
Scalable Complex Event Recognition

Efthimis Tsilionis

National and Kapodistrian University of Athens, Greece
NCSR Demokritos, Greece

1/24

Complex Event Recognition

Input ▶ Recognition ▶ Output ■

Event

Recognition

System

Complex

Event

Definitions

Simple Events

.

.

Complex Events

.

.

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ Event Calculus: Reasoning about events and their effects.

▶ Event Calculus for Run-Time Reasoning (RTEC): EC with
optimization techniques for CER.Motivation: Modify the what and how to achieve scalability.

Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ Event Calculus: Reasoning about events and their effects.

▶ Event Calculus for Run-Time Reasoning (RTEC): EC with
optimization techniques for CER.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

The language specifies:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

The language specifies:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

The language specifies:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

The language specifies:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.

Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

The language specifies:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

The language specifies:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

2/24

Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

The language specifies:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).

3/24

Publications

Journal Publications:

▶ Tsilionis E., Artikis A., Paliouras G., Incremental Event Calculus for Run-Time
Reasoning. In Journal of Artificial Intelligence Research (JAIR), 73, pp.
967—1023, 2022.

▶ Tsilionis E., Koutroumanis N., Nikitopoulos P., Doulkeridis C. and Artikis A.,
Online Event Recognition from Moving Vehicles. In Theory and Practice of
Logic Programming (TPLP), 19(5-6), pp. 841—856, 2019.

Conference Publications:

▶ Tsilionis E., Artikis A., Paliouras G., A Tensor-Based Formalization of the Event
Calculus. In Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI-24, pp. 3584–3592, 2024.

▶ Tsilionis E., Artikis A., Paliouras G., Incremental Event Calculus for Run-Time
Reasoning (Extended Abstract). In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI–23, pp.
6974-6978, 2023.

▶ Tsilionis E., Artikis A. and Paliouras G., Incremental Event Calculus for
Run-Time Reasoning. In 13th International Conference on Distributed and
Event-Based Systems (DEBS), pp. 79–90, 2019.

4/24

Background
Event Calculus

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.

▶ Built-in representation of inertia:
▶ F = V holds at a particular time-point if F = V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

5/24

Background
Run-Time Event Calculus (RTEC)

Input ▶ Recognition ▶ Output ■

RTEC

Complex

Event

Definitions

Simple Events

.

.

happensAt(gap start(v1), t1)
happensAt(change in heading(v2), t1)
happensAt(gap end(v1), t10)
happensAt(gap end(v2), t12)
...

Complex Events

.

.

holdsFor(gap(v1) = nearPorts, [t2 , t11))
holdsFor(rendezVous(v1 ,v2)=true, [t3, t8))
...

Simple Fluents Statically Determined Fluents

holdsFor(rendezVous(Vessel1 ,Vessel2)=true, I)←
holdsFor(proximity(Vessel1 ,Vessel2)=true, Ip),

initiatedAt(gap(Vessel) = nearPorts, T)← holdsFor(lowSpeed(Vessel1)=true, Il1),

happensAt(gap start(Vessel), T), holdsFor(lowSpeed(Vessel2)=true, Il2),

holdsAt(withinArea(Vessel ,nearPorts) = true, T). holdsFor(stopped(Vessel1)=farFromPorts, Is1),

holdsFor(stopped(Vessel2)=farFromPorts, Is2),

terminatedAt(gap(Vessel) = Value, T)← union all([Il1, Is1], I1),

happensAt(gap end(Vessel), T). union all([Il2, Is2], I2),

intersect all([I1, I2, Ip], I).

6/24

Simple Fluent: Communication Gap Far From Ports

initiatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap start(Vessel), T),

not holdsAt(withinArea(Vessel ,nearPorts)=true, T).

terminatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap end(Vessel), T).

Reasoning: holdsFor(gap(Vessel)=farFromPorts, I)

gap start

withinArea

gap end

time

farFromPorts

6/24

Simple Fluent: Communication Gap Far From Ports

initiatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap start(Vessel), T),

not holdsAt(withinArea(Vessel ,nearPorts)=true, T).

terminatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap end(Vessel), T).

Reasoning: holdsFor(gap(Vessel)=farFromPorts, I)

gap start

withinArea

gap end

time

farFromPorts

6/24

Simple Fluent: Communication Gap Far From Ports

initiatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap start(Vessel), T),

not holdsAt(withinArea(Vessel ,nearPorts)=true, T).

terminatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap end(Vessel), T).

Reasoning: holdsFor(gap(Vessel)=farFromPorts, I)

gap start

withinArea

gap end

time

farFromPorts

6/24

Simple Fluent: Communication Gap Far From Ports

initiatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap start(Vessel), T),

not holdsAt(withinArea(Vessel ,nearPorts)=true, T).

terminatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap end(Vessel), T).

Reasoning: holdsFor(gap(Vessel)=farFromPorts, I)

gap start

withinArea

gap end

time

farFromPorts

6/24

Simple Fluent: Communication Gap Far From Ports

initiatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap start(Vessel), T),

not holdsAt(withinArea(Vessel ,nearPorts)=true, T).

terminatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap end(Vessel), T).

Reasoning: holdsFor(gap(Vessel)=farFromPorts, I)

gap start

withinArea

gap end

time

farFromPorts

6/24

Simple Fluent: Communication Gap Far From Ports

initiatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap start(Vessel), T),

not holdsAt(withinArea(Vessel ,nearPorts)=true, T).

terminatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap end(Vessel), T).

