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Introduction

Motivation

0start 1 2 3 · · ·50 $ 100 $ 200 $ 500 $

I Is this a fraud?

I How long will it last?

I With what probability?
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Motivation

I Is this a promising therapeutic regime?
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Introduction

Motivation

I How about this?
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Motivation

I This one?
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Introduction

Motivation

I Can we kill non-pertinent simulations early?

I Can we forecast their outcome?

I How early? How accurately?

Figure produced by the Barcelona Supercomputing Center.
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Complex Event Recognition

Input I Recognition I Output �

Event

Recognition

System

Complex

Event

Definitions

Simple Events

. . .. . .

. . .. . .

lowSpeedStart(ID0 , 10 , 00 :00 :12 )
turn(ID0 , 11 , 00 :03 :12 )
turn(ID0 , 12 , 00 :06 :46 )
lowSpeedEnd(ID0 , 11 , 00 :10 :33 )
. . .

Complex Events

. . . . . .

. . . . . .

PATTERN SEQ(lowSpeedStart a, turn + b, lowSpeedEnd c)
WHERE skip-till-next-match

AND [vesselId ]
AND b[i ].heading−b[i−1 ].heading > 90
WITHIN 21600
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CER language

ce ::= σθ(sde) | Base case (Boolean expression)

ce1 · ce2 | Sequence

ce1 + ce2 | Disjunction

ce∗ | Iteration

ce1 ./ ce2 | Conjunction

! ce | Negation

σθ(ce) | Selection

πm(ce) | Projection

[ce]T2
T1

| Windowing
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Automata

astart b[1] b[i] c
begin begin

ignore

proceed

take

ignore

begin

ignore

θbegin := a.ET = lowSpeedStart

θbegin := b[1].ET = turn ∧
b[1].id = a.id ∧
b[1].time < a.time + 21600b[1].time < a.time + 21600b[1].time < a.time + 21600

θtake := b[i].ET = turn ∧
b[i].id = b[1].id ∧
b[i].heading − b[i− 1].heading > 90 ∧
b[i].time < a.time + 21600b[i].time < a.time + 21600b[i].time < a.time + 21600

θproceed := TRUE θbegin := c.ET = lowSpeedEnd ∧
c.id = a.id ∧
c.time < a.time + 21600c.time < a.time + 21600c.time < a.time + 21600

θignore := ¬(b[1].ET = turn ∧
b[1].id = a.id)

θignore := ¬(b[i].ET = turn ∧
b[i].id = b[1].id ∧
b[i].heading − b[i− 1].heading > 90)

θignore := ¬(c.ET = lowSpeedEnd ∧
c.id = a.id)
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Logic

initiatedAt(withinArea(VesselId) = AreaType, T )←
happensAt(entersArea(VesselId , Area), T ),
typeOf (Area, AreaType).

terminatedAt(withinArea(VesselId) = , T )←
happensAt(exitsArea(VesselId , Area), T ).
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Introduction

Complex Event Forecasting

Input I Forecasting I Output �

Event

Forecasting

System

Complex

Event

Definitions

Simple Events

. . .. . .

. . .. . .

turn(ID0 , 10 , 22/2/18 .00 :00 :12 )
turn(ID0 , 11 , 22/2/18 .00 :03 :12 )
turn(ID0 , 12 , 22/2/18 .00 :06 :46 )
turn(ID0 , 11 , 22/2/18 .00 :10 :33 )
. . .

Complex Events

Completion Forecasts

. . . . . .

. . . . . .

. . . . . .

. . . . . .

PATTERN ITER(turn(VesselId ,TurnRate,Timestamp))
WHERE TurnRate[i ] > 10
PARTITION BY VesselId
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Related Work

I Time-series forecasting [MJK15].

I Sequence prediction (compression) based on Markov models
[BEY04, BW+99, RST96, RST93, CW84, WST95].

I Sequence prediction based on neural networks
[LDL18, CPP+18].

I Temporal mining [VM02, LTW08, FBB14, ZCG15, CWY+11].

I Process mining [VDA11, MRR18, FGMM18].

I CEF, mostly conceptual [FBT+12, EE11, CKK16]. Others:
[MLJ10, ACMZ15, PNC11, LGC20].

I Limitations: no language for patterns, focus on discrete
symbols or real values (not both), ususally target SDE
forecasting.
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The two axes

Expressivity
axis

Classical
finite

automata

Symbolic
automata

Symbolic
register

automata

Probabilistic
axis

Variable-
order

Markov
models

Fixed-
order

Markov
models
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Publications (basic)
I Main

I Alevizos, Artikis, Paliouras, Symbolic Register Automata
for Complex Event Recognition and Forecasting,
submitted as journal article

I Alevizos, Artikis, Paliouras, Complex Event Forecasting
with Prediction Suffix Trees, VLDB journal, 2021 [AAP21]

I Alevizos, Artikis, Paliouras, Wayeb: a Tool for Complex
Event Forecasting, LPAR, 2018 [AAP18]

I Alevizos, Artikis, Paliouras, Event Forecasting with Pattern
Markov Chains, DEBS, 2017 [AAP17]

I Surveys
I Giatrakos, Alevizos, Artikis, Deligianakis, Garofalakis,

Complex Event Recognition in the Big Data Era: a
Survey, VLDB journal, 2020 [GAA+20]

