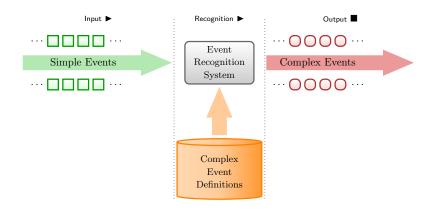
Scalable Complex Event Recognition


Efthimis Tsilionis

National and Kapodistrian University of Athens, Greece NCSR Demokritos, Greece

Complex Event Recognition

Logic-based approaches:

► Formal, declarative semantics.

- ► Formal, declarative semantics.
- ► Hierarchical definitions.

- ► Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.

- ► Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.
- ► Background Knowledge.

- ► Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.
- ► Background Knowledge.
- ► Efficient reasoning.

Logic-based approaches:

- Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.
- ► Background Knowledge.
- ► Efficient reasoning.

Temporal frameworks:

Logic-based approaches:

- Formal, declarative semantics.
- ► Hierarchical definitions.
- Relational patterns.
- Background Knowledge.
- Efficient reasoning.

Temporal frameworks:

Event Calculus: Reasoning about events and their effects.

Logic-based approaches:

- ► Formal, declarative semantics.
- ► Hierarchical definitions.
- Relational patterns.
- Background Knowledge.
- Efficient reasoning.

Temporal frameworks:

- ▶ Event Calculus: Reasoning about events and their effects.
- Event Calculus for Run-Time Reasoning (RTEC): EC with optimization techniques for CER.

Logic-based approaches:

- Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.
- ► Background Knowledge.
- ► Efficient reasoning.

The language specifies:

Logic-based approaches:

- Formal, declarative semantics.
- ► Hierarchical definitions.
- Relational patterns.
- Background Knowledge.
- ► Efficient reasoning.

The language specifies:

► The *what* (pattern) is to be computed.

Logic-based approaches:

- Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.
- Background Knowledge.
- ► Efficient reasoning.

The language specifies:

- ▶ The *what* (pattern) is to be computed.
- ▶ Not necessarily the *how* it is to be computed.

Logic-based approaches:

- Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.
- Background Knowledge.
- Efficient reasoning.

The language specifies:

- ► The *what* (pattern) is to be computed.
- ▶ Not necessarily the *how* it is to be computed.

Motivation: Modify the *what* and *how* to achieve scalability.

Logic-based approaches:

- ► Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.
- Background Knowledge.
- Efficient reasoning.

The language specifies:

- ► The *what* (pattern) is to be computed.
- ▶ Not necessarily the *how* it is to be computed.

Motivation: Modify the *what* and *how* to achieve scalability. Contributions:

Logic-based approaches:

- ► Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.
- Background Knowledge.
- Efficient reasoning.

The language specifies:

- ▶ The what (pattern) is to be computed.
- ▶ Not necessarily the *how* it is to be computed.

Motivation: Modify the *what* and *how* to achieve scalability. Contributions:

 $ightharpoonup RTEC_{inc}$: Incremental RTEC (the *what*).

Logic-based approaches:

- Formal, declarative semantics.
- ► Hierarchical definitions.
- ► Relational patterns.
- Background Knowledge.
- Efficient reasoning.

The language specifies:

- ► The *what* (pattern) is to be computed.
- ▶ Not necessarily the *how* it is to be computed.

Motivation: Modify the *what* and *how* to achieve scalability. Contributions:

- ▶ $RTEC_{inc}$: Incremental RTEC (the *what*).
- tensor-EC: Tensor-based formalization of EC (the *how*).

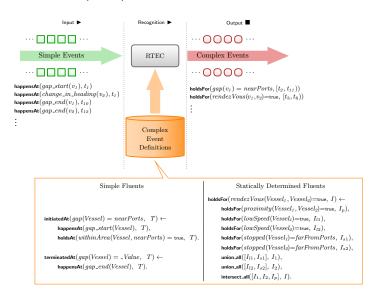
Publications

Journal Publications:

- <u>Tsilionis E.</u>, Artikis A., Paliouras G., Incremental Event Calculus for Run-Time Reasoning. In *Journal of Artificial Intelligence Research (JAIR)*, 73, pp. 967—1023, 2022.
- <u>Tsilionis E.</u>, Koutroumanis N., Nikitopoulos P., Doulkeridis C. and Artikis A., Online Event Recognition from Moving Vehicles. In *Theory and Practice of Logic Programming (TPLP)*, 19(5-6), pp. 841—856, 2019.

