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Introduction

Complex Event Forecasting (CEF) 1s a process
whereby complex events of interest are forecast
over a stream of simple events. Figure 1 1illus-
trates the typical architecture of CEF systems.
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Figure 1: Complex Event Forecasting.

We use Wayeb, a CEF engine where:

 CE patterns are defined as regular expressions,
e then they are compiled into automata,

e which are then used for Complex Event Recog-
nition.

Wayeb forecasts CEs by employing prediction
suffix trees (PST).

e Automata runs + PSTs — CEF

Challenge: Wayeb’s forecasting quality de-
pends heavily on PST hyper-parameters. How-
ever, static (offline) optimisation fails when data
evolves over time (see Figure 2).

—e— Wayeb | |

MCC
Cooo
ONROY00 =
|

1 | |
5 10 15 20 25

Weeks (Maritime)

Figure 2: CEF for Maritime Situational Awareness.

To address this, we propose RTCEF: a run-time
CEF adaptation framework offering:

e Distributed architecture,
e Re-train vs. re-optimise policies,

e Minimal forecasting disruption.

Stationarity Assumption

Assuming a stationary environment (no data evo-
lution), we introduce of £fCEF, an offline CEF
optimisation framework. The architecture of
of £CEF 1s illustrated in Figure 3.

* A Model Factory trains and evaluates Wayeb
models using candidate hyper-parameters.

A Controller uses Bayesian optimisation to
search the hyper-parameter space and prescribe
train-test runs to the Factory.
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Figure 3: Architecture of of fCEF,

Run-Time CEF Adaptation

Continuous data evolution necessitates run-time
adaptation. Frequent hyper-parameter tuning is
computationally expensive, while critical systems
demand high availability. RTCEF addresses these
challenges through a lightweight and distributed
framework (Figure 4).
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Figure 4: Architecture of RTCEF.

Metrics monitoring. The Observer service mon-
itors Wayeb’s performance, and accordingly is-
sues re-train or optimisation instructions to the
Controller. The re-train vs re-optimise policy 1s
illustrated in the flow chart of Figure 5, while an
example run 1is illustrated in Figure 6.
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Figure 5: Re-train vs.
RTCEF.
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Figure 6: Example run of the Observer.

Optimisation and re-training Hyper-parameter
optimisation happens in a similar manner to
of £CEF. However, instead of running each op-
timisation run from scratch, in RTCEF the con-
troller uses samples from previous runs, thus
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enabling faster Bayesian optimisation conver-
gence. Re-training, happens using the last hyper-
parameters produced.

Complex Event Forecasting. Wayeb consumes
the 1input stream and produces an output stream
of CE forecasts. Additionally, Wayeb produces a
stream of performance reports. Wayeb stops only
when a new model produced by hyper-parameter
optimisation or re-training is available. RTCEF
ensures that model replacement 1s [ossless 1.e., no
automaton run 1is interrupted and no forecast 1s
lost.

Data collection. To ensure that the latest dataset
1s available for re-training or hyper-parameter op-
timisation tasks, the Collector stores subsets of
the input stream 1n a sliding window manner.

Experimental Evaluation

We evaluate RTCEF 1n Maritime Situational
Awareness and in Credit Card Fraud Detection.
We use a 6 month real-world maritime dataset!
containing 18M AIS vessel position signals and a
21 month synthetic card transaction dataset? con-
taining 1M transactions.
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Figure 7: Maritime Experiments. MPPT stands for av-
erage percentage of time spent for re-training and hyper-
parameter optimisation every four weeks.

Credit Card Fraud Detection
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Figure 8: Credit Card Fraud Detection Experiments.

Summary
We presented RTCEF':

 a novel framework for run-time adaptation of CEF,

e involving services running synergistically for undis-
rupted CEF,

 with clear benefits over the offline approach.


https://zenodo.org/records/1167595
https://feedzai.com/

