Run-Time Adaptation of Complex Event Forecasting

Manolis Pitsikalis¹, Elias Alevizos^{1,2}, Nikos Giatrakos³ and Alexander Artikis^{1,4}

¹NCSR Demokritos, Athens, Greece

²The American College of Greece, Athens

³Technical University of Crete, Greece

⁴University of Piraeus, Greece

{manospits,alevizos.elias,a.artikis}@iit.demokritos.gr ngiatrakos@tuc.gr

Introduction

Complex Event Forecasting (CEF) is a process whereby complex events of interest are forecast over a stream of simple events. Figure 1 illustrates the typical architecture of CEF systems.

Figure 1: Complex Event Forecasting. We use Wayeb, a CEF engine where:

- CE patterns are defined as regular expressions,
- then they are compiled into automata,
- which are then used for Complex Event Recognition.

Wayeb forecasts CEs by employing prediction suffix trees (PST).

• Automata runs + PSTs \rightarrow CEF

Challenge: Wayeb's forecasting quality depends heavily on PST hyper-parameters. However, static (offline) optimisation fails when data evolves over time (see Figure 2).

Figure 2: CEF for Maritime Situational Awareness.

To address this, we propose RTCEF: a run-time CEF adaptation framework offering:

- Distributed architecture,
- Re-train vs. re-optimise policies,
- Minimal forecasting disruption.

Stationarity Assumption

Assuming a stationary environment (no data evolution), we introduce offCEF, an offline CEF optimisation framework. The architecture of offCEF is illustrated in Figure 3.

- A *Model Factory* trains and evaluates Wayeb models using candidate hyper-parameters.
- A *Controller* uses **Bayesian optimisation** to search the hyper-parameter space and prescribe train-test runs to the Factory.

Figure 3: Architecture of offCEF.

Run-Time CEF Adaptation

Continuous data evolution necessitates *run-time adaptation*. Frequent hyper-parameter tuning is computationally expensive, while critical systems demand high availability. RTCEF addresses these challenges through a lightweight and distributed framework (Figure 4).

Figure 4: Architecture of RTCEF.

Metrics monitoring. The *Observer* service monitors Wayeb's performance, and accordingly issues re-train or optimisation instructions to the *Controller*. The re-train vs re-optimise policy is illustrated in the flow chart of Figure 5, while an example run is illustrated in Figure 6.

Figure 5: Re-train vs. Re-optimise decision flow in RTCEF.

Figure 6: Example run of the Observer.

Optimisation and re-training Hyper-parameter optimisation happens in a similar manner to offCEF. However, instead of running each optimisation run from scratch, in RTCEF the controller uses samples from previous runs, thus

enabling faster Bayesian optimisation convergence. Re-training, happens using the last hyperparameters produced.

Complex Event Forecasting. Wayeb consumes the input stream and produces an output stream of CE forecasts. Additionally, Wayeb produces a stream of performance reports. Wayeb stops only when a new model produced by hyper-parameter optimisation or re-training is available. RTCEF ensures that model replacement is *lossless* i.e., no automaton run is interrupted and no forecast is lost.

Data collection. To ensure that the latest dataset is available for re-training or hyper-parameter optimisation tasks, the *Collector* stores subsets of the input stream in a sliding window manner.

Experimental Evaluation

We evaluate RTCEF in Maritime Situational Awareness and in Credit Card Fraud Detection. We use a 6 month real-world maritime dataset¹ containing 18M AIS vessel position signals and a 21 month synthetic card transaction dataset² containing 1M transactions.

Maritime Situational Awareness

Figure 7: Maritime Experiments. MPPT stands for average percentage of time spent for re-training and hyperparameter optimisation every four weeks.

Figure 8: Credit Card Fraud Detection Experiments.

Summary

We presented RTCEF:

- a novel framework for **run-time adaptation** of CEF,
- involving services running synergistically for **undisrupted** CEF,
- with **clear benefits** over the offline approach.

¹https://zenodo.org/records/1167595

²https://feedzai.com/