ [0, 1]N×N×Ω be the tensors en-
coding P (wlk t

1), P (wlk t
2), P (clstT), P (clstF) and P (sot),

respectively. S and D are produced by employing the al-
gebraic operations for the logical connectives and negation,
discussed in Section 3.3, and thus, Eq. (9), would be com-
puted in tensor spaces as:

S = W1 ⊙W2 ⊙CT ⊙O ,

D = 1+ (S⊙CF)− S− (W1 ⊙CF) ,
(10)

where 1 ∈ {1}N×N×Ω is an all-ones order-3 tensor.
P (ut+1) in Eq. (8) denotes the probability of predicate

next(Tprev ,T) in inertia axiom (3), which is always 1, ex-
cept for the first time-point, i.e., T 7→ t1. Recall from Sec-
tion 2.1, that next signifies that the next time-point of Tprev

is T . In Prob-EC, next serves only the grounding of the time
variable and it does not affect the result of the evaluation of
the circuit (see Section 2.2). In the algebraic approach, since
both variables in next take values from T , it is encoded
with shift matrix U ∈ {0, 1}Ω×Ω, that is, a square matrix
with ones only on the super-diagonal and zeros elsewhere.
Note that the multiplications with P (ut+1) in Eq. (8), e.g.,
P (st) × P (ut+1), cannot be performed with the Hadamard
product in tensor-pEC, i.e., S ⊙ U, since the participating
tensors/matrices have to be of the same order and size, and
encode predicates sharing the same variables at all positions.
To resolve this, we use the mode-(n,m) product of a tensor
with U. Multiplying a tensor A ∈ [0, 1]N×N×Ω with ma-
trix U, i.e., A ×3,1 U, results in the shifting of elements of
A along the temporal dimension, that is, the first temporal
slice is a matrix of zeros, A:,:,1 = 0N ◦ 0N , where 0N an
all-zeros vector.

Finally, let H be the tensor encoding the success proba-
bilities (WMC) of a fluent fl to hold. P (ht+1) and P (ht) of
Eq. (8) are elements of H. Everything is now in place and
we can proceed with the correct substitutions of probabilities
and arithmetic operations in Eq. (8), with tensors/matrices
and algebraic operations, respectively. Eq. (8) can be ex-
pressed algebraically as:

H = S×3,1 U+
(
H⊙D

)
×3,1 U⇔

H−
(
H⊙D

)
×3,1 U = S×3,1 U .

(11)

Eq. (11) is a first-order difference (recursive) equation and
our goal is to compute the unknown tensor H. In this form
though, Eq. (11) cannot be solved. Unfolding Eq. (11) for
every element of tensors H,S,D, i.e., for every pair of en-
tities ci, cj ∈ C and time-point tk ∈ T , we result in the
following system of linear first-order difference equations:

H1,1,1 = 0

−H1,1,1D1,1,1 +H1,1,2 = S1,1,1

...
−HN,N,Ω−1DN,N,Ω−1 +HN,N,Ω = SN,N,Ω−1 .

Notice that the initial condition Hi,j,1= 0, 1 ≤ i, j ≤ N ,
in agreement with inertia axiom (3), states that at the first
time-point t1, regardless the pair of entities ci, cj , no fluent

can hold, and thus, the probability is 0. The above system
can be written in matrix form as:

1
−D1,1,1 1

.
−DN,N,Ω−1 1


︸ ︷︷ ︸

G


H1,1,1

H1,1,2

...
HN,N,Ω


︸ ︷︷ ︸

h

=


0

S1,1,1

...
SN,N,Ω−1


︸ ︷︷ ︸

b

, (12)

where G ∈ RN2Ω×N2Ω is the coefficients matrix, and
h, b ∈ [0, 1]N

2Ω, are column vectors. Our goal is to solve
Eq. (12) for h, i.e., the probabilities of a fluent to hold at
each time-point and for each pair of entities.