Reasoning: holdsFor(gap(Vessel)=farFromPorts, I)

gap start

withinArea

gap end

time

farFromPorts

6/24

Simple Fluent: Communication Gap Far From Ports

initiatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap start(Vessel), T),

not holdsAt(withinArea(Vessel ,nearPorts)=true, T).

terminatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap end(Vessel), T).

Reasoning: holdsFor(gap(Vessel)=farFromPorts, I)

gap start

withinArea

gap end

time

farFromPorts

7/24

Hierarchical Event Descriptions

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling

lowSpeed

tugging

Semantics

An event description is a locally stratified logic program, i.e., it has
a unique perfect model.

7/24

Hierarchical Event Descriptions

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling

lowSpeed

tugging

Semantics

An event description is a locally stratified logic program, i.e., it has
a unique perfect model.

8/24

Part 1: Modify the what
Incremental CER

▶ Delayed events (e.g., satellite GPS messages)

▶ Overlapping temporal windows

9/24

Problem Statement
RTEC

9/24

Problem Statement
RTEC

9/24

Problem Statement
RTEC

9/24

Problem Statement
RTEC

9/24

Problem Statement
RTEC

9/24

Problem Statement
RTEC

9/24

Problem Statement
RTEC

10/24

RTECinc: Deletion Phase

time

ω

time

ω

qiqi-1

qi-1 - ω

qi - ω

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

qi-1

initiatedAt(F=V,T) ←

10/24

RTECinc: Deletion Phase

time

ω

time

ω

qiqi-1

qi-1 - ω

qi - ω

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

qi-1

[happensAt(A,T)]
del v

[holdsAt(B=VB,T)]
del

 v

[happensAt(C,T)]
ins

 v

[holdsAt(D=VD,T)]
ins

 .

initiatedAt(F=V,T) ←

[initiatedAt(F=V,T)]
Qi-1

 ←

10/24

RTECinc: Deletion Phase

time

ω

time

ω

qiqi-1

qi-1 - ω

qi - ω

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

qi-1

[happensAt(A,T)]
del v

[holdsAt(B=VB,T)]
del

 v

[happensAt(C,T)]
ins

 v

[holdsAt(D=VD,T)]
ins

 .

initiatedAt(F=V,T) ←

[initiatedAt(F=V,T)]
Qi-1

 ←

10/24

RTECinc: Deletion Phase

time

ω

time

ω

qiqi-1

qi-1 - ω

qi - ω

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

qi-1

[happensAt(A,T)]
del v

[holdsAt(B=VB,T)]
del

 v

[happensAt(C,T)]
ins

 v

[holdsAt(D=VD,T)]
ins

 .

initiatedAt(F=V,T) ←

[initiatedAt(F=V,T)]
Qi-1

 ←

10/24

RTECinc: Deletion Phase

time

ω

time

ω

qiqi-1

qi-1 - ω

qi - ω

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

qi-1

[happensAt(A,T)]
del v

[holdsAt(B=VB,T)]
del

 v

[happensAt(C,T)]
ins

 v

[holdsAt(D=VD,T)]
ins

 .

initiatedAt(F=V,T) ←

[initiatedAt(F=V,T)]
Qi-1

 ←

11/24

RTECinc: Addition Phase

initiatedAt(F=V, T)←[
happensAt(A, T)

]ins
,[

holdsAt(B=VB, T)
]Qi

,

not

[
happensAt(C, T)

]Qi

,

not

[
holdsAt(D=VD, T)

]Qi

.

(a)

initiatedAt(F=V, T)←[
happensAt(A, T)

]Qi\ins
,[

holdsAt(B=VB, T)
]ins

,

not

[
happensAt(C, T)

]Qi

,

not

[
holdsAt(D=VD, T)

]Qi

.

(b)

initiatedAt(F=V, T)←[
happensAt(C, T)

]del
,[

happensAt(A, T)
]Qi\ins

,[
holdsAt(B=VB, T)

]Qi\ins
,

not

[
holdsAt(D=VD, T)

]Qi

.

(c)

initiatedAt(F=V, T)←[
happensAt(A, T)

]Qi\ins
,[

holdsAt(D=VD, T)
]del

,[
holdsAt(B=VB, T)

]Qi\ins
,

not

[
happensAt(C, T)

]Qi ∪ del
.

(d)

12/24

RTECinc: Addition Phase
Delta rule (a)

time

ω

qiqi-1qi - ω

12/24

RTECinc: Addition Phase
Delta rule (a)

time

ω

qiqi-1qi - ω

[happensAt(A,T)]
ins ,

[holdsAt(B=VB,T)]
Qi

 ,

[not happensAt(C,T)]
Qi

 ,

[not holdsAt(D=VD,T)]
Qi

 .

12/24

RTECinc: Addition Phase
Delta rule (a)

time

ω

qiqi-1qi - ω

[happensAt(A,T)]
ins ,

[holdsAt(B=VB,T)]
Qi

 ,

[not happensAt(C,T)]
Qi

 ,

[not holdsAt(D=VD,T)]
Qi

 .

12/24

RTECinc: Addition Phase
Delta rule (a)

time

ω

qiqi-1qi - ω

[happensAt(A,T)]
ins ,

[holdsAt(B=VB,T)]
Qi

 ,

[not happensAt(C,T)]
Qi

 ,

[not holdsAt(D=VD,T)]
Qi

 .