Conference Publications:

- ► <u>Tsilionis E.</u>, Artikis A., Paliouras G., A Tensor-Based Formalization of the Event Calculus. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24*, pp. 3584–3592, 2024.
- <u>Tsilionis E.</u>, Artikis A., Paliouras G., Incremental Event Calculus for Run-Time Reasoning (Extended Abstract). In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23*, pp. 6974-6978, 2023.
- ► <u>Tsilionis E.</u>, Artikis A. and Paliouras G., Incremental Event Calculus for Run-Time Reasoning. In 13th International Conference on Distributed and Event-Based Systems (DEBS), pp. 79–90, 2019.


Background

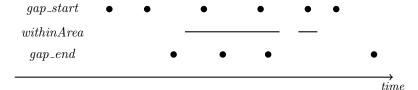
Event Calculus

- ► A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.
- ▶ Built-in representation of inertia:
 - ightharpoonup F=V holds at a particular time-point if F=V has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

Background

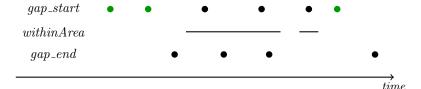
Run-Time Event Calculus (RTEC)


```
\begin{split} & \mathbf{initiatedAt}(gap(Vessel) {=} farFromPorts, \ T) \leftarrow \\ & \mathbf{happensAt}(gap\_start(Vessel), \ T), \\ & \mathbf{not} \ \ \mathbf{holdsAt}(withinArea(Vessel, nearPorts) {=} \mathbf{true}, \ T). \end{split}
```


```
\begin{split} & \textbf{initiatedAt}(gap(Vessel) {=} farFromPorts, \ T) \leftarrow \\ & \textbf{happensAt}(gap\_start(Vessel), \ T), \\ & \textbf{not holdsAt}(withinArea(Vessel, nearPorts) {=} \texttt{true}, \ T). \\ & \textbf{terminatedAt}(gap(Vessel) {=} farFromPorts, \ T) \leftarrow \\ & \textbf{happensAt}(gap\_end(Vessel), \ T). \end{split}
```

Reasoning: holdsFor(gap(Vessel) = farFromPorts, I)

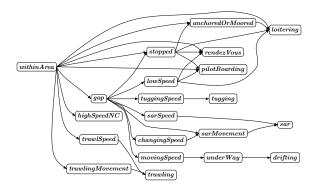
```
\begin{split} & \textbf{initiatedAt}(gap(Vessel) \! = \! farFromPorts, \ T) \leftarrow \\ & \textbf{happensAt}(gap\_start(Vessel), \ T), \\ & \textbf{not holdsAt}(withinArea(Vessel, nearPorts) \! = \! \text{true}, \ T). \\ & \textbf{terminatedAt}(gap(Vessel) \! = \! farFromPorts, \ T) \leftarrow \\ & \textbf{happensAt}(gap\_end(Vessel), \ T). \end{split}
```


```
\begin{split} & \textbf{initiatedAt}(gap(Vessel) \! = \! farFromPorts, \ T) \leftarrow \\ & \textbf{happensAt}(gap\_start(Vessel), \ T), \\ & \textbf{not holdsAt}(withinArea(Vessel, nearPorts) \! = \! \text{true}, \ T). \\ & \textbf{terminatedAt}(gap(Vessel) \! = \! farFromPorts, \ T) \leftarrow \\ & \textbf{happensAt}(gap\_end(Vessel), \ T). \end{split}
```

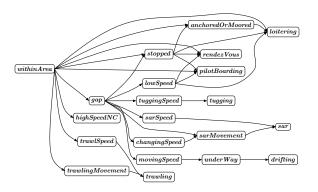
Reasoning: holdsFor(gap(Vessel) = farFromPorts, I)


```
\begin{split} & \textbf{initiatedAt}(gap(Vessel) \! = \! farFromPorts, \ T) \leftarrow \\ & \textbf{happensAt}(gap\_start(Vessel), \ T), \\ & \textbf{not holdsAt}(withinArea(Vessel, nearPorts) \! = \! \text{true}, \ T). \\ & \textbf{terminatedAt}(gap(Vessel) \! = \! farFromPorts, \ T) \leftarrow \\ & \textbf{happensAt}(gap\_end(Vessel), \ T). \end{split}
```