To construct the matrix equation (12), we must first per-
form a series of operations. We define vec[·] as the vec-
torization operator, which transforms a tensor into a vector.
For example, let a be a vector and A a tensor, vec[A] : A ∈
RN×N×Ω → a ∈ RN2Ω. Then, the operations to produce
G and b in Eq. (12), are the following:

(a) G ∈ RN2Ω×N2Ω : Gi,i= 1 ,G⋆=−vec
[
D
]
,

Gi,j= 0, ∀ i, j : i ̸= j, j ̸= i− 1

(b) b= vec

[(
S×3,1 U

)]
∈ [0, 1]N

2Ω

In (a), all the elements of the principal diagonal of G are
set to 1, the first sub-diagonal (G⋆) is set to the result of vec-
torizing D multiplied by -1, and all the remaining elements
are set to 0. Notice that, due to multiplication of vec

[
D
]

by
-1, G /∈ [0, 1]N

2Ω×N2Ω but G ∈ [−1, 1]N2Ω×N2Ω. Vector
b, in (b), is the vectorization of tensor S, shifted (mode-(3,1)
product) by matrix U.

G is a lower unitriangular matrix, i.e., a lower triangular
matrix for which all elements on the principal diagonal equal
to 1. Additionally, G is a bi-diagonal matrix (Demmel 1997;
Kılıç and Stanica 2013), since only the elements of the prin-
cipal and the first sub-diagonal may differ from 0. Since G
is unitriangular, its determinant is 1 (product of the princi-
pal diagonal elements), and thus, it has an inverse (G−1).
Hence, Eq. (12) has a unique solution, that can be ex-
pressed formally for vector h and tensor H, both encoding
the instantaneous probabilities of fl(X,Y)=v to hold, as per
Def. 9.
Definition 9 (Algebraic WMC). The success probabilities
(WMC) of a fluent-value pair, are computed by:

h = G−1b, (13)

H = vec−1
[
h
]
∈ [0, 1]N×N×Ω . ■

In Def. 9, vec−1[·] is the inverse of the vectorization oper-
ator, i.e., transforms a vector to a tensor. This operation is
needed, since H may participate in the body of initiatedAt/
terminatedAt rules of type (1) at higher strata. Def. 9 may be
extended for tensors of any order, i.e., fluents with arity > 2.

The process described so far is repeated for every fluent-
value pair by following the ordering imposed by stratifica-
tion. This is also the case for Prob-EC (see Section 2.2).
The tensors of each stratum are cached and propagated to
higher strata. At the end, each tensor is the WMC of the
fluent it encodes.

Proposition 1 (Correctness). The unique solution of
Eq. (12), computed by Eq. (13), coincides with the WMC
of a fluent-value pair to hold, as computed by Prob-EC. ♦

The proof may be found in the Supplementary Material1.

Proposition 2 (Complexity). The time complexity of solving
Eq. (12) is O(Nk−1Ω) for order-k tensors (Demmel 1997).
♦

Eq. (12) requires the construction of the coefficients ma-
trix G and vector b. The first sub-diagonal of G depends on
tensor D, while b depends on tensor S shifted (mode-(3,1)
product) by matrix U. S and D are produced by evaluating
the arithmetic circuit of the fluent and require linear time.
The time complexity of the mode-(3,1) product S×3,1 U, is
O(Np−1Ω2). In Prob-EC, similarly, the WMC depends on
the size of the arithmetic circuit, and it has linear time com-
plexity. However, Prob-EC has to perform the knowledge
compilation step (♯P -hard) for each fluent at each applica-
tion of the window, as opposed to the tensor method that
employs the compile-once-evaluate-often paradigm. Hence,
tensor-pEC is theoretically bound by lower complexity.

Additionally, the performance of tensor-pEC can be
boosted through parallelism or/and the employment of
sparse representations. In this paper, we do not exploit par-
allelism (it is left for future work), but note that operations
such as the Hadamard and mode-(n,m) products are triv-
ially parallelized. In real-life scenarios, the usual case is for
the probabilistic facts (SDEs) to be only a small fraction of
all the possible predicate groundings. In Prob-EC, only the
SDEs appearing in the input are considered. On the other
hand, in tensor-pEC, due to the employed representation, all
the possible predicate groundings are encoded in tensors, re-
sulting in many zero elements (see Def. 5). By exploiting the
sparse structure of tensors we can avoid unnecessary calcu-
lations and improve performance by not examining null ele-
ments (Nguyen, Inoue, and Sakama 2022).