12/24

RTECinc: Addition Phase
Delta rule (a)

time

ω

qiqi-1qi - ω

[happensAt(A,T)]
ins ,

[holdsAt(B=VB,T)]
Qi

 ,

[not happensAt(C,T)]
Qi

 ,

[not holdsAt(D=VD,T)]
Qi

 .

13/24

RTECinc: Formal properties

Correctness

RTECinc computes exactly the same intervals of the fluents of an
event description as RTEC, and no other interval.

Complexity

The most important factor for performance improvement is the
ratio of delayed insertions/retractions to the degree of overlap:

n× e

mOV

< 1

13/24

RTECinc: Formal properties

Correctness

RTECinc computes exactly the same intervals of the fluents of an
event description as RTEC, and no other interval.

Complexity

The most important factor for performance improvement is the
ratio of delayed insertions/retractions to the degree of overlap:

n× e

mOV

< 1

14/24

RTECinc: Empirical Evaluation

1h/39K 2h/79K 4h/158K 8h/317K 16h/635K
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

≈18%
≈26%

≈52%

≈70%

≈82%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

12h/11K 24h/23K 48h/51K 96h/117K 168h/224K
0

10

20

30

40

50

60

70

80

90

100

≈44%
≈56% ≈72%

≈78%

≈80%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

14/24

RTECinc: Empirical Evaluation

1h/39K 2h/79K 4h/158K 8h/317K 16h/635K
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

≈18%
≈26%

≈52%

≈70%

≈82%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

12h/11K 24h/23K 48h/51K 96h/117K 168h/224K
0

10

20

30

40

50

60

70

80

90

100

≈44%
≈56% ≈72%

≈78%

≈80%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

14/24

RTECinc: Empirical Evaluation

1h/39K 2h/79K 4h/158K 8h/317K 16h/635K
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

≈18%
≈26%

≈52%

≈70%

≈82%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

12h/11K 24h/23K 48h/51K 96h/117K 168h/224K
0

10

20

30

40

50

60

70

80

90

100

≈44%
≈56% ≈72%

≈78%

≈80%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

15/24

Part 2: Modify the how
Logical Inference in Tensor Spaces

▶ Numerical computation has potential to cope with Web scale
data.

▶ Logical reasoning through algebraic operations is a step
towards neuro-symbolic integration.

▶ Use of efficient (parallel) algorithms and great computing
resources (GPUs).

15/24

Part 2: Modify the how
Logical Inference in Tensor Spaces

▶ Numerical computation has potential to cope with Web scale
data.

▶ Logical reasoning through algebraic operations is a step
towards neuro-symbolic integration.

▶ Use of efficient (parallel) algorithms and great computing
resources (GPUs).

15/24

Part 2: Modify the how
Logical Inference in Tensor Spaces

▶ Numerical computation has potential to cope with Web scale
data.

▶ Logical reasoning through algebraic operations is a step
towards neuro-symbolic integration.

▶ Use of efficient (parallel) algorithms and great computing
resources (GPUs).

15/24

Part 2: Modify the how
Logical Inference in Tensor Spaces

▶ Numerical computation has potential to cope with Web scale
data.

▶ Logical reasoning through algebraic operations is a step
towards neuro-symbolic integration.

▶ Use of efficient (parallel) algorithms and great computing
resources (GPUs).

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

r

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

r

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

r

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

r

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

16/24

Tensor-EC: Encoding

▶ Domain entities: N

▶ Window time-points: Ω

happensAt(e(X,Y), T)

r

N

N

Ω

R

R i,j,k =


1, ifMP |= r, for ci, cj , tk

0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

17/24

Tensor-EC: Reasoning

Negation:

N

N
Ω

−

not

N

N
Ω

happensAt(a(X,Y), T)

=
N

N
Ω

Conjunction:

N

N
Ω

happensAt(a(X,Y), T)

⊙

,

N

N
Ω

holdsAt(b(X,Y), T)

=
N

N
Ω

Disjunction:

N

N
Ω

happensAt(a(X,Y), T)

+

∨

N

N
Ω

holdsAt(b(X,Y), T)

θ>1
=

N

N
Ω

17/24

Tensor-EC: Reasoning
Negation:

N

N
Ω

−

not

N

N
Ω

happensAt(a(X,Y), T)

=
N

N
Ω

Conjunction:

N

N
Ω

happensAt(a(X,Y), T)

⊙

,

N

N
Ω

holdsAt(b(X,Y), T)

=
N

N
Ω

Disjunction:

N

N
Ω

happensAt(a(X,Y), T)

+

∨

N

N
Ω

holdsAt(b(X,Y), T)

θ>1
=

N

N
Ω

17/24

Tensor-EC: Reasoning
Negation:

N

N
Ω

−

not

N

N
Ω

happensAt(a(X,Y), T)

=
N

N
Ω

Conjunction:

N

N
Ω

happensAt(a(X,Y), T)

⊙

,

N

N
Ω

holdsAt(b(X,Y), T)

=
N

N
Ω

Disjunction:

N

N
Ω

happensAt(a(X,Y), T)

+

∨

N

N
Ω

holdsAt(b(X,Y), T)

θ>1
=

N

N
Ω

17/24

Tensor-EC: Reasoning
Negation:

N

N
Ω

−

not

N

N
Ω

happensAt(a(X,Y), T)

=
N

N
Ω

Conjunction:

N

N
Ω

happensAt(a(X,Y), T)

⊙

,

N

N
Ω

holdsAt(b(X,Y), T)

=
N

N
Ω

Disjunction:

N

N
Ω

happensAt(a(X,Y), T)