I Alevizos, Artikis, Paliouras, Probabilistic Complex Event
Recognition: a Survey, ACM Computing Surveys, 2017
[ASAP17]
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Publications (demos and application papers)
I Ntoulias, Alevizos, Artikis, Akasiadis, Koumparos, Online Trajectory

Analysis with Scalable Event Recognition, GeoInformatica, 2022
[NAA+22]

I Vodas et al, Online Distributed Maritime Event Detection and
Forecasting over Big Vessel Tracking Data, IEEE Big Data, 2021
[VBK+21]

I Ntoulias, Alevizos, Artikis, Koumparos, Online Trajectory Analysis with
Scalable Event Recognition, EDBT Workshops, 2021 [NAAK21]

I Vouros et al, Increasing Maritime Situation Awareness via Trajectory
Detection, Enrichment and Recognition of Events, W2GIS, 2018
[VVS+18b]

I Qadah, Mock, Alevizos, Fuchs, A Distributed Online Learning
Approach for Pattern Prediction over Movement Event Streams with
Apache Flink, EDBT Workshops, 2018 [QMAF18]

I Vouros et al, Big Data Analytics for Time Critical Mobility
Forecasting: Recent Progress and Research Challenges, EDBT, 2018
[VVS+18a]
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Complex Event Forecasting with Classical Automata and Fixed-order Markov Models

Complex Event Forecasting with Classical Automata
and Fixed-order Markov Models [AAP17]
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Complex Event Forecasting with Classical Automata and Fixed-order Markov Models

Introduction

Where do you start?

I We need to build a probabilistic model to estimate if/when a
CE is expected to happen.

I A probabilistic model of what?

I Too many formalisms and computational models.

I Let’s start with something simple. Classical regular
expressions and automata.
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Theory

Regular Expression → Pattern Markov Chain (PMC)

R = a · c · c. Σ = {a, b, c}. No memory.

0start 1 2 3

b, c

a

a

c

b

c

a

b a

b, c

0 1 2 3

P (b) + P (c)

P (a)

P (a)

P (c)

P (b)

P (c)

P (b)

P (a)

1.0
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Theory

Regular Expression → Pattern Markov Chain (PMC)

m = 1

0b

0c

1a 2c 3c

P (b | b)

P (c | b)

P (a | b)

P (a | a)

P (c | a)

P (b | a)

P (c | c)

P (b | c)

P (a | c)

1.0

P (c | c)

P (b | c)
P (a | c)
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Implementation

Waiting-Time and Forecasts
I Warm-up period to learn distributions.

I Set a threshold, e.g., θfc = 50%.

0start 1 2 3 4
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Implementation

Example: R = a · b · b · b.

0start 1 2 3 4
a b b b
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Implementation

Example: R = a · b · b · b.

0start 1 2 3 4
a b b b
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Implementation

Example: R = a · b · b · b.

0start 1 2 3 4
a b b b
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Complex Event Forecasting with Classical Automata and Fixed-order Markov Models

Outro

Contributions

I Regular expressions as opposed to sequential patterns.

I Forecasts with guaranteed precision, if Markov process.
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Complex Event Forecasting with Classical Automata and Fixed-order Markov Models

Outro

Limitations

I Input events are tuples with multiple (numerical and
categorical) attributes.

I Classical automata work on symbols only.

I Alternative: use symbolic expressions and automata.

I High-order Markov models lead to a combinatorial explosion
of the states.

I Alternative: use variable-order Markov models, i.e., try to
remember only what is “informative”.
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Complex Event Forecasting with Symbolic
Automata and Fixed-order Markov Models [AAP18]
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Forecasting with Symbolic Automata

Symbolic Regular Expressions and Automata

Rfish := x · y∗ · z WHERE

(IsFishingVessel(x) ∧ ¬InArea(x , FishingArea)) AND

(InArea(y , FishingArea) ∧ SpeedBetween(y , 9 .0 , 20 .0)) AND

(InArea(z , FishingArea) ∧ SpeedBetween(z , 1 .0 , 9 .0))
PARTITION BY vesselId

I “Terminal symbols”: any unary boolean formula.

I More complex, but (usually) fewer states and transitions.

I Proposed in [DV17].
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Forecasting with Symbolic Automata

Properties of Symbolic Automata

I Symbolic automata have nice closure properties.

I But, can we use them for forecasting, i.e., derive a
probabilistic model for them?

I Yes!
I Symbolic automata are determinizable.
I They can be mapped to “equivalent” classical automata

(simple algebraic argument using isomorphism).
I Same technique for mapping to Markov Chains.
I Matrix probabilities:

P(ψ1(ti+1) ∧ ψ2(ti+1) = TRUE | ¬ψ1(ti ) ∧ ¬ψ2(ti ) = TRUE).
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Forecasting with Symbolic Automata

Properties of Symbolic Automata

I Symbolic automata have nice closure properties.

I But, can we use them for forecasting, i.e., derive a
probabilistic model for them?

I Yes!
I Symbolic automata are determinizable.
I They can be mapped to “equivalent” classical automata

(simple algebraic argument using isomorphism).
I Same technique for mapping to Markov Chains.
I Matrix probabilities:

P(ψ1(ti+1) ∧ ψ2(ti+1) = TRUE | ¬ψ1(ti ) ∧ ¬ψ2(ti ) = TRUE).
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Outro

Contributions

I Probabilistic description of symbolic automata.

I User–configurable order of assumed Markov process.

I Nice compositional properties.