5 Empirical Analysis
5.1 Experimental Setup
Tensor-pEC is implemented in Python. We compare the per-
formance of tensor-pEC against that of Prob-EC. Prob-EC
is implemented in ProbLog (Fierens et al. 2015), which is
mostly written in Python. The source code of both methods
and the datasets, are available in the Supplementary Mate-
rial1. The experiments were performed on a single core,
i.e., no parallelization was used, on a desktop computer
with Intel® CoreTM i7-4770×8 and 16 GB of RAM, running
Ubuntu 24.04.2 LTS and Python 3.12.2.

We selected Prob-EC as a comparison method, since it has
been shown to be more efficient for CER (Mantenoglou, Ar-
tikis, and Paliouras 2023) than other probabilistic EC point-
based benchmark systems, including Probabilistic EC (PEC)
(D’Asaro et al. 2020) and Simplified EC (SEC) (McAreavey
et al. 2017). Another EC point-based system is MLN-
EC (Skarlatidis et al. 2015b), where the CEs are expressed
through Markov Logic Networks (MLNs). This framework

1https://github.com/eftsilio/tensor-pEC

is unsuitable for CER as well, since grounding results in ex-
ponential networks in size. Moreover, MLN-EC performs
approximate reasoning as opposed to the exact inference of
Prob-EC and tensor-pEC.

The probabilistic CER process involves the computation
and caching of the instantaneous probabilities of fluent-
value pairs, expressing CEs, to hold. We used CAVIAR2,
a benchmark human activity recognition dataset. This
dataset includes annotated frames of videos, where peo-
ple walk around, meet one another, fight, and so on —
recall ‘moving’ from rule-set (2). The input data cor-
respond to SDEs, e.g., happensAt(walking(P1), T) in
rule-set (2) along with contextual information such as
holdsAt(close(P1 ,P2)=true, T). To make the dataset suit-
able for probabilistic CER, we followed (Skarlatidis et al.
2015a) and injected noise through a Gamma distribution to
the input, producing two versions of the dataset. The first
one, called ‘caviar smooth’, assigns probability values only
to SDEs. The second, ‘caviar strong’, adds also noise, apart
from SDEs, to contextual data. Moreover, spurious SDEs,
not belonging to the original dataset, have been added using
a uniform distribution.

We also employed a dataset from the maritime domain. In
maritime monitoring, CER concerns the recognition of com-
posite maritime events and is typically achieved by monitor-
ing the messages vessels emit while sailing at sea. These
messages are exchanged through the Automatic Identifi-
cation System (AIS) (Bereta, Chatzikokolakis, and Zissis
2021) and contain information about the position, heading,
speed, etc. of vessels at different points in time. Moreover,
these messages can be annotated automatically, convey-
ing information about the start/end of sailing at a low/high
speed, changes in speed/heading, entrance or exit in an area
of interest, etc. (Patroumpas et al. 2017). The annotated
AIS messages constitute the input SDEs to our system and
noise has been injected to them by following the approach of
(Mantenoglou, Artikis, and Paliouras 2023). We employed
a publicly available dataset, concerning vessels sailing in the
Atlantic Ocean around the port of Brest, France.

To simulate a streaming behavior, the datasets are stored
in CSV files and processed periodically in chunks according
to the window ω specification. Notice that, given a con-
stant window ω, the number of SDEs varies from window
to window and consequently, the number of entities (the N
constants of set C) changes, while the Ω time-points of set T
(size of ω) remain unchanged. Consecutive windows over-
lap by one time-point. To boost the performance of tensor-
pEC, we use sparse representations for the tensors encoding
fluents. Since efficient implementations of operations, such
as the Hadamard or the mode-(n,m) product, on sparse ten-
sors do not exist, we convert tensors to matrices. For ex-
ample an order-3 tensor F ∈ [0, 1]N×N×Ω is converted to a
matrix F ∈ [0, 1]N

2×Ω. Finally, to favor the performance of
both methods, we use a CE probability threshold θ = 10−6

and make every value lower than θ equal to 0. This means
that Prob-EC does not have to cache the thresholded prob-