+

∨

N

N
Ω

holdsAt(b(X,Y), T)

θ>1
=

N

N
Ω

17/24

Tensor-EC: Reasoning
Negation:

N

N
Ω

−

not

N

N
Ω

happensAt(a(X,Y), T)

=
N

N
Ω

Conjunction:

N

N
Ω

happensAt(a(X,Y), T)

⊙

,

N

N
Ω

holdsAt(b(X,Y), T)

=
N

N
Ω

Disjunction:

N

N
Ω

happensAt(a(X,Y), T)

+

∨

N

N
Ω

holdsAt(b(X,Y), T)

θ>1
=

N

N
Ω

17/24

Tensor-EC: Reasoning
Negation:

N

N
Ω

−

not

N

N
Ω

happensAt(a(X,Y), T)

=
N

N
Ω

Conjunction:

N

N
Ω

happensAt(a(X,Y), T)

⊙

,

N

N
Ω

holdsAt(b(X,Y), T)

=
N

N
Ω

Disjunction:

N

N
Ω

happensAt(a(X,Y), T)

+

∨

N

N
Ω

holdsAt(b(X,Y), T)

θ>1
=

N

N
Ω

17/24

Tensor-EC: Reasoning
Negation:

N

N
Ω

−

not

N

N
Ω

happensAt(a(X,Y), T)

=
N

N
Ω

Conjunction:

N

N
Ω

happensAt(a(X,Y), T)

⊙

,

N

N
Ω

holdsAt(b(X,Y), T)

=
N

N
Ω

Disjunction:

N

N
Ω

happensAt(a(X,Y), T)

+

∨

N

N
Ω

holdsAt(b(X,Y), T)

θ>1
=

N

N
Ω

18/24

Tensor-EC: Reasoning
Rule Evaluation

initiatedAt(fl(X,Y)=v, T) ←
happensAt(e(X,Y), T) ,

holdsAt(d(X,Y)=vd, T) .

N

N
Ω

⊙

N

N
Ω

=

N

N
Ω

18/24

Tensor-EC: Reasoning
Rule Evaluation

initiatedAt(fl(X,Y)=v, T) ←
happensAt(e(X,Y), T) ,

holdsAt(d(X,Y)=vd, T) . N

N
Ω

⊙

N

N
Ω

=

N

N
Ω

18/24

Tensor-EC: Reasoning
Rule Evaluation

initiatedAt(fl(X,Y)=v, T) ←
happensAt(e(X,Y), T) ,

holdsAt(d(X,Y)=vd, T) . N

N
Ω

⊙

N

N
Ω

=

N

N
Ω

18/24

Tensor-EC: Reasoning
Rule Evaluation

initiatedAt(fl(X,Y)=v, T) ←
happensAt(e(X,Y), T) ,

holdsAt(d(X,Y)=vd, T) . N

N
Ω

⊙

N

N
Ω

=

N

N
Ω

18/24

Tensor-EC: Reasoning
Rule Evaluation

initiatedAt(fl(X,Y)=v, T) ←
happensAt(e(X,Y), T) ,

holdsAt(d(X,Y)=vd, T) . N

N
Ω

⊙

N

N
Ω

=

N

N
Ω

18/24

Tensor-EC: Reasoning
Rule Evaluation

initiatedAt(fl(X,Y)=v, T) ←
happensAt(e(X,Y), T) ,

holdsAt(d(X,Y)=vd, T) . N

N
Ω

⊙

N

N
Ω

=

N

N
Ω

19/24

Tensor-EC: Computing a Model

holdsAt(fl(X,Y)=v, T)←
initiatedAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

holdsAt(fl(X,Y)=v, T)←
holdsAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

N

N
Ω

H

=

S

⊙

¬T

×3,1
Ω

Ω

U

+

H

⊙

¬T

×3,1

U

⇔

N

N
Ω

H

−

H

⊙

¬T

×3,1
Ω

Ω

U

=

S

⊙

¬T

×3,1

U

19/24

Tensor-EC: Computing a Model

holdsAt(fl(X,Y)=v, T)←
initiatedAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

holdsAt(fl(X,Y)=v, T)←
holdsAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

N

N
Ω

H

=

S

⊙

¬T

×3,1
Ω

Ω

U

+

H

⊙

¬T

×3,1

U

⇔

N

N
Ω

H

−

H

⊙

¬T

×3,1
Ω

Ω

U

=

S

⊙

¬T

×3,1

U

19/24

Tensor-EC: Computing a Model

holdsAt(fl(X,Y)=v, T)←
initiatedAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

holdsAt(fl(X,Y)=v, T)←
holdsAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

N

N
Ω

H

=

S

⊙

¬T

×3,1
Ω

Ω

U

+

H

⊙

¬T

×3,1

U

⇔

N

N
Ω

H

−

H

⊙

¬T

×3,1
Ω

Ω

U

=

S

⊙

¬T

×3,1

U

19/24

Tensor-EC: Computing a Model

holdsAt(fl(X,Y)=v, T)←
initiatedAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

holdsAt(fl(X,Y)=v, T)←
holdsAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

N

N
Ω

H

=

S

⊙

¬T

×3,1
Ω

Ω

U

+

H

⊙

¬T

×3,1

U

⇔

N

N
Ω

H

−

H

⊙

¬T

×3,1
Ω

Ω

U

=

S

⊙

¬T

×3,1

U

19/24

Tensor-EC: Computing a Model

holdsAt(fl(X,Y)=v, T)←
initiatedAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

holdsAt(fl(X,Y)=v, T)←
holdsAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