I Works on infinite alphabets.
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Outro

Limitations

I Still, need to reduce search space of the (symbolic) past.

I High-order models lead to a combinatorial explosion of the
states.

I Alternative: ariable-order Markov models.

I Yet more expressive patterns.
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Complex Event Forecasting with Symbolic
Automata and Variable-order Markov Models [AAP21]
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Introduction

I Problem: how to avoid the combinatorial explosion on the
number of states of a Markov chain.

I Proposal
I A CEF framework that is both formal, compositional and easy

to use.
I Can uncover deep dependencies by using a variable-order

Markov model.
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Symbolic expressions and automata

Symbolic regular expression

Definition (Symbolic regular expression)

A symbolic regular expression (SRE ) over an effective Boolean
algebra (D, Ψ, J K, ⊥, >, ∨, ∧, ¬) is recursively defined as follows:

I If ψ ∈ Ψ, then R := ψ is a symbolic regular expression, with
L(ψ) = JψK, i.e., the language of ψ is the subset of D for
which ψ evaluates to TRUE;

I Disjunction / Union R := R1 + R2, with
L(R) = L(R1) ∪ L(R2);

I Concatenation / Sequence R := R1 · R2 , with
L(R) = L(R1) · L(R2);

I Iteration / Kleene-star R ′ := R∗, with L(R∗) = (L(R))∗.
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Symbolic expressions and automata

Table: Example event stream from the maritime domain.

Navigational
status fishing fishing fishing under way under way under way ...

vessel id 78986 78986 78986 78986 78986 78986 ...

speed 2 1 3 22 19 27 ...

timestamp 1 2 3 4 5 6 ...

I R := (speed < 5) · (speed > 20).

I The third and fourth events belong to the language of R.
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Symbolic expressions and automata

1start 2 3
speed < 5 speed > 20

(a) SFA for the SRE R := (speed < 5) · (speed > 20).

0start 1 2 3

>

ε speed < 5 speed > 20

(b) Streaming SFA for R := (speed < 5) · (speed > 20).
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Symbolic expressions and automata

Proposition

For every symbolic regular expression R there exists a symbolic
finite automaton M such that L(R) = L(M).
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Building a probabilistic model

Variable-order Markov models

I Let Σ denote an alphabet, σ ∈ Σ a symbol from that alphabet
and s ∈ Σm a string of length m of symbols from that
alphabet.

I Goal: derive a predictor P̂ such that the average log-loss on a
test sequence S1..k is minimized.

I For full-order Markov models, P̂ derived through conditional
distributions P̂(σ | s), with m constant.

I VMMs relax the assumption of m being fixed. Length of
“context” s may vary.
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Building a probabilistic model

Isomorphism

Lemma
For every deterministic symbolic finite automaton (DSFA) Ms

there exists a deterministic classical finite automaton (DFA) Mc

such that L(Mc ) is the set of strings induced by applying
N = Minterms(Predicates(Ms)) to L(Ms).

I We can use symbols from now on instead of predicates.
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Building a probabilistic model

Prediction Suffix Trees

ε,(0.6,0.4)

a,(0.7,0.3)

aa,(0.75,0.25) ba,(0.1,0.9)

b,(0.5,0.5)

Figure: Example PST T for Σ = {a, b} and m = 2. Each node contains
the label and the next symbol probability distribution for a and b.
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Building a probabilistic model

Probabilistic Suffix Automata

aa

bab

a/0.75

b/0.25

b/0.9

a/0.1

a/0.5

b/0.5

Figure: Example PSA MS constructed from the tree T . Each state
contains its label. Each transition is composed of the next symbol to be
encountered along with that symbol’s probability.
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Building a probabilistic model

Emitting forecasts

I Trade-off between memory and computation efficiency.

I If online performance critical, use PSA.

I If high accuracy (thus high order values) necessary, use PST
bypassing the PSA.
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Building a probabilistic model

Forecasting with PST

0start 1 2

b

a

a

b

a

b

ε,(0.6,0.4)

a,(0.7,0.3)

aa,(0.75,0.25) ba,(0.8,0.2)

aba,(0.9,0.1) bba,(0.1,0.9)

b,(0.5,0.5)
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Building a probabilistic model

Forecasts with PST

{1,aa}

{1,aa}

{2,b}

{1,aa}

{2,b}

{1,aba}

{0,b}

· · ·

· · ·

a,0.75

b,0.25

a,0.75

b,0.25

a,0.5

b,0.5

a,0.75

b,0.25

a,0.5

b,0.5

a,0.9

b,0.1

a,0.5

b,0.5
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Experimental results

Credit card fraud management

R := (amountDiff > 0) · (amountDiff > 0) · (amountDiff > 0)·
(amountDiff > 0) · (amountDiff > 0) · (amountDiff > 0)·
(amountDiff > 0)
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Experimental results

Dataset

I 1,000,000 transactions in total from 100 different cards.

I About 20% of the transactions are fraudulent.

I 7 different types of known fraudulent patterns.

I Each fraudulent sequence for the increasing trend consists of
eight consecutive transactions with increasing amounts, where
the amount is increased each time by 100 monetary units or
more.

I 75% of the original dataset for training and the rest for
testing.
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Experimental results

ROC
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variable-order model using the PST
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Experimental results

Performance

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8

Distance

0

1

2

3

4

T
h

ro
u

g
h

p
u

t 
(e

v
e

n
ts

/s
e

c
)

×10
5

MEAN

HMM

IID

F1

F2

F3

E1

E2

E3

E4

T1

T2

T3

T4

T5

T6

T7

(a) Throughput.