2https://groups.inf.ed.ac.uk/vision/DATASETS/CAVIAR/
CAVIARDATA1/

https://github.com/eftsilio/tensor-pEC
https://groups.inf.ed.ac.uk/vision/DATASETS/CAVIAR/CAVIARDATA1/
https://groups.inf.ed.ac.uk/vision/DATASETS/CAVIAR/CAVIARDATA1/

2 4 8 16 32 64 128 256 512

101

102

103

104

Window size (time-points)

To
ta

lC
E

R
T

im
e

(i
n

se
co

nd
s) Tensor-pEC

Prob-EC

‘caviar smooth’ ‘caviar strong’ maritime
Dataset

Figure 2: Tensor-pEC vs. Prob-EC. Left: ‘caviar smooth’. Right:
All datasets.

abilities, while tensor-pEC increases the sparsity of the ten-
sors.

5.2 Experimental Results
We conducted two experiments to test the performance of
tensor-pEC and Prob-EC. In the first experiment we use the
‘caviar smooth’ dataset and vary the window size from 2 to
512 time-points in order to find the best window configura-
tion for each method. Fig. 2 (left) displays the results, where
the x-axis states the window size and the y-axis corresponds
to total recognition time (in log scale). Tensor-pEC achieves
a performance gain in all windows, and this gain becomes
more profound as the window size increases. The reason-
ing time for tensor-pEC decreases with increasing window
sizes, due to the fewer times it has to construct the tensors.
Prob-EC exhibits the opposite pattern, i.e., as the window
size increases the performance deteriorates; for windows of
size |ω|>4 the available memory is consumed and the CER
process is not completed. As discussed in Section 2.2, and
experimentally confirmed in Fig. 2 (left), the use of a win-
dow |ω|=2 along with caching, favors the performance of
Prob-EC, since the knowledge compilation step pertains to a
single time-point and the created circuits are smaller in size.

The second experiment employs the best window configu-
ration, observed in the first experiment, for each method, i.e.,
|ω|=2 for Prob-EC and |ω|=512 for tensor-pEC, and evalu-
ates them on all datasets. Fig. 2 (right) shows the total CER
time for the CAVIAR and Brest datasets (x-axis). Tensor-
pEC is the preferred option in all datasets, highlighting its
efficiency in comparison to Prob-EC. Regarding Prob-EC,
the knowledge compilation step requires ≈ 98% of the total
time in all datasets. Even without this step, tensor-pEC con-
tinues to be the best method. Note that applying the compile-
once-evaluate-often paradigm to Prob-EC, and consequently
to ProbLog, is not straightforward, since, apart from evalu-
ating the circuits for different probabilities in the leaves, we
also have to take care of the unification, which, in the cur-
rent setup, takes place during the grounding of the proofs
and before the compilation stage.

The memory consumption is negligible for both methods
in all datasets in these window settings.

6 Related Work
Several EC implementations for logical reasoning over
traces of events have been proposed in the literature, in-

cluding symbolic ones (Artikis, Sergot, and Paliouras 2015;
Tsilionis, Artikis, and Paliouras 2022) and algebraic ones
(Tsilionis, Artikis, and Paliouras 2024). These approaches
may be scalable, but do not consider any type of uncer-
tainty, and thus, the recognition is characterized by limited
confidence. Prob-EC (Skarlatidis et al. 2015a) is a bench-
mark symbolic probabilistic EC point-based CER system
based on ProbLog (Fierens et al. 2015) (see Section 2.2).
In Section 5.2, we have included Prob-EC as a compari-
son method due to its efficiency (Mantenoglou, Artikis, and
Paliouras 2023), and have used high-volume/velocity tem-
poral datasets as well as large event descriptions. In these
extreme settings, tensor-pEC improves the inference time by
orders of magnitude. Prob-EC performs, at each application
of the window, the costly operation of knowledge compila-
tion before computing the CE probabilities. In tensor-pEC,
compilation is applied once (Maene, Derkinderen, and Mar-
tires 2025), and the produced circuit is expressed as a linear
recursive equation. Then, solving the equation (Def. 9) pro-
duces significantly faster, compared to Prob-EC, the WMC
of CEs, by exploiting the sparse structure of tensors and ef-
ficient implementations of algebraic operations.

