
Temporal Specification Optimisation for the Event Calculus
Periklis Mantenoglou 1 Alexander Artikis 1 2

1NCSR “Demokritos”, Greece 2University of Piraeus, Greece

Temporal Pattern Matching over Streams

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Stream
Reasoning
System

Patterns for
Situations of Interest

Streams of
Simple Events

.

.

Streams of
Situations of Interest

.

.

The Run-Time Event Calculus (RTEC)

The Event Calculus is a logic programming formalism for representing and
reasoning about the effects of events over time. Key components:
▶ Linear time‐line with integer time‐points.
▶ Instantaneous events.
▶ Time‐varying properties called fluents.

A fluent‐value pair (FVP) F=V follows the law of inertia, i.e., in the absence
of information to the contrary, fluent F continues to have value V over time,
allowing for succinct and intuitive definitions for FVPs.

RTEC is a formal computational framework that derives FVPs over event
streams. In RTEC, an FVP may be simple or statically determined.
Simple FVP (SF):
initiatedAt(F=V , T)←

happensAt(EIn1 , T)[,
conditions].

...
terminatedAt(F=V , T)←

happensAt(ET1 , T)[,
conditions].

...
where conditions:
0−K [not] happensAt(Ek, T),
0−M [not] holdsAt(Fm=Vm, T),
0−N atemporal-constraintn

Statically Determined FVP (SDF):
holdsFor(F=V , I)←
holdsFor(F1 =V1 , I1)[,
holdsFor(F2 =V2 , I2), . . .
holdsFor(Fn=Vn, In),
intervalConstruct(L1 , In+1), . . .
intervalConstruct(Lm, I)].

where intervalConstruct:
union_all or
intersect_all or
relative_complement_all

We may use FVPs to model situations of interest.

Problem Statement & Proposed Solution

Challenges:
▶ Most Event Calculus specifications contain only SFs.
▶ The knowledge engineer may detect only a portion of SFs that can be re‐written as

equivalent SDFs.

Our Approach:
▶ Formal characterisation of the class of SFs that are translatable into equivalent

SDFs.
▶ Compiler that identifies and re‐writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain specifications.

Example of a Translatable SF

In human activity recognition, we may use the FVP meeting(P1 , P2)=interact in order to
monitor when two people, P1 and P2 , are having a meeting.

SF:
initiatedAt(meeting(P1 , P2)=interact, T)←
happensAt(start(active(P1)=true), T),
holdsAt(close(P1 , P2)=true, T),
not happensAt(end(close(P1 , P2)=true), T).

initiatedAt(meeting(P1 , P2)=interact, T)←
happensAt(start(close(P1 , P2)=true), T),
holdsAt(active(P1)=true, T),
not happensAt(end(active(P1)=true), T).

initiatedAt(meeting(P1 , P2)=interact, T)←
happensAt(start(active(P1)=true), T),
happensAt(start(close(P1 , P2)=true), T).

terminatedAt(meeting(P1 , P2)=interact, T)←
happensAt(end(active(P1)=true), T).

terminatedAt(meeting(P1 , P2)=interact, T)←
happensAt(end(close(P1 , P2)=true), T).

SDF:
holdsFor(meeting(P1 , P2)=interact, I)←
holdsFor(active(P1)=true, Ia),
holdsFor(close(P1 , P2)=true, Ic),
intersect_all([Ia, Ic], I).

Boolean definition:
meeting(P1 , P2)=interact ↔
active(P1)=true∧close(P1 , P2)=true

The above definitions for FVP meeting(P1 , P2)=interact are equivalent, i.e., they lead to
the same holdsAt(meeting(P1 , P2)=interact, T) atoms, for every time‐point T .

Key observation: The SF definition of meeting(P1 , P2)=interact includes one initiation
(termination) rule for each one of the possible ways of changing the truth value of its
Boolean definition to true (false).

Theoretical Results

An SF is translatable to an SDF iff it is:
▶ inertial condition symmetric,
▶ guard condition symmetric and
▶ Boolean representation symmetric.

We have devised and implemented an algorithm that:
▶ identifies the SFs that are translatable, and
▶ maps them into equivalent SDFs.

Experimental Analysis

We evaluated our approach on Event Calculus rule‐sets formalising:
▶ human activity recognition (E i

h).
▶ maritime situational awareness (E i

m).
▶ city transport management (E i

t).
▶ legal contract verification (E i

l).
▶ clinical guideline monitoring (E i

g).
▶ authorisation policy conflicts (E i

c).
▶ redundant authorisation policies (E i

r).

E i
x were hand‐crafted and contain only SFs. Eo

x is an optimised rule‐set.

E i
h Eo

h E i
m Eo

m E i
t Eo

t E i
l Eo

l E i
g Eo

g E i
c Eo

c E i
r Eo

r

0

50

100

150

200

N
u
m
b
er

of
R
u
le
s Input

Optimised
569

71

1212

215

1030

75

469

182 108
39

150

45
120

29

26K
3K

46K
5K

91K
10K

183K
20K

1

101

102

103

104

105

106

Window sizeR
e
a
s
o
n
in

g
t
im

e
(
m

s
)

Ei
h

Eo
h

40K
3K

73K
5K

159K
10K

328K
20K

Window size

Ei
m

Eo
m

2K
3K

4K
5K

8K
10K

16K
20K

Window size

Ei
t

Eo
t

https://cer.iit.demokritos.gr AAAI 2025, Philadelphia, Pennsylvania, USA pmantenoglou@iit.demokritos.gr

https://cer.iit.demokritos.gr
mailto:pmantenoglou@iit.demokritos.gr