M
EAN

H
M

M IID F1 F2 F3 E1 E2 E3 E4 T1 T2 T3 T4 T5 T6 T7

Model

0

10

20

30

40

T
ra

in
in

g
 t
im

e
 (

s
e
c
) modelTime

wtTime

inTime

extraTime

(b) Training time.



49/139

Complex Event Forecasting: a Formal Framework

Complex Event Forecasting with Symbolic Automata and Variable-order Markov Models

Experimental results

Memory footprint
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Experimental results

Maritime
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Experimental results

Pattern

R := (¬InsidePort(Brest))∗ · (¬InsidePort(Brest))·
(¬InsidePort(Brest)) · (InsidePort(Brest))
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Experimental results

Dataset

I AIS kinematic messages from vessels sailing in the Atlantic
Ocean around the port of Brest, France.

I Spans a period from 1 October 2015 to 31 March 2016.

I The vessel with the most matches: 368 matches and ≈
30.000 SDEs.

I Vessels with more than 100 matches. 9 such vessels with ≈
222.000 events.
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Experimental results

ROC
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variable-order model using the PST
for various values of the maximum
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0-0.5 0.5-1

Distance

0.4

0.6

0.8

1

A
U

C

MEAN HMM IID F1 F2 E1 E2 E3 T1 T2 T3 T4 T5 T6

(b) AUC for ROC curves for all
models.



54/139

Complex Event Forecasting: a Formal Framework

Complex Event Forecasting with Symbolic Automata and Variable-order Markov Models

Experimental results

Performance
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Experimental results

Effect of cutoff threshold
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Outro

Contributions

I A formal, compositional and easy to use CEF framework.

I Can uncover deep dependencies.

I Various types of forecasting. Subsumes previous methods
restricted to one type of forecasting.

I Proposed a more comprehensive set of metrics.
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Complex Event Forecasting with Symbolic Register
Automata and Variable-order Markov Models
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Introduction

Motivation

I Need to be able to use n-ary expressions.

I We thus need automata with memory,

I Need to understand the closure properties of automata with
memory.

I We must show whether such automata can be used for
forecasting.
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Symbolic regular expressions with memory

Definition (Symbolic regular expression with memory (SREM))

A symbolic regular expression with memory over a V-structure M
and a set of register variables R = {r1, · · · , rk} is inductively
defined as follows:

1. ε and ∅ are SREM.

2. If φ is a condition, then φ is a SREM.

3. If φ is a condition, then φ ↓ ri is a SREM.

4. If e1 and e2 are SREM, then e1 + e2 is also a SREM.

5. If e1 and e2 are SREM, then e1 · e2 is also a SREM.

6. If e is a SREM, then e∗ is also a SREM. J
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Symbolic regular expressions with memory

Table: Example stream.

type T T T H H T ...

id 1 1 2 1 1 2 ...

value 22 24 32 70 68 33 ...

index 1 2 3 4 5 6 ...

e1 := (TypeIsT (∼) ↓ r1) · (>)∗ · (TypeIsH(∼) ∧ EqualId(∼, r1))
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Symbolic Register Automata

qsstart q1 qf
φ1(∼) ↓ r1

>
φ2(∼, r1)

φ1(x) := (x.type = T )
φ2(x, y) := (x.type = H ∧ x.id = y.id)

r1
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Symbolic Register Automata

Table: Example stream.

type T T T H H T ...

id 1 1 2 1 1 2 ...

value 22 24 32 70 68 33 ...

index 1 2 3 4 5 6 ...

qsstart q1 qf
φ1(∼) ↓ r1

>
φ2(∼, r1)

] [1, qs, v(r1) = ]]
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Symbolic Register Automata

Table: Example stream.

type T T T H H T ...

id 1 1 2 1 1 2 ...

value 22 24 32 70 68 33 ...

index 1 2 3 4 5 6 ...

qsstart q1 qf
φ1(∼) ↓ r1

>
φ2(∼, r1)

(T, 1, 22) [1, qs, ]]→ [2, q1, (T, 1, 22)]
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Symbolic Register Automata

Table: Example stream.

type T T T H H T ...

id 1 1 2 1 1 2 ...

value 22 24 32 70 68 33 ...

index 1 2 3 4 5 6 ...

qsstart q1 qf
φ1(∼) ↓ r1

>
φ2(∼, r1)

(T, 1, 22)
[1, qs, ]]→ [2, q1, (T, 1, 22)]→
[3, q1, (T, 1, 22)]
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Symbolic Register Automata

Table: Example stream.

type T T T H H T ...

id 1 1 2 1 1 2 ...

value 22 24 32 70 68 33 ...

index 1 2 3 4 5 6 ...

qsstart q1 qf
φ1(∼) ↓ r1

>
φ2(∼, r1)

(T, 1, 22)
[1, qs, ]]→ [2, q1, (T, 1, 22)]→
[3, q1, (T, 1, 22)]→ [4, q1, (T, 1, 22)]
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Symbolic Register Automata

Table: Example stream.

type T T T H H T ...

id 1 1 2 1 1 2 ...

value 22 24 32 70 68 33 ...

index 1 2 3 4 5 6 ...

qsstart q1 qf
φ1(∼) ↓ r1

>
φ2(∼, r1)

(T, 1, 22)
[1, qs, ]]→ [2, q1, (T, 1, 22)]→
[3, q1, (T, 1, 22)]→ [4, q1, (T, 1, 22)]→
[5, qf , (T, 1, 22)]
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Symbolic Register Automata

Theorem
For every SREM e there exists an equivalent SRA A, i.e., a SRA
such that L(e) = L(A).