A work closely related to ours, in the sense that it per-
forms probabilistic inference in vector spaces, is TensorLog
(TL) (Cohen, Yang, and Mazaitis 2020). TL’s main goal is to
combine inference and learning by means of deep learning
infrastructures. To this end, TL does not support the pos-
sible world semantics, and thus, it is more appropriate for
approximate inference as opposed to the exact inference of
tensor-pEC. Furthermore, TL’s language cannot express the
EC dialect employed by tensor-pEC. TL utilizes a single set
of constants and it represents unary and binary predicates
by vectors and square matrices, respectively. In contrast,
our method, by incorporating time in the representations,
it uses an additional set of constants and is not restricted
to square/cubical matrices/tensors. Moreover, our approach
can be extended to tensors (predicates) of any order (arity).

7 Summary and Future Work
We proposed a linear algebraic approach for probabilistic
EC reasoning. We represent EC probabilistic predicates
as tensors and demonstrate that the success probabilities
(WMC) of fluents (CEs) of any arity can be assessed by
solving a linear recursive equation. The scalability of our
system is empirically demonstrated on real-world streaming
data from human activity recognition and the maritime do-
main. Additionally, our approach improves the performance
of the symbolical probabilistic EC, by orders of magnitude.
An interesting future work direction would be to develop
a neuro-symbolic (NeSy) EC system for CER. Most NeSy
systems for CER apply symbolic solvers on the logical layer
(Roig Vilamala et al. 2023), such as, DeepProbLog (Man-
haeve et al. 2021), which can be computationally highly ex-
pensive and inefficient. By embedding the logical layer into
tensor spaces and leveraging our linear algebraic approach
for inference, we can enhance the overall performance of
a NeSy CER system. Finally, we intend to exploit parallel
algorithms of linear algebra and hardware resources (e.g.,
GPUs) to further boost performance.

Acknowledgements
This work was supported by the CREXDATA “Critical
Action Planning over Extreme-Scale Data” project (No
101092749), which has received funding from the EU Hori-
zon Europe research and innovation programme.

References
Alevizos, E.; Skarlatidis, A.; Artikis, A.; and Paliouras, G.
2017. Probabilistic complex event recognition: A survey.
ACM Comput. Surv. 50(5):71:1–71:31.
Artikis, A.; Makris, E.; and Paliouras, G. 2021. A proba-
bilistic interval-based event calculus for activity recognition.
Ann. Math. Artif. Intell. 89(1-2):29–52.
Artikis, A.; Sergot, M. J.; and Paliouras, G. 2015. An event
calculus for event recognition. IEEE Trans. Knowl. Data
Eng. 27(4):895–908.
Bereta, K.; Chatzikokolakis, K.; and Zissis, D. 2021. Mar-
itime reporting systems. In Artikis, A., and Zissis, D., eds.,
Guide to Maritime Informatics. Springer. 3–30.
Chavira, M., and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artificial Intelligence
172(6):772–799.
Clark, K. L. 1977. Negation as failure. In Logic and
Data Bases, Symposium on Logic and Data Bases, Centre
d’études et de recherches de Toulouse, France, 1977, 293–
322.
Cohen, W.; Yang, F.; and Mazaitis, K. 2020. Tensorlog:
A probabilistic database implemented using deep-learning
infrastructure. Journal of Artificial Intelligence Research
67:285–325.
Darwiche, A., and Marquis, P. 2002. A Knowledge Com-
pilation Map. Journal of Artificial Intelligence Research
17:229–264.
D’Asaro, F. A.; Bikakis, A.; Dickens, L.; and Miller, R.
2020. Probabilistic reasoning about epistemic action nar-
ratives. Artificial Intelligence 287:103352.
Demmel, J. W. 1997. Applied Numerical Linear Algebra.
USA: Society for Industrial and Applied Mathematics.
Fierens, D.; Van den Broeck, G.; Renkens, J.; Shterionov,
D.; Gutmann, B.; Thon, I.; Janssens, G.; and De Raedt, L.
2015. Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory and Practice of
Logic Programming 15:358–401.
Giatrakos, N.; Alevizos, E.; Artikis, A.; Deligiannakis, A.;
and Garofalakis, M. N. 2020. Complex event recognition in
the big data era: a survey. VLDB J. 29(1):313–352.
Kılıç, E., and Stanica, P. 2013. The inverse of banded ma-
trices. Journal of Computational and Applied Mathematics
237(1):126–135.
Maene, J.; Derkinderen, V.; and Martires, P. Z. D. 2025.
KLay: Accelerating arithmetic circuits for neurosymbolic
AI. In The Thirteenth International Conference on Learning
Representations.
Manhaeve, R.; Dumančić, S.; Kimmig, A.; Demeester, T.;
and De Raedt, L. 2021. Neural probabilistic logic program-
ming in deepproblog. Artificial Intelligence 298:103504.