N

N
Ω

H

=

S

⊙

¬T

×3,1
Ω

Ω

U

+

H

⊙

¬T

×3,1

U

⇔

N

N
Ω

H

−

H

⊙

¬T

×3,1
Ω

Ω

U

=

S

⊙

¬T

×3,1

U

19/24

Tensor-EC: Computing a Model

holdsAt(fl(X,Y)=v, T)←
initiatedAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

holdsAt(fl(X,Y)=v, T)←
holdsAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

N

N
Ω

H

=

S

⊙

¬T

×3,1
Ω

Ω

U

+

H

⊙

¬T

×3,1

U

⇔

N

N
Ω

H

−

H

⊙

¬T

×3,1
Ω

Ω

U

=

S

⊙

¬T

×3,1

U

19/24

Tensor-EC: Computing a Model

holdsAt(fl(X,Y)=v, T)←
initiatedAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

holdsAt(fl(X,Y)=v, T)←
holdsAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

N

N
Ω

H

=

S

⊙

¬T

×3,1
Ω

Ω

U

+

H

⊙

¬T

×3,1

U

⇔

N

N
Ω

H

−

H

⊙

¬T

×3,1
Ω

Ω

U

=

S

⊙

¬T

×3,1

U

19/24

Tensor-EC: Computing a Model

holdsAt(fl(X,Y)=v, T)←
initiatedAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

holdsAt(fl(X,Y)=v, T)←
holdsAt(fl(X,Y)=v, Tprev),

not terminatedAt(fl(X,Y)=v, Tprev),

next(Tprev ,T).

N

N
Ω

H

=

S

⊙

¬T

×3,1
Ω

Ω

U

+

H

⊙

¬T

×3,1

U

⇔

N

N
Ω

H

−

H

⊙

¬T

×3,1
Ω

Ω

U

=

S

⊙

¬T

×3,1

U

20/24

Tensor-EC: Computing a Model

N

N
Ω

H

−

H

⊙

¬T

×3,1 Ω

Ω

U

=

S

⊙

¬T

×3,1

U

↓

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.
.
.

. . .

. . .

. . .
. . .

. . .

.

.

.
. . .

.

.

.. . .

. . .
.
.
.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.
. . .

. . .
. . .

.

.

. . . .

.

.

. . . .

. . .

.

.

. . . .

.

.

. . . .

. . .
.
.
. . . .

. . .

.

.

.
. . .

N2Ω

N2Ω

G

· N2Ω

h

.

.

.

.

.

.

.

.

.

.

.

.

= N2Ω

b

.

.

.

.

.

.

.

.

.

.

.

.

N

N
Ω

H

θ>1

vec−1[·]

20/24

Tensor-EC: Computing a Model

N

N
Ω

H

−

H

⊙

¬T

×3,1 Ω

Ω

U

=

S

⊙

¬T

×3,1

U

↓

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.
.
.

. . .

. . .

. . .
. . .

. . .

.

.

.
. . .

.

.

.. . .

. . .
.
.
.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.
. . .

. . .
. . .

.

.

. . . .

.

.

. . . .

. . .

.

.

. . . .

.

.

. . . .

. . .
.
.
. . . .

. . .

.

.

.
. . .

N2Ω

N2Ω

G

· N2Ω

h

.

.

.

.

.

.

.

.

.

.

.

.

= N2Ω

b

.

.

.

.

.

.

.

.

.

.

.

.

N

N
Ω

H

θ>1

vec−1[·]

20/24

Tensor-EC: Computing a Model

N

N
Ω

H

−

H

⊙

¬T

×3,1 Ω

Ω

U

=

S

⊙

¬T

×3,1

U

↓

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.
.
.

. . .

. . .

. . .
. . .

. . .

.

.

.
. . .

.

.

.. . .

. . .
.
.
.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.
. . .

. . .
. . .

.

.

. . . .

.

.

. . . .

. . .

.

.

. . . .

.

.

. . . .

. . .
.
.
. . . .

. . .

.

.

.
. . .

N2Ω

N2Ω

G

· N2Ω

h

.

.

.

.

.

.

.

.

.

.

.

.

= N2Ω

b

.

.

.

.

.

.

.

.

.

.

.

.

N

N
Ω

H

θ>1

vec−1[·]

20/24

Tensor-EC: Computing a Model

N

N
Ω

H

−

H

⊙

¬T

×3,1 Ω

Ω

U

=

S

⊙

¬T

×3,1

U

↓

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.
.
.

. . .

. . .

. . .
. . .

. . .

.

.

.
. . .

.

.

.. . .

. . .
.
.
.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.
. . .

. . .
. . .

.

.

. . . .

.

.

. . . .

. . .

.

.

. . . .

.

.

. . . .

. . .
.
.
. . . .

. . .

.

.

.
. . .

N2Ω

N2Ω

G

· N2Ω

h

.

.

.

.

.

.

.

.

.

.

.

.

= N2Ω

b

.

.

.

.

.

.

.

.

.

.

.

.

−vec[·]

N

N
Ω

H

θ>1

vec−1[·]

20/24

Tensor-EC: Computing a Model

N

N
Ω

H

−

H

⊙

¬T

×3,1 Ω

Ω

U

=

S

⊙

¬T

×3,1

U

↓

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.
.
.

. . .

. . .

. . .
. . .

. . .

.

.

.
. . .

.

.

.. . .

. . .
.
.
.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.
. . .

. . .
. . .

.

.

. . . .

.

.

. . . .

. . .

