Complex Event Recognition with Allen Relations

Periklis Mantenoglou2,1 Dimitrios Kelesis3,1 Alexander Artikis4,1

1NCSR Demokritos, Greece
2National and Kapodistrian University of Athens, Greece
3National Technical University of Athens, Greece
4University of Piraeus, Greece

http://cer.iit.demokritos.gr/
Complex Event Recognition

INPUT ▶ RECOGNITION ▶ OUTPUT ▶
Complex
Event
Recognition
System
Complex Event
Definitions
Simple Event Stream
. . .
. . .
Complex Event Stream
. . .
. . .

https://cer.iit.demokritos.gr (maritime)
Complex Event Recognition

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Complex Event Definitions

https://cer.iit.demokritos.gr (maritime)
Event Calculus

• A logic programming language for representing and reasoning about events and their effects.
• Key components:
 • event (typically instantaneous).
 • fluent: a property that may have different values at different points in time.

Event Calculus

- A logic programming language for representing and reasoning about events and their effects.

- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.

- Built-in representation of inertia:
 - $F = V$ holds at a particular time-point if $F = V$ has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

Run-Time Event Calculus (RTEC): Fluent Specification

Simple Fluents:

\text{initiatedAt}(F = V, T) \leftarrow \text{happensAt}(E_{In1}, T)[, conditions].
\vdots
\text{terminatedAt}(F = V, T) \leftarrow \text{happensAt}(E_{T1}, T)[, conditions].
\vdots

where conditions:

\begin{align*}
0-K & \ [\text{not}] \ \text{happensAt}(E_k, T), \\
0-M & \ [\text{not}] \ \text{holdsAt}(F_m = V_m, T), \\
0-N & \text{atemporal-constraint}_n
\end{align*}

Run-Time Event Calculus (RTEC): Fluent Specification

Simple Fluents:

\[
\text{initiatedAt}(F = V, T) \leftarrow \text{happensAt}(E_{I_{n_1}}, T)[, \text{conditions}].
\]

\[
\text{terminatedAt}(F = V, T) \leftarrow \text{happensAt}(E_{T_{T_1}}, T)[, \text{conditions}].
\]

where conditions:

\[
0^{-K} [\text{not}] \text{happensAt}(E_k, T),
\]

\[
0^{-M} [\text{not}] \text{holdsAt}(F_m = V_m, T),
\]

\[
0^{-N} \text{atemporal-constraint}_n
\]

Statically Determined Fluents:

\[
\text{holdsFor}(F = V, I) \leftarrow
\text{holdsFor}(F_1 = V_1, I_1)[, \text{conditions}],
\text{holdsFor}(F_2 = V_2, I_2), \ldots
\text{holdsFor}(F_n = V_n, I_n),
\text{intervalConstruct}(L_1, I_{n+1}), \ldots
\text{intervalConstruct}(L_m, I)].
\]

where intervalConstruct:

\text{union_all} or \text{intersect_all} or \text{relative_complement_all}

Statically Determined Fluent: Anchored or Moored

\[
\text{holdsFor}(\text{anchoredOrMoored}(Vessel) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{stopped}(Vessel) = \text{farFromPorts}, I_{sf}), \\
\text{holdsFor}(\text{withinArea}(Vessel, \text{anchorage}) = \text{true}, I_{wa}), \\
\text{intersect_all}([I_{sf}, I_{wa}], I_{sa}), \\
\text{holdsFor}(\text{stopped}(Vessel) = \text{nearPorts}, I_{sn}), \\
\text{union_all}([I_{sa}, I_{sn}], I).
\]
Statically Determined Fluent:
Anchored or Moored

\[
\text{holdsFor}(\text{anchoredOrMoored}(\text{Vessel}) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{stopped}(\text{Vessel}) = \text{farFromPorts}, I_{sf}), \\
\text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{anchorage}) = \text{true}, I_{wa}), \\
\text{intersect_all}([I_{sf}, I_{wa}], I_{sa}), \\
\text{holdsFor}(\text{stopped}(\text{Vessel}) = \text{nearPorts}, I_{sn}), \\
\text{union_all}([I_{sa}, I_{sn}], I).
\]
Statically Determined Fluent:
Anchored or Moored