Theorem
For every SRA A there exists an equivalent SREM e, i.e., a SREM
such that L(A) = L(e).
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Symbolic Register Automata

Theorem
SRA and SREM are closed under union, intersection,
concatenation and Kleene-star.

Theorem
SRA and SREM are not closed under complement.

Theorem
SRA are not closed under determinization.
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Symbolic Register Automata

Definition (Windowed SREM)

Let e be a SREM over a V-structure M and a set of register
variables R = {r1, · · · , rk}, S a string constructed from elements
of the universe of M and v , v ′ ∈ F (r1, · · · , rk ). A windowed
SREM (wSREM) is an expression of the form e ′ := e [1..w ], where
w ∈ N1. We define the relation (e ′,S , v) ` v ′ as follows:
(e,S , v) ` v ′ and |S | ≤ w .
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Symbolic Register Automata

Theorem
For every windowed SREM there exists an equivalent deterministic
SRA.

Corollary

Windowed SRA are closed under complement.
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Symbolic Register Automata

I We have only unary conditions applied to the last event and
an arbitrary (finite or infinite) universe. In this case, we do
not need registers.

I We have n-ary conditions (with n ≥ 1) and a finite universe.
In this case, registers are helpful, but may not be necessary. If
we have a register automaton A and a finite universe U , we
can always create an automaton AU with states A.Q × U and
appropriate transitions so that AU is equivalent to A but has
no registers. Its states can implicitly remember past elements.

I The most complex case is when we have n-ary conditions and
an infinite universe, as is typically assumed in CER/F.
Registers are necessary in this case. Symbols generated by
automaton.
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Outro

Contributions

I Presented an automaton model, SRA, that can act as a
computational model for patterns with n-ary conditions.

I Extend the expressive power of symbolic automata and
register automata.

I Most of the standard operators in CER, such as
concatenation/sequence, union/disjunction,
intersection/conjunction and Kleene-star/iteration, may be
used freely.

I Complement may be used and determinization is also possible,
if a window operator is used.
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Appendix
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Related Work

Time-series forecasting

I Typically focuses on streams of (mostly) real-valued variables.

I Goal is to forecast relatively simple patterns.

I Does not provide a language with which we can define
complex patterns.

I Tries to forecast the next value(s) from the input
stream/series, i.e., SDE forecasting.
I Not very useful for CER.
I Majority of SDE instances ignored.
I Forward recognition on projected stream does not work.

I [MJK15]
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Appendix

Related Work

Sequence prediction (compression) based on Markov
models

I Does not provide a language for patterns.

I Focuses exclusively on next symbol prediction.

I Works on single-variable discrete sequences of symbols.

I [BEY04, BW+99, RST96, RST93, CW84, WST95]
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Appendix

Related Work

Sequence prediction based on neural networks

I They do not provide a language for defining complex patterns.

I Focus is on SDE forecasting.

I Statistical methods have often been proven to be more
accurate and less demanding in terms of computational
resources than ML ones in time-series forecasting.

I [LDL18, CPP+18]
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Related Work

Temporal mining

I Association rule mining, HMMs, DAGs, etc.

I They target simple patterns, defined either as strict sequences
or as sets of input events.

I The input stream is composed of symbols from a finite
alphabet.

I [VM02, LTW08, FBB14, ZCG15, CWY+11]
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Related Work

Process mining

I Processes are usually given directly as transition systems.

I Processes are usually composed of long sequences of events.

I CER patterns are shorter, may involve Kleene-star, iteration
operators (usually not present in processes) and may even be
instantaneous.

I Process prediction focuses on traces, which are complete, full
matches.

I CER focuses on continuously evolving, highly imbalanced
streams which may contain many irrelevant events.

I [VDA11, MRR18, FGMM18]
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Appendix

Related Work

Complex Event Forecasting

I First concrete attempt at CEF: [MLJ10]

I A variant of regular expressions used to define CE patterns.

I Compiled into automata.

I Automata translated to Markov chains through a direct
mapping.

I Frequency counters on the transitions used to estimate
transition matrix.

I In the worst case, such an approach assumes that all SDEs are
independent.
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Appendix

Related Work

Complex Event Forecasting

I [ACMZ15]

I Support Vector Regression to predict the next input event(s)
within some future window.

I Targets the prediction of the (numerical) values of the
attributes of the input events (SDE forecasting).
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Appendix

Related Work

Complex Event Forecasting

I [PNC11]

I HMMs used to construct a probabilistic model for the
behavior of a transition system describing a CE.

I HMMs are hard to train ([BEY04, AW92])

I Require elaborate domain modeling.
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Appendix

Related Work

Complex Event Forecasting

I [LGC20]

I Knowledge graphs used to encode events and their timing
relationships.

I More like SDE forecasting, as it does not target complex
events.
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Appendix

Intro appendix

Forecasting definition

I “Forecasting” and “prediction” used interchangeably as
equivalent terms? No.

I Prediction in ML
I Goal: “predict” the output of a function on previously unseen

input data.
I Input data need not necessarily have a temporal dimension.
I “Prediction” refers to the output of the learned function on a

new data point.