.

.

. . . .

.

.

. . . .

. . .
.
.
. . . .

. . .

.

.

.
. . .

N2Ω

N2Ω

G

· N2Ω

h

.

.

.

.

.

.

.

.

.

.

.

.

= N2Ω

b

.

.

.

.

.

.

.

.

.

.

.

.

N

N
Ω

H

θ>1

vec−1[·]

20/24

Tensor-EC: Computing a Model

N

N
Ω

H

−

H

⊙

¬T

×3,1 Ω

Ω

U

=

S

⊙

¬T

×3,1

U

↓

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.
.
.

. . .

. . .

. . .
. . .

. . .

.

.

.
. . .

.

.

.. . .

. . .
.
.
.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.
. . .

. . .
. . .

.

.

. . . .

.

.

. . . .

. . .

.

.

. . . .

.

.

. . . .

. . .
.
.
. . . .

. . .

.

.

.
. . .

N2Ω

N2Ω

G

· N2Ω

h

.

.

.

.

.

.

.

.

.

.

.

.

= N2Ω

b

.

.

.

.

.

.

.

.

.

.

.

.

vec[·]

N

N
Ω

H

θ>1

vec−1[·]

20/24

Tensor-EC: Computing a Model

N

N
Ω

H

−

H

⊙

¬T

×3,1 Ω

Ω

U

=

S

⊙

¬T

×3,1

U

↓

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.
.
.

. . .

. . .

. . .
. . .

. . .

.

.

.
. . .

.

.

.. . .

. . .
.
.
.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.
. . .

. . .
. . .

.

.

. . . .

.

.

. . . .

. . .

.

.

. . . .

.

.

. . . .

. . .
.
.
. . . .

. . .

.

.

.
. . .

N2Ω

N2Ω

G

· N2Ω

h

.

.

.

.

.

.

.

.

.

.

.

.

= N2Ω

b

.

.

.

.

.

.

.

.

.

.

.

.

N

N
Ω

H

θ>1

vec−1[·]

20/24

Tensor-EC: Computing a Model

N

N
Ω

H

−

H

⊙

¬T

×3,1 Ω

Ω

U

=

S

⊙

¬T

×3,1

U

↓

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.
.
.

. . .

. . .

. . .
. . .

. . .

.

.

.
. . .

.

.

.. . .

. . .
.
.
.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.
. . .

. . .
. . .

.

.

. . . .

.

.

. . . .

. . .

.

.

. . . .

.

.

. . . .

. . .
.
.
. . . .

. . .

.

.

.
. . .

N2Ω

N2Ω

G

· N2Ω

h

.

.

.

.

.

.

.

.

.

.

.

.

= N2Ω

b

.

.

.

.

.

.

.

.

.

.

.

.

N

N
Ω

H

θ>1

vec−1[·]

21/24

Tensor-EC: Formal Properties

Correctness

The unique solution of the equation coincides with the
time-points at which a fluent-value pair holds, as expressed by the
perfect model of the corresponding logic program.

Complexity

The time complexity of solving the equation is O(Np−1Ω) for
order-p tensors.

21/24

Tensor-EC: Formal Properties

Correctness

The unique solution of the equation coincides with the
time-points at which a fluent-value pair holds, as expressed by the
perfect model of the corresponding logic program.

Complexity

The time complexity of solving the equation is O(Np−1Ω) for
order-p tensors.

22/24

Tensor-EC: Experimental Evaluation

Brest

1/30K/59 2/70K/71 4/127K/84 8/242K/10910−1

100

101

102

103

Window (Hours/SDEs/Vessels → N)

A
vg

T
im

e
(i

n
se

co
nd

s) Tensor-EC
Symbolic-EC
Sato∗

1/30K/59 2/70K/71 4/127K/84 8/242K/109
102

103

104

105

Window (Hours/SDEs/Vessels → N)M
em

or
y

C
on

su
m

pt
io

n
(i

n
M

B
)

Tensor-EC
Symbolic-EC
Sato∗

European seas

200/31K/4K 500/79K/8K 1K/159K/12K 2K/317K/13K

100

101

102

103

104

Window (Seconds/SDEs/Vessels → N)

A
vg

T
im

e
(i

n
se

co
nd

s) Tensor-EC
Symbolic-EC

200/31K/4K 500/79K/8K 1K/159K/12K 2K/317K/13K
101.2

101.4

101.6

101.8

102

102.2

Window (Seconds/SDEs/Vessels → N)M
em

or
y

C
on

su
m

pt
io

n
(i

n
G

B
)

Tensor-EC
Symbolic-EC

∗
Sato, T. A linear algebraic approach to datalog evaluation. Theory and Practice of Logic Programming, 17(3):244–265, 2017.

22/24

Tensor-EC: Experimental Evaluation

Brest

1/30K/59 2/70K/71 4/127K/84 8/242K/10910−1

100

101

102

103

Window (Hours/SDEs/Vessels → N)

A
vg

T
im

e
(i

n
se

co
nd

s) Tensor-EC
Symbolic-EC
Sato∗

1/30K/59 2/70K/71 4/127K/84 8/242K/109
102

103

104

105

Window (Hours/SDEs/Vessels → N)M
em

or
y

C
on

su
m

pt
io

n
(i

n
M

B
)

Tensor-EC
Symbolic-EC
Sato∗

European seas

200/31K/4K 500/79K/8K 1K/159K/12K 2K/317K/13K

100

101

102

103

104

Window (Seconds/SDEs/Vessels → N)

A
vg

T
im

e
(i

n
se

co
nd

s) Tensor-EC
Symbolic-EC

200/31K/4K 500/79K/8K 1K/159K/12K 2K/317K/13K
101.2

101.4

101.6

101.8

102

102.2

Window (Seconds/SDEs/Vessels → N)M
em

or
y

C
on

su
m

pt
io

n
(i

n
G

B
)

Tensor-EC
Symbolic-EC

∗
Sato, T. A linear algebraic approach to datalog evaluation. Theory and Practice of Logic Programming, 17(3):244–265, 2017.