\[\text{holdsFor}(\text{anchoredOrMoored}(\text{Vessel}) = \text{true}, \ I) \leftarrow \]
\[\text{holdsFor}(\text{stopped}(\text{Vessel}) = \text{farFromPorts}, \ l_{sf}), \]
\[\text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{anchorage}) = \text{true}, \ l_{wa}), \]
\[\text{intersect}_\text{all}([l_{sf}, l_{wa}], \ l_{sa}), \]
\[\text{holdsFor}(\text{stopped}(\text{Vessel}) = \text{nearPorts}, \ l_{sn}), \]
\[\text{union}_\text{all}([l_{sa}, l_{sn}], \ I).\]
Statically Determined Fluent: Anchored or Moored

\[
holdsFor(anchoredOrMoored(Vessel) = true, I) \leftarrow \\
holdsFor(stopped(Vessel) = farFromPorts, I_{sf}), \\
holdsFor(withinArea(Vessel, anchorage) = true, I_{wa}), \\
intersect_all([I_{sf}, I_{wa}], I_{sa}), \\
holdsFor(stopped(Vessel) = nearPorts, I_{sn}), \\
union_all([I_{sa}, I_{sn}], I).
\]
Statically Determined Fluent: Anchored or Moored

\[\text{holdsFor}(\text{anchoredOrMoored}(Vessel) = \text{true}, I) \leftarrow \]
\[\text{holdsFor}(\text{stopped}(Vessel) = \text{farFromPorts}, I_{sf}), \]
\[\text{holdsFor}(\text{withinArea}(Vessel, anchorage) = \text{true}, I_{wa}), \]
\[\text{intersect_all}(I_{sf}, I_{wa}, I_{sa}), \]
\[\text{holdsFor}(\text{stopped}(Vessel) = \text{nearPorts}, I_{sn}), \]
\[\text{union_all}(I_{sa}, I_{sn}, I). \]
Statically Determined Fluent: Anchored or Moored

\[
\text{holdsFor}(\text{anchoredOrMoored}(\text{Vessel}) = \text{true}, \ I) \leftarrow \\
\text{holdsFor}(\text{stopped}(\text{Vessel}) = \text{farFromPorts}, \ I_\text{sf}), \\
\text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{anchorage}) = \text{true}, \ I_\text{wa}), \\
\text{intersect_all}([I_\text{sf}, I_\text{wa}], \ I_\text{sa}), \\
\text{holdsFor}(\text{stopped}(\text{Vessel}) = \text{nearPorts}, \ I_\text{sn}), \\
\text{union_all}([I_\text{sa}, I_\text{sn}], \ I).
\]

![Diagram showing time line with intervals for different states: I, I_sn, I_sa, I_wa, I_sf]

https://cer.iit.demokritos.gr (maritime)
Interval Constructs & Allen Relations

\[
\begin{align*}
\text{relative_complement_all} & (I_1, [I_2, I_3], I_c) \\
\text{intersect_all} & ([I_1, I_2, I_3], I_i) \\
\text{union_all} & ([I_1, I_2, I_3], I_u)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Relation</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>before(i^s, i^t)</td>
<td>i^s</td>
</tr>
<tr>
<td>meets(i^s, i^t)</td>
<td>i^s</td>
</tr>
<tr>
<td>starts(i^s, i^t)</td>
<td>i^t</td>
</tr>
<tr>
<td>finishes(i^s, i^t)</td>
<td>i^s</td>
</tr>
<tr>
<td>during(i^s, i^t)</td>
<td>i^s</td>
</tr>
<tr>
<td>overlaps(i^s, i^t)</td>
<td>i^s</td>
</tr>
<tr>
<td>equal(i^s, i^t)</td>
<td>i^s</td>
</tr>
</tbody>
</table>
RTEC_A: RTEC with Allen Relations

\[
\text{holdsFor}(\text{disappearedInArea}(\text{Vessel}, \text{Area Type}) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{Area Type}) = \text{true}, S), \\
\text{holdsFor}(\text{gap}(\text{Vessel}) = \text{farFromPorts}, T), \\
\text{allen}(\text{meets}, S, T, \text{target}, I).
\]
\textbf{RTEC}_A: RTEC with Allen Relations