Reasoning: holdsFor(gap(Vessel) = farFromPorts, I)



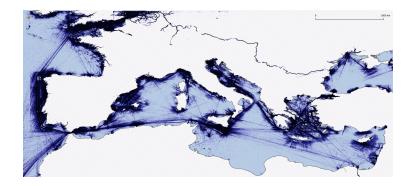

```
initiatedAt(qap(Vessel) = farFromPorts, T) \leftarrow
        happensAt(qap\_start(Vessel), T),
        not holdsAt(withinArea(Vessel, nearPorts)=true, T).
    terminatedAt(qap(Vessel) = farFromPorts, T) \leftarrow
        happensAt(qap\_end(Vessel), T).
  Reasoning: holdsFor(gap(Vessel) = farFromPorts, I)
qap\_start
withinArea
 qap\_end
```


time

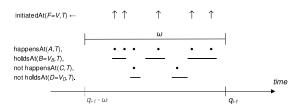
```
initiatedAt(qap(Vessel) = farFromPorts, T) \leftarrow
         happensAt(qap\_start(Vessel), T),
         not holdsAt(withinArea(Vessel, nearPorts)=true, T).
      terminatedAt(qap(Vessel) = farFromPorts, T) \leftarrow
         happensAt(qap\_end(Vessel), T).
   Reasoning: holdsFor(gap(Vessel) = farFromPorts, I)
farFromPorts
  qap\_start
 withinArea
  qap\_end
                                                               time
```

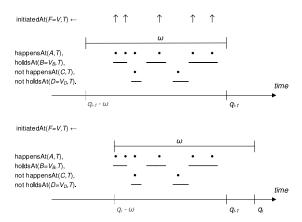
Hierarchical Event Descriptions

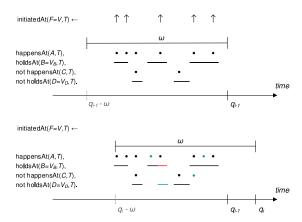
Hierarchical Event Descriptions

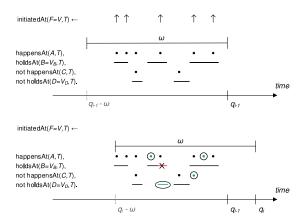


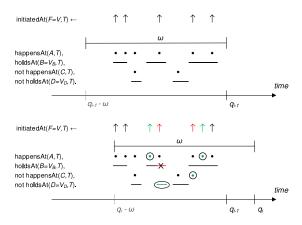
Semantics

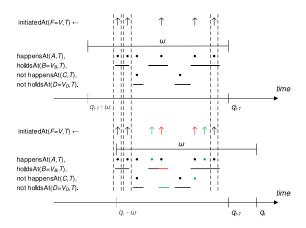

An event description is a locally stratified logic program, i.e., it has a **unique perfect** model.

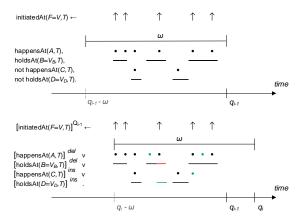

Part 1: Modify the what


Incremental CER

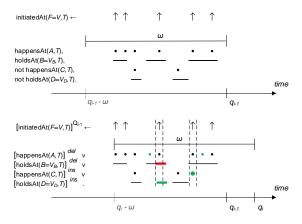


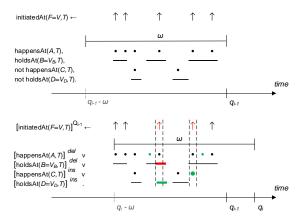

- ▶ Delayed events (e.g., satellite GPS messages)
- Overlapping temporal windows

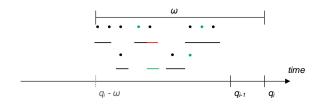


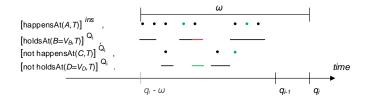


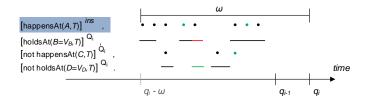

Problem Statement RTEC