I We need
I to predict the temporally future output of some function or the

occurrence of an event.
I From the (current) timepoint where a forecast is produced

until the (future) timepoint for which we try to make a
forecast, no data is available.

I We prefer the term “forecasting”.
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Intro appendix

What is Complex Event Forecasting?

I Input event forecasting: predict the most probable next input
event in the stream (akin to next symbol prediction). Not
very useful in itself.

I Complex event forecasting (regression): given the occurrence
timestamp of a CE, generate forecasts about this timestamp k
events beforehand.

I Complex event forecasting (classification): at an estimated
distance p% before a “possible” CE occurrence, decide
whether a CE will occur within the next k events.
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Intro appendix

a1 b1 a2 a3 c1 b2 . . .

a1 b1

(a) Matches under
strict-contiguity.

a1 b1 a2 a3 c1 b2 . . .

a1 b1

a2 b2

a3 b2

a1 b2

(b) Matches under
skip-till-any-match.

a1 b1 a2 a3 c1 b2 . . .

a1 b1

a2 b2

a3 b2

(c) Matches under
skip-till-next-match.
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DEBS appendix

a1 a2 b1 b2 . . .

a1 b1

a2 b1

a1 b2

a2 b2

(a) Matches under reuse.

a1 a2 b1 b2 . . .

a1 b1

a2 b2

(b) Matches under
consume.

a1 b1 b2 b3 . . .

a1 b1

a1 b2

(c) Matches under
bounded-reuse.
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DEBS appendix

Validation tests
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DEBS appendix

Credit Card Fraud Management: Real Dataset (m = 1).

0 1 2 3 4 5 6 7

State

0.2

0.4

0.6

0.8

P
re

d
ic

ti
o
n
 T

h
re

s
h
o
ld

0

20

40

60

80

100

0 1 2 3 4 5 6 7

State

0.2

0.4

0.6

0.8

P
re

d
ic

ti
o

n
 T

h
re

s
h

o
ld

0

2

4

6

8

10

0 1 2 3 4 5 6 7

State

0.2

0.4

0.6

0.8

P
re

d
ic

ti
o

n
 T

h
re

s
h

o
ld

0

5

10

15



87/139

Complex Event Forecasting: a Formal Framework

Appendix

DEBS appendix

Credit Card Fraud Management: Real Dataset (m = 3).
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DEBS appendix

Maritime Monitoring: Real Dataset.

R = Turn · GapStart · GapEnd · Turn,
where Turn = (TurnNorth + TurnEast + TurnSouth + TurnWest)
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DEBS appendix

Credit cards (precision for m = 1, 2, 3)
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DEBS appendix

Maritime (precision)

R = Turn · GapStart · GapEnd · Turn
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DEBS appendix

Maritime (precision)

R = TurnNorth · (TurnNorth + TurnEast)∗ · TurnSouth
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LPAR appendix

Datasets

I AIS messages from the Atlantic Ocean around Brest (1
month) and from most of European seas (6 months).

I ≈ 1.3M points for Brest, ≈ 2.4M points for Europe (after
cleaning).
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LPAR appendix

Patterns: Approaching Port, Fishing

Rapproach := x · y+ · z WHERE

Distance(x , PortCoords, 7 .0 , 10 .0) AND

Distance(y , PortCoords, 5 .0 , 7 .0) AND

WithinCircle(z , PortCoords, 5 .0)
PARTITION BY vesselId

Rfish := x · y∗ · z WHERE

(IsFishingVessel(x) ∧ ¬InArea(x , FishingArea)) AND

(InArea(y , FishingArea) ∧ SpeedBetween(y , 9 .0 , 20 .0)) AND

(InArea(z , FishingArea) ∧ SpeedBetween(z , 1 .0 , 9 .0))
PARTITION BY vesselId
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LPAR appendix

Empirical Evaluation
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LPAR appendix

Empirical Evaluation (detailed): approaching
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LPAR appendix

Empirical Evaluation (detailed): fishing
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LPAR appendix

Empirical Evaluation: throughput
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VLDBJ appendix

Symbolic regular expression (1)

Definition (Symbolic regular expression)

A symbolic regular expression (SRE ) over an effective Boolean
algebra (D, Ψ, J K, ⊥, >, ∨, ∧, ¬) is recursively defined as follows:

I The constants ε and ∅ are symbolic regular expressions with
L(ε) = {ε} and L(∅) = {∅};

I If ψ ∈ Ψ, then R := ψ is a symbolic regular expression, with
L(ψ) = JψK, i.e., the language of ψ is the subset of D for
which ψ evaluates to TRUE;
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VLDBJ appendix

Symbolic regular expression (2)

Definition (Symbolic regular expression)

A symbolic regular expression (SRE ) over an effective Boolean
algebra (D, Ψ, J K, ⊥, >, ∨, ∧, ¬) is recursively defined as follows:

I Disjunction / Union If R1 and R2 are symbolic regular
expressions, then R := R1 + R2 is also a symbolic regular
expression, with L(R) = L(R1) ∪ L(R2);

I Concatenation / Sequence If R1 and R2 are symbolic regular
expressions, then R := R1 · R2 is also a symbolic regular
expression, with L(R) = L(R1) · L(R2), where · denotes
concatenation. L(R) is then the set of all strings constructed
from concatenating each element of L(R1) with each element
of L(R2);
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VLDBJ appendix

Symbolic regular expression (3)

Definition (Symbolic regular expression)

A symbolic regular expression (SRE ) over an effective Boolean
algebra (D, Ψ, J K, ⊥, >, ∨, ∧, ¬) is recursively defined as follows:

I Iteration / Kleene-star If R is a symbolic regular expression,
then R ′ := R∗ is a symbolic regular expression, with
L(R∗) = (L(R))∗, where L∗ =

⋃
i≥0
Li and Li is the

concatenation of L with itself i times.
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VLDBJ appendix

Expressive power of symbolic regular expressions

I Negation: R ′ :=!R, can be supported (SFA closed under
complement).