\begin{align*}
\text{holdsFor}(\text{disappearedInArea}(Vessel, \text{Area Type}) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{withinArea}(Vessel, \text{Area Type}) = \text{true}, S), \\
\text{holdsFor}(\text{gap}(Vessel) = \text{farFromPorts}, T), \\
\text{allen}(\text{meets}, S, T, \text{target}, I).
\end{align*}
RTEC$_A$: RTEC with Allen Relations

\[
\text{holdsFor}(\text{disappearedInArea}(\text{Vessel}, \text{Area Type}) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{Area Type}) = \text{true}, S), \\
\text{holdsFor}(\text{gap}(\text{Vessel}) = \text{farFromPorts}, T), \\
\text{allen}(\text{meets}, S, T, \text{target}, I).
\]
RTEC\textsubscript{A}: RTEC with Allen Relations

\[
\text{holdsFor}(\text{disappearedInArea}(Vessel, \text{Area Type}) = \text{true}, I) \leftarrow \text{holdsFor}(\text{withinArea}(Vessel, \text{Area Type}) = \text{true}, S), \text{holdsFor}(\text{gap}(Vessel) = \text{farFromPorts}, T), \text{allen}(<\text{meets}, S, T, \text{target}, I>).
\]
RTEC\(_A\): Windowing

\[
\text{holdsFor}(\text{disappearedInArea}(\text{Vessel}, \text{Area Type}) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{Area Type}) = \text{true}, S), \\
\text{holdsFor}(\text{gap}(\text{Vessel}) = \text{farFromPorts}, T), \\
\text{allen}(\text{meets}, S, T, \text{target}, I).
\]

Query time: \(q_{81}\)

\[
\begin{align*}
&\quad S \\
&\quad T \\
&\quad \quad \quad \quad q_{81}
\end{align*}
\]
RTEC_A: Windowing

holdsFor(disappearedInArea(Vessel, Area Type) = true, I) ← holdsFor(withinArea(Vessel, Area Type) = true, S), holdsFor(gap(Vessel) = farFromPorts, T), allen(meets, S, T, target, I).

Query time: q_{81}

\[w_{81} \]

\[S \hspace{1cm} \]

\[q_{81} \]

\[T \hspace{1cm} \]

\[q_{81} \]
RTECₐ: Windowing

\[
\text{holdsFor}(\text{disappearedInArea}(\text{Vessel}, \text{Area Type}) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{Area Type}) = \text{true}, S), \\
\text{holdsFor}(\text{gap}(\text{Vessel}) = \text{farFromPorts}, T), \\
\text{allen}(\text{meets}, S, T, \text{target}, I).
\]

Query time: \(q_{81}\)

\[
\begin{array}{c}
\text{S} \\
\vdots_{i_1} \\
\text{T} \\
\vdots_{i_2}
\end{array}
\]

\[
\begin{array}{c}
\text{w}_{81} \\
\text{q}_{81}
\end{array}
\]

\[
\text{q}_{81}
\]
holdsFor(disappearedInArea(Vessel, AreaType) = true, I) ←
holdsFor(withinArea(Vessel, AreaType) = true, S),
holdsFor(gap(Vessel) = farFromPorts, T),
allen(meets, S, T, target, I).

Query time: q_{81}
\textbf{RTEC}_A: Windowing

\begin{align*}
\text{holdsFor}(\text{disappearedInArea}(\text{Vessel}, \text{Area Type}) = \text{true}, l) & \leftarrow \\
\text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{Area Type}) = \text{true}, S), \\
\text{holdsFor}(\text{gap}(\text{Vessel}) = \text{farFromPorts}, T), \\
\text{allen}(\text{meets}, S, T, \text{target}, l).
\end{align*}