Mantenoglou, P.; Artikis, A.; and Paliouras, G. 2023. Online
event recognition over noisy data streams. Int. J. Approx.
Reason. 161:108993.
McAreavey, K.; Bauters, K.; Liu, W.; and Hong, J. 2017.
The event calculus in probabilistic logic programming with
annotated disjunctions. In Proceedings of the 16th Confer-
ence on Autonomous Agents and MultiAgent Systems, AA-
MAS ’17, 105–113. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems.
Nguyen, T. Q.; Inoue, K.; and Sakama, C. 2022. Enhancing
linear algebraic computation of logic programs using sparse
representation. New Gen. Comput. 40(1):225–254.
Patroumpas, K.; Alevizos, E.; Artikis, A.; Vodas, M.;
Pelekis, N.; and Theodoridis, Y. 2017. Online event recog-
nition from moving vessel trajectories. GeoInformatica
21(2):389–427.
Przymusinski, T. 1987. On the declarate semantics of strati-
fied deductive databases and logic programs. In Foundations
of Deductive Databases and Logic Programming. Morgan.
Roig Vilamala, M.; Xing, T.; Taylor, H.; Garcia, L.; Srivas-
tava, M.; Kaplan, L.; Preece, A.; Kimmig, A.; and Cerutti, F.
2023. Deepprobcep: A neuro-symbolic approach for com-
plex event processing in adversarial settings. Expert Systems
with Applications 215:119376.
Sakama, C.; Inoue, K.; and Sato, T. 2021. Logic program-
ming in tensor spaces. Annals of Mathematics and Artificial
Intelligence 89.
Sato, T. 2017a. Embedding tarskian semantics in vector
spaces. In The Workshops of the The Thirty-First AAAI Con-
ference on Artificial Intelligence, Saturday, February 4-9,
2017, San Francisco, California, USA, volume WS-17 of
AAAI Technical Report. AAAI Press.
Sato, T. 2017b. A linear algebraic approach to datalog
evaluation. Theory and Practice of Logic Programming
17(3):244–265.
Skarlatidis, A.; Artikis, A.; Filipou, J.; and Paliouras, G.
2015a. A probabilistic logic programming event calculus.
Theory Pract. Log. Program. 15(2):213–245.
Skarlatidis, A.; Paliouras, G.; Artikis, A.; and Vouros, G. A.
2015b. Probabilistic event calculus for event recognition.
ACM Trans. Comput. Logic 16(2).
Tsilionis, E.; Artikis, A.; and Paliouras, G. 2022. Incremen-
tal event calculus for run-time reasoning. J. Artif. Intell. Res.
73:967–1023.
Tsilionis, E.; Artikis, A.; and Paliouras, G. 2024. A tensor-
based formalization of the event calculus. In Proceedings
of the Thirty-Third International Joint Conference on Artifi-
cial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9,
2024, 3584–3592. ijcai.org.
Valiant, L. 1979. The complexity of computing the perma-
nent. Theoretical Computer Science 8(2):189–201.

	Introduction
	Background
	Event Calculus
	Probabilistic Event Calculus

	Probabilistic Linear Algebraic Approach
	Preliminaries
	Encoding Prob-EC in Tensor Spaces
	Probabilistic Inference in Tensor Spaces

	Algebraic Weighted Model Counting
	Empirical Analysis
	Experimental Setup
	Experimental Results

	Related Work
	Summary and Future Work