I Conjunction: R := R1 ∧ R2 := (R1 · R2) + (R2 · R1).

I skip-till-any-match selection policy: If R1,R2, · · · ,Rn are
symbolic regular expressions, then R ′ := #(R1,R2, · · · ,Rn) is
a symbolic regular expression, with
R ′ := R1 · >∗ · R2 · >∗ · · · >∗ · Rn.

I skip-till-next-match selection policy: If R1,R2, · · · ,Rn are
symbolic regular expressions, then R ′ := @(R1,R2, · · · ,Rn) is
a symbolic regular expression, with
R ′ := R1·!(>∗ · R2 · >∗) · R2 · · ·!(>∗ · Rn · >∗) · Rn.
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Symbolic finite automaton

Definition (Symbolic finite automaton)

A symbolic finite automaton (SFA) is a tuple M =(A, Q, qs , Q f ,
∆), where

I A is an effective Boolean algebra;

I Q is a finite set of states;

I qs ∈ Q is the initial state;

I Q f ⊆ Q is the set of final states;

I ∆ ⊆ Q ×ΨA × Q is a finite set of transitions.
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Language of SFA

Definition
A string w = a1a2 · · · ak is accepted by a SFA M iff, for 1 ≤ i ≤ k ,
there exist transitions qi−1

ai→ qi such that q0 = qs and qk ∈ Q f .
We refer to the set of strings accepted by M as the language of M,
denoted by L(M).
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Definition (Detection of SRE )

If S1..k = · · · , tk−1, tk is the prefix of S up to the index k , we say
that an instance of a SRE R is detected at k iff there exists a
suffix Sm..k of S1..k such that Sm..k ∈ L(R).

In order to detect CEs of a SRE R on a stream, we use a
streaming version of SRE and SFA.

Definition (Streaming SRE and SFA)

If R is a SRE , then Rs = >∗ · R is called the streaming SRE
(sSRE ) corresponding to R. A SFA MRs constructed from Rs is
called a streaming SFA (sSFA) corresponding to R.
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As an example, if R := (speed < 5) · (speed > 20) is the pattern
for sudden acceleration, then its sSRE would be
Rs := >∗ · (speed < 5) · (speed > 20). After reading the fourth
event of the stream of Table 1, S1..4 would belong to the language
of L(Rs) and S3..4 to the language of L(R). Figure 6b shows an
example sSFA.
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Configuration

The streaming behavior of a sSFA as it consumes a stream S can
be formally defined using the notion of configuration:

Definition (Configuration of sSFA)

Assume S = t1, t2, · · · is a stream of domain elements from an
effective Boolean algebra, R a symbolic regular expression over the
same algebra and MRs a sSFA corresponding to R. A configuration
c of MRs is a tuple [i , q], where i is the current position of the
stream, i.e., the index of the next event to be consumed, and q the
current state of MRs . We say that c ′ = [i ′, q′] is a successor of c
iff:

I ∃δ ∈ MRs .∆ : δ = (q,ψ, q′) ∧ (ti ∈ JψK ∨ ψ = ε);

I i = i ′ if δ = ε. Otherwise, i ′ = i + 1.

We denote a succession by [i , q]
δ→ [i ′, q′].
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Run

The actual behavior of a sSFA upon reading a stream is captured
by the notion of the run:

Definition (Run of sSFA over stream)

A run % of a sSFA M over a stream S1..k is a sequence of successor

configurations [1, q1 = M.qs ]
δ1→ [2, q2]

δ2→ · · · δk→ [k + 1, qk+1]. A
run is called accepting iff qk+1 ∈ M.Q f .

A run % of a sSFA MRs over a stream S1..k is accepting iff
S1..k ∈ L(Rs), since MRs , after reading S1..k , must have reached a
final state. Therefore, for a sSFA that consumes a stream, the
existence of an accepting run with configuration index k + 1 implies
that a CE for the SRE R has been detected at the stream index k .
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Deterministic SFA

Definition (Deterministic SFA [DV17])

A SFA M is deterministic if, for all transitions
(q,ψ1, q1), (q,ψ2, q2) ∈ M.∆, if q1 6= q2 then Jψ1 ∧ ψ2K = ∅.
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Determinization of SFA

I First create the Minterms.

I Assume Predicates(M) = {ψ1,ψ2}.
I Then Minterms(Predicates(M)) =
{ψ1 ∧ ψ2,ψ1 ∧ ¬ψ2,¬ψ1 ∧ ψ2,¬ψ1 ∧ ¬ψ2}.

I Map each tuple to exactly one of these 4 minterms: the one
that evaluates to TRUE when applied to the element.

I Assume S=t1, · · · , tk is an event stream.

I Can be mapped to S ′=a, · · · , b.