\textbf{Query time: } q_{82}

\begin{tikzpicture}
 \draw[->] (-2,0) -- (4,0);
 \node at (-2,0) {S};
 \node at (4,0) {T};
 \node at (-2,0.2) {q_{81}};
 \node at (4,0.2) {q_{82}};
 \draw (0,0) -- (2,0);
 \draw[red] (1,0) -- (1,0.2);
 \draw[blue] (2.5,0) -- (3.5,0);
\end{tikzpicture}
\textbf{RTEC}_A: Windowing

\begin{equation*}
\text{holdsFor}(\text{disappearedInArea}(\text{Vessel}, \text{Area Type}) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{Area Type}) = \text{true}, S), \\
\text{holdsFor}(\text{gap}(\text{Vessel}) = \text{farFromPorts}, T), \\
\text{allen}(\text{meets}, S, T, \text{target}, I).
\end{equation*}

\begin{center}
Query time: $q_{82} \quad w_{82} \quad S \quad T \quad q_{81} \quad q_{82}$
\end{center}
RTEC\textsubscript{A}: Windowing

\[
\text{holdsFor}(\text{disappearedInArea}(Vessel, \text{Area Type}) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{withinArea}(Vessel, \text{Area Type}) = \text{true}, S), \\
\text{holdsFor}(\text{gap}(Vessel) = \text{farFromPorts}, T), \\
\text{allen}(\text{meets}, S, T, \text{target}, I).
\]

\text{Query time: } q_{82}

\text{Query time: } q_{82}

\text{is, } q_{82}

\text{2, it, } q_{82}

\text{Query time: } q_{82}

\text{Query time: } q_{82}
holdsFor(disappearedInArea(Vessel, AreaType) = true, I) ←
holdsFor(withinArea(Vessel, AreaType) = true, S),
holdsFor(gap(Vessel) = farFromPorts, T),
allen(meets, S, T, target, I).

Query time: q_{82}

w_{82}
RTEC_A: Windowing

\[\text{holdsFor}(\text{disappearedInArea}(\text{Vessel}, \text{Area Type}) = \text{true}, I) \leftarrow \text{holdsFor}(\text{withinArea}(\text{Vessel}, \text{Area Type}) = \text{true}, S), \]
\[\text{holdsFor}(\text{gap}(\text{Vessel}) = \text{farFromPorts}, T), \]
\[\text{allen}(\text{meets}, S, T, \text{target}, I). \]

Query time: \(q_{82} \)
RTEC_A: Correctness & Complexity

<table>
<thead>
<tr>
<th>Correctness of RTEC_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTEC_A computes all maximal intervals of a fluent defined in terms of an Allen relation, and no other interval.</td>
</tr>
</tbody>
</table>
Correctness of RTEC$_A$

RTEC$_A$ computes all maximal intervals of a fluent defined in terms of an Allen relation, and no other interval.

Complexity of RTEC$_A$

The cost of computing the maximal intervals of a fluent defined in terms of an Allen relation is $O(n)$, where n is the number of input intervals.
Experimental Evaluation

Code, Data & Temporal Specifications:

- https://github.com/aartikis/RTEC/tree/allen
Experimental Evaluation

<table>
<thead>
<tr>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input Intervals</th>
<th>RTEC\textsubscript{A}</th>
<th>D2IA</th>
<th>RTEC\textsubscript{A}</th>
<th>D2IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>19K</td>
<td>40</td>
<td>410</td>
<td>6K</td>
<td>6K</td>
</tr>
<tr>
<td>37K</td>
<td>65</td>
<td>592</td>
<td>9K</td>
<td>9K</td>
</tr>
<tr>
<td>74K</td>
<td>99</td>
<td>1.1K</td>
<td>16K</td>
<td>16K</td>
</tr>
<tr>
<td>148K</td>
<td>156</td>
<td>1.6K</td>
<td>32K</td>
<td>31K</td>
</tr>
<tr>
<td>297K</td>
<td>285</td>
<td>2.7K</td>
<td>77K</td>
<td>76K</td>
</tr>
</tbody>
</table>
Summary & Further Work

RTEC_A:

- An open-source complex event recognition framework.
- Support for Allen relations in event patterns.
- Correct Allen relation computation with windowing.
- Linear time complexity.
- Reproducible empirical evaluation on large, real data streams.

Further Work:

- Support approximate Allen relations.
- Contrast Allen relation with event sequencing operators.
- Support events with delayed effects.
Summary & Further Work

RTEC_A:

- An open-source complex event recognition framework.
- Support for Allen relations in event patterns.
- Correct Allen relation computation with windowing.
- Linear time complexity.
- Reproducible empirical evaluation on large, real data streams.