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinchttps:
//github.com/eftsilio/Incremental_RTEC:
▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how —
tensor-EChttps://github.com/eftsilio/Tensor-EC:
▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.
▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

https://github.com/eftsilio/Incremental_RTEC
https://github.com/eftsilio/Incremental_RTEC
https://github.com/eftsilio/Tensor-EC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how —
tensor-EChttps://github.com/eftsilio/Tensor-EC:
▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.
▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC

https://github.com/eftsilio/Tensor-EC
https://github.com/eftsilio/Incremental_RTEC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.

▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how —
tensor-EChttps://github.com/eftsilio/Tensor-EC:
▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.
▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC

https://github.com/eftsilio/Tensor-EC
https://github.com/eftsilio/Incremental_RTEC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.

▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how —
tensor-EChttps://github.com/eftsilio/Tensor-EC:
▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.
▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC

https://github.com/eftsilio/Tensor-EC
https://github.com/eftsilio/Incremental_RTEC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.

▶ Significant performance gains compared to re-computation
from scratch.

▶ Modify the how —
tensor-EChttps://github.com/eftsilio/Tensor-EC:
▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.
▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC

https://github.com/eftsilio/Tensor-EC
https://github.com/eftsilio/Incremental_RTEC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how —
tensor-EChttps://github.com/eftsilio/Tensor-EC:
▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.
▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC

https://github.com/eftsilio/Tensor-EC
https://github.com/eftsilio/Incremental_RTEC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how — tensor-EC‡:

▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.
▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC
‡https://github.com/eftsilio/Tensor-EC

https://github.com/eftsilio/Incremental_RTEC
https://github.com/eftsilio/Tensor-EC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how — tensor-EC‡:
▶ Transforms symbolic representations into vector spaces.

▶ Reasoning through algebraic computation.
▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC
‡https://github.com/eftsilio/Tensor-EC

https://github.com/eftsilio/Incremental_RTEC
https://github.com/eftsilio/Tensor-EC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how — tensor-EC‡:
▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.

▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC
‡https://github.com/eftsilio/Tensor-EC

https://github.com/eftsilio/Incremental_RTEC
https://github.com/eftsilio/Tensor-EC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how — tensor-EC‡:
▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.
▶ Formal Properties.

▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC
‡https://github.com/eftsilio/Tensor-EC

https://github.com/eftsilio/Incremental_RTEC
https://github.com/eftsilio/Tensor-EC

23/24

Summary
Scalable Complex Event Recognition

▶ Modify the what is to be computed — RTECinc
†:

▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how — tensor-EC‡:
▶ Transforms symbolic representations into vector spaces.
▶ Reasoning through algebraic computation.
▶ Formal Properties.
▶ Performance improvement wrt state-of-the-art.

†https://github.com/eftsilio/Incremental_RTEC
‡https://github.com/eftsilio/Tensor-EC

https://github.com/eftsilio/Incremental_RTEC
https://github.com/eftsilio/Tensor-EC

24/24

Future Work

▶ Decide on the fly which execution strategy to adopt.

▶ Comparison with automata-based methods.

▶ Apply distribution and parallelization techniques.

▶ Handle more expressive temporal specifications.

▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.

24/24

Future Work

▶ Decide on the fly which execution strategy to adopt.

▶ Comparison with automata-based methods.

▶ Apply distribution and parallelization techniques.

▶ Handle more expressive temporal specifications.

▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.

24/24

Future Work

▶ Decide on the fly which execution strategy to adopt.

▶ Comparison with automata-based methods.

▶ Apply distribution and parallelization techniques.

▶ Handle more expressive temporal specifications.

▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.

24/24

Future Work

▶ Decide on the fly which execution strategy to adopt.

▶ Comparison with automata-based methods.

▶ Apply distribution and parallelization techniques.

▶ Handle more expressive temporal specifications.

▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.

24/24

Future Work

▶ Decide on the fly which execution strategy to adopt.

▶ Comparison with automata-based methods.

▶ Apply distribution and parallelization techniques.

▶ Handle more expressive temporal specifications.

▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.

24/24

Future Work

▶ Decide on the fly which execution strategy to adopt.

▶ Comparison with automata-based methods.

▶ Apply distribution and parallelization techniques.

▶ Handle more expressive temporal specifications.

▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.

24/24

Future Work

▶ Decide on the fly which execution strategy to adopt.

▶ Comparison with automata-based methods.

▶ Apply distribution and parallelization techniques.

▶ Handle more expressive temporal specifications.

▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.

24/24

Future Work

▶ Decide on the fly which execution strategy to adopt.

▶ Comparison with automata-based methods.

▶ Apply distribution and parallelization techniques.

▶ Handle more expressive temporal specifications.

▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.

24/24

Future Work

▶ Decide on the fly which execution strategy to adopt.

▶ Comparison with automata-based methods.

▶ Apply distribution and parallelization techniques.

▶ Handle more expressive temporal specifications.

▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.

Appendix

1/7

RTECinc: Statically Determined Fluents
Union

IQi
F =

[
(I

Qi−1

A∪TB) \T
[[

(IdelA ∪T IdelB) \T (I
Qi−1

A∩TB)
]
∪T (IdelA ∩T IdelB)

]]
∪T (IinsA ∪T IinsB)

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi - ω

IAUTB

Qi-1

IA

Qi-1

IB

Qi-1

IAUTB

Qi

IA

Qi

IB

Qi

2/7

RTECinc: Evaluation (Natural Delays)
European seas

▶ Delays up to 16 hours

▶ 17M position signals, 34K vessels

▶ January 2016

1h/39K 2h/79K 4h/158K 8h/317K 16h/635K
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

≈18%
≈26%

≈52%

≈70%

≈82%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(a)

1h/39K 2h/79K 4h/158K 8h/317K 16h/635K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(b)

1h/39K 2h/79K 4h/158K 8h/317K 16h/635K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(c)

3/7

RTECinc: Evaluation (Synthetic Delays)
Brest

▶ 5M position signals, 5K vessels
▶ October 2015 — March 2016

12h/17K 24h/35K 48h/70K 96h/141K 168h/249K
0

10

20

30

40

50

60

70

80

90

100

≈52%
≈62% ≈76%

≈85%

≈89%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(a) 5%

12h/16K 24h/33K 48h/67K 96h/138K 168h/246K
0

10

20

30

40

50

60

70

80

90

100

≈51%
≈63% ≈75%

≈82%

≈88%

Window (Hours/SDEs)
A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(b) 10%

12h/14K 24h/30K 48h/62K 96h/131K 168h/238K
0

10

20

30

40

50

60

70

80

90

100

≈48%
≈58% ≈74%

≈82%

≈84%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(c) 20%

12h/11K 24h/23K 48h/51K 96h/117K 168h/224K
0

10

20

30

40

50

60

70

80

90

100

≈44%
≈56% ≈72%

≈78%

≈80%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(d) 40%

12h/4K 24h/10K 48h/29K 96h/89K 168h/194K
0

10

20

30

40

50

60

70

80

90

100

≈33% ≈45% ≈62%

≈72%

≈73%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(e) 80%

4/7

RTECinc: Evaluation (Synthetic Delays)
Brest

▶ 5M position signals, 5K vessels
▶ October 2015 — March 2016

12h/17K 24h/35K 48h/70K 96h/141K 168h/249K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(a) 5%

12h/16K 24h/33K 48h/67K 96h/138K 168h/246K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)
R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(b) 10%

12h/14K 24h/30K 48h/62K 96h/131K 168h/238K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(c) 20%

12h/11K 24h/23K 48h/51K 96h/117K 168h/224K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(d) 40%

12h/4K 24h/10K 48h/29K 96h/89K 168h/194K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(e) 80%

5/7

RTECinc: Evaluation (Synthetic Delays)
Brest

▶ 5M position signals, 5K vessels
▶ October 2015 — March 2016

12h/17K 24h/35K 48h/70K 96h/141K 168h/249K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(a) 5%

12h/16K 24h/33K 48h/67K 96h/138K 168h/246K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)
R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(b) 10%

12h/14K 24h/30K 48h/62K 96h/131K 168h/238K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(c) 20%

12h/11K 24h/23K 48h/51K 96h/117K 168h/224K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(d) 40%

12h/4K 24h/10K 48h/29K 96h/89K 168h/194K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(e) 80%

6/7

RTECinc: Evaluation (Synthetic Delays)
Fleet Management

▶ 70M position signals, 6K vessels
▶ June 2018 — August 2018

1h/88K 2h/176K 4h/356K 8h/724K 16h/1470K
0

5

10

15

20

25

30

35

40

45

≈85%
≈88% ≈81%

≈76% ≈73%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(a) 5%

1h/83K 2h/168K 4h/342K 8h/706K 16h/1451K
0

5

10

15

20

25

30

35

40

45

≈85%
≈88% ≈76%

≈69%
≈67%

Window (Hours/SDEs)
A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(b) 10%

1h/74K 2h/151K 4h/315K 8h/671K 16h/1414K
0

5

10

15

20

25

30

35

40

45

≈83%
≈89%

≈71%

≈60%
≈57%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(c) 20%

1h/56K 2h/118K 4h/262K 8h/601K 16h/1340K
0

5

10

15

20

25

30

35

40

45

≈81% ≈89%
≈64%

≈51%
≈47%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(d) 40%

1h/21K 2h/52K 4h/154K 8h/461K 16h/1191K
0

5

10

15

20

25

30

35

40

45

≈66% ≈83%
≈51%

≈40%

≈36%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(e) 80%

7/7

Tensor-EC: Evaluation
Simple Event Description

▶ One fluent and three input events.

▶ The fluent is defined by one initiatedAt and one terminatedAt

rule, plus the inertia axiom.

▶ Temporal window of 20 time-points.

Method Reasoning time (msec) Memory (MB)

tensor-EC 1 0.01

symbolic-EC 0 5

Sato§ 1 0.01

Sakama et al.¶ 9205 475.3

§
Sato, T. A linear algebraic approach to datalog evaluation. Theory and Practice of Logic Programming, 17(3):244–265, 2017.

¶
Sakama et al. Logic programming in tensor spaces. Annals of Mathematics and Artificial Intelligence, 89, 12 2021.

	Introduction
	Publications
	Background
	Incremental CER
	Tensor-Based Formalization of EC
	Appendix
	Appendix