I a corresponds to ψ1 ∧ ¬ψ2 if ψ1(t1) ∧ ¬ψ2(t1) = TRUE, b to
ψ1 ∧ ψ2, etc.
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Workflow
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Learning a PST

I Incrementally learn a PST T̂ by adding new nodes only when
it is necessary.

I Start with a tree having only a single node, corresponding to
the empty string ε.

I Decide whether to add a new context/node s by checking
I First, there must exist σ ∈ Σ such that P̂(σ | s) > θ1 must

hold, i.e., σ must appear “often enough” after the suffix s;

I Second, P̂(σ|s)

P̂(σ|suffix(s))
> θ2 (or P̂(σ|s)

P̂(σ|suffix(s))
< 1

θ2
) must hold, i.e.,

it is “meaningful enough” to expand to s because there is a
significant difference in the conditional probability of σ given s
with respect to the same probability given the shorter context
suffix(s), where suffix(s) is the longest suffix of s that is
different from s.
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Embedding
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Figure: DSFA MR for R := a · b and Σ = {a, b}.
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Embedding
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Transition matrix

Π =

(
N NF

FN F

)
where

I N is the sub-matrix containing the probabilities of transitions
from non-final to non-final states,

I F the probabilities from final to final states,

I FN the probabilities from final to non-final states and

I NF the probabilities from non-final to final states.
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Reaching a final state

Theorem ([FL03])

Let ξinit be the initial state distribution. The probability for the
time index n when the system first enters the set of states F ,
starting from a state in N, can be obtained from

P(Yn ∈ F ,Yn−1 ∈ N, · · · ,Y2 ∈ N,Y1 ∈ N | ξinit) = ξN
T
N

n−1(I−N)1

where ξN is the vector consisting of the elements of ξinit

corresponding to the states of N.
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Waiting-time distributions
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Figure: Automaton and waiting-time distributions for R = a · b · b · b,
Σ = {a, b}.
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Flow
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Forecasting types

I REGRESSION-ARGMAX: select the future point with the
highest probability.

I CLASSIFICATION-NEXTW: how likely it is that a CE will
occur within the next w input events.

I REGRESSION-INTERVAL: select the shortest possible
interval I above a threshold θfc .
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Evaluation

I In CE forecasting, emitting a forecast after every new SDE is
feasible in principle, but not very useful and can also produce
results that are misleading.

I CEs are relatively rare within a stream of input SDEs.

I If we emit a forecast after every new SDE, some of these
forecasts (possibly even the vast majority) will have a
significant temporal distance from the CE to which they refer.

I The scores and metrics that we use to evaluate the quality of
the forecasts will be dominated by these, necessarily
low-quality, distant forecasts.

I We need to establish checkpoints where forecasts are allowed
to be emitted.
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Checkpoints

I In regression experiments, CEs provide a natural point of
reference.

I In classification experiments, we can use the structure of the
automaton itself.

I For an automaton that is in a final state, the “process” which
it describes has been completed or, equivalently, that there
remains 0% of the process until completion.

I A 100% distance refers to the state(s) that are the most
distant to a final state.

I Distances of all other states through shortest paths.

I We may establish checkpoints by allowing only states with a
distance between 40% and 60% to emit forecasts.
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Metrics

I Each forecast is evaluated:
I a) as a true positive (TP) if the forecast is positive and the CE

does indeed occur within the next w events from the forecast;
I b) as a false positive (FP) if the forecast is positive and the CE

does not occur;
I c) as a true negative (TN) if the forecast is negative and the

CE does not occur and
I d) as a false negative (FN) if the forecast is negative and the

CE does occur;
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Figure: AUC for ROC curves. Extra features included: concentric rings
around the port every 3 km. Single vessel.
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Figure: AUC for ROC curves. Extra features included: concentric rings
around the port every 1 km and heading. Single vessel.
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Figure: AUC for ROC curves. Extra features included: concentric rings
around the port every 1 km. Model constructed for the 9 vessels that
have more than 100 matches.
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Definition (Semantics of SREM)

Let e be a SREM over a V-structure M and a set of register
variables R = {r1, · · · , rk}, S a string constructed from elements
of the universe of M and v , v ′ ∈ F (r1, · · · , rk ). We define the
relation (e,S , v) ` v ′ as follows:

1. (ε, S , v) ` v ′ iff S = ε and v = v ′.

2. (φ, S , v) ` v ′ iff φ 6= ε, S = u, (u, v) |= φ and v ′ = v .

3. (φ ↓ ri , S , v) ` v ′ iff S = u, (u, v) |= φ and v ′ = v [ri ← u].

4. (e1 · e2, S , v) ` v ′ iff S = S1 · S2: (e1,S1, v) ` v ′′ and
(e2,S2, v ′′) ` v ′.

5. (e1 + e2,S , v) ` v ′ iff (e1,S , v) ` v ′ or (e2,S , v) ` v ′.

6. (e∗, S , v) ` v ′ iff{
S = ε and v ′ = v or

S = S1 · S2 : (e,S1, v) ` v ′′ and (e∗,S1, v ′′) ` v ′

J
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Definition (Language accepted by a SREM)

We say that (e, S , v) infers v ′ if (e,S , v) ` v ′. We say that e
induces v on a string S if (e,S , ]) ` v , where ] denotes the
valuation in which no v(ri ) is defined, i.e., all registers are empty.
The language accepted by a SREM e is defined as
L(e) = {S | (e, S , ]) ` v} for some valuation v . J
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