Further Work:

- Support approximate Allen relations.
- Contrast Allen relation with event sequencing operators.
- Support events with delayed effects.
Run-Time Event Calculus (RTEC)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>happensAt(E, T)</td>
<td>Event E occurs at time T</td>
</tr>
<tr>
<td>initiatedAt($F = V$, T)</td>
<td>At time T a period of time for which $F = V$ is initiated</td>
</tr>
<tr>
<td>terminatedAt($F = V$, T)</td>
<td>At time T a period of time for which $F = V$ is terminated</td>
</tr>
<tr>
<td>holdsFor($F = V$, I)</td>
<td>I is the list of the maximal intervals for which $F = V$ holds continuously</td>
</tr>
<tr>
<td>holdsAt($F = V$, T)</td>
<td>The value of fluent F is V at time T</td>
</tr>
<tr>
<td>union_all([J_1, \ldots, J_n], I)</td>
<td>$I = (J_1 \cup \ldots \cup J_n)$</td>
</tr>
<tr>
<td>intersect_all([J_1, \ldots, J_n], I)</td>
<td>$I = (J_1 \cap \ldots \cap J_n)$</td>
</tr>
<tr>
<td>relative_complement_all(I', [J_1, \ldots, J_n], I)</td>
<td>$I = I' \setminus (J_1 \cup \ldots \cup J_n)$</td>
</tr>
</tbody>
</table>

Run-Time Event Calculus (RTEC)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>happensAt(E, T)</code></td>
<td>Event E occurs at time T</td>
</tr>
<tr>
<td><code>initiatedAt(F = V, T)</code></td>
<td>At time T a period of time for which $F = V$ is initiated</td>
</tr>
<tr>
<td><code>terminatedAt(F = V, T)</code></td>
<td>At time T a period of time for which $F = V$ is terminated</td>
</tr>
<tr>
<td><code>holdsFor(F = V, I)</code></td>
<td>I is the list of the maximal intervals for which $F = V$ holds continuously</td>
</tr>
<tr>
<td><code>holdsAt(F = V, T)</code></td>
<td>The value of fluent F is V at time T</td>
</tr>
<tr>
<td><code>union_all([J₁, ..., Jₙ], I)</code></td>
<td>$I = (J₁ \cup ... \cup Jₙ)$</td>
</tr>
<tr>
<td><code>intersect_all([J₁, ..., Jₙ], I)</code></td>
<td>$I = (J₁ \cap ... \cap Jₙ)$</td>
</tr>
<tr>
<td><code>relative_complement_all(I', [J₁, ..., Jₙ], I)</code></td>
<td>$I = I' \setminus (J₁ \cup ... \cup Jₙ)$</td>
</tr>
</tbody>
</table>

relative_complement_all
(I₁, [I₂], I)

\[
(I₁, [I₂], I)
\]
RTEC\(_A\): RTEC with Allen Relations

\[
\text{holdsFor}(\text{suspiciousRendezVous}(\text{Vessel}_1, \text{Vessel}_2) = \text{true}, I) \leftarrow \\
\text{holdsFor}(\text{gap}(\text{Vessel}_1) = \text{farFromPorts}, I_{g_1}), \\
\text{holdsFor}(\text{gap}(\text{Vessel}_2) = \text{farFromPorts}, I_{g_2}), \\
\text{holdsFor}(\text{proximity}(\text{Vessel}_1, \text{Vessel}_2) = \text{true}, T), \\
\text{union_all}([I_{g_1}, I_{g_2}, S]), \\
\text{allen}(\text{during}, S, T, \text{target}, I).
\]
Experimental Evaluation

Batch setting.

<table>
<thead>
<tr>
<th>Batch size</th>
<th>Reasoning Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Intervals</td>
<td>RTEC<sub>A</sub></td>
</tr>
<tr>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>2K</td>
<td>14</td>
</tr>
<tr>
<td>20K</td>
<td>154</td>
</tr>
<tr>
<td>200K</td>
<td>1.8K</td>
</tr>
</tbody>
</table>

Streaming setting.

<table>
<thead>
<tr>
<th>Window size</th>
<th>Reasoning Time</th>
<th>Output Interval Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
<td>Input Intervals</td>
<td>RTEC<sub>A</sub></td>
</tr>
<tr>
<td>1</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1K</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>2K</td>
<td>15</td>
</tr>
</tbody>
</table>