WOLED: A Tool for Online Learning Weighted Answer Set Rules for Temporal Reasoning Under Uncertainty

Nikos Katzouris¹, Alexander Artikis^{2,1}

http://cer.iit.demokritos.gr

¹National Center for Scientific Research Demokritos, Athens, Greece ²University of piraeus, Piraeus, Greece

KR 2020

Learning for Complex Event Recognition

Learning Requirements

- Event recognition applications deal with noisy data streams.
 - Resilience to noise & uncertainty:
 - Statistical Relational Learning.
 - Logical representations + probability.
 - Big data, data streams.
 - Online, single-pass learning.

Learning Requirements

- Event recognition applications deal with noisy data streams.
 - Resilience to noise & uncertainty:
 - Statistical Relational Learning.
 - Logical representations + probability.
 - Big data, data streams.
 - Online, single-pass learning.
- Statistical Relational Learning:
 - Rules' structure learning.
 - ► Inductive Logic Programming
 - Weight learning.
 - Gradient-based techniques.

Statistical Relational Learning in Answer Set Programming

- ► Why?
 - Non-monotonic semantics.
 - Sophisticated off-the-self ASP solvers.
 - Structure & weight learning tasks easily encoded as optimization problems in ASP.

Statistical Relational Learning in Answer Set Programming

- ► Why?
 - Non-monotonic semantics.
 - Sophisticated off-the-self ASP solvers.
 - Structure & weight learning tasks easily encoded as optimization problems in ASP.
- ► How?
 - Setting very similar to Markov Logic Networks.
 - Real-valued weights attached to rules in an ASP program Π.
 - Larger weights, larger confidence to rules
 - Weights define a prob. distribution over answer sets of Π.
 - Lee & Young, Weighted rules under the stable model semantics, KR 2016.

Probabilistic MAP Inference

- ► Task: find most probable answer set.
- Turns out to be a weighted MaxSat problem:
 - ► Find an answer set that maximizes the sum of weights of satisfied rules.

Probabilistic MAP Inference

- ► Task: find most probable answer set.
- ► Turns out to be a weighted MaxSat problem:
 - ► Find an answer set that maximizes the sum of weights of satisfied rules.
- Handled directly by an ASP solver:

```
head_i \leftarrow satisfied(i)
\{satisfied(i)\} \leftarrow body_i
: \sim satisfied(i). [-w_i]
```

 $head_i \leftarrow body_i$ is the i-th rule with weight w_i .

Weight Learning

- ► Compare results in MAP-inferred state with true state.
- ▶ Update weights according to mistakes.

Weight Learning

- ► Compare results in MAP-inferred state with true state.
- ▶ Update weights according to mistakes.
- AdaGrad-based weight update rule:

• Δg_i^t (i-th rule's mistakes at time t): difference in rule's true groundings in the true state and the MAP-inferred state.

Structure Learning I: Learning New Rules from Mistakes

- ► Techniques from non-monotonic Inductive Logic Programming.
- Reasoning with existing weighted rules and generalizing new bottom rules part of the same optimization process in ASP.

Structure Learning I: Revising Existing rules

- As new data arrive the structure of rules often need to be revised.
 - Specialize rules.
- Online Hill-Climbing via Hoeffding tests.
- Using a small part of the input stream at each specialization decision point.

Putting it All Together

Experimental Evaluation

- ► Applications & datasets:
 - Activity recognition
 - 28 videos transcribed in logical form.
 - Target events: Two persons moving together, or meeting each other.
 - Maritime Surveillance
 - AIS signals of vessels sailing around the area of Brest, France.
 - 6 months worth of data.
 - ► Target event: Suspicious vessel Rendezvous.
 - Vehicle fleet management
 - Signals from on-vehicle sensors.
 - ▶ 1 month worth of data.
 - ► Target event: Dangerous driving.

Scalability of MAP Inference (MLN vs. ASP)

- Fixed event pattern set.
- Map inference for weight learning.
- Varying batch sizes.

- WOLED-ASP
 - Clingo
- WOLED-MLN
 - LoMRF¹ lib for Markov Logic.
 - ▶ lpsolve² lib for Integer Linear Programming.

https://github.com/anskarl/LoMRF

²https://sourceforge.net/projects/lpsolve

Learning Performance

	Method	Prequential Loss	F ₁ -score (test set)	Theory size	Inference Time (sec)	Pred. Compl. Time (sec)	Total Time (sec)
Moving	WOLED-ASP	1.723	0.821	26	15	-	112
	WOLED-MLN	2.817	0.801	47	187	28	478
	OLED	3.755	0.730	24	13	-	74
	HandCrafted	6.342	0.637	28	_	-	_
	HandCrafted-WL	4.343	0.702	28	16	-	52
Meeting	WOLED-ASP	1.212	0.887	34	12	_	82
	WOLED-MLN	2.554	0.841	56	134	12	145
	OLED	3.224	0.782	42	10	-	36
	HandCrafted	5.734	0.735	23	-	-	-
	HandCrafted-WL	4.024	0.753	23	13	-	31
Rendezvous	WOLED-ASP	0.023	0.98	18	647	_	4,856
	WOLED-MLN	0.088	0.98	18	2,923	434	6,218
	OLED	0.092	0.98	18	623	-	4,688
Dang.Drive	WOLED-ASP	0.045	0.99	21	341	_	2,465
	WOLED-MLN	1.234	0.99	28	926	287	3,882
	OLED	1.756	0.99	21	312	-	2,435

Summary

- An online structure & weight learner entirely implemented in ASP.
- Significantly more efficient & simpler to use than MLN.
 - Single back-end tool Clingo.
- Structure & weight learning tightly coupled.
- https://github.com/nkatzz/ORL

Future work:

- Concept drift.
- Distributed learning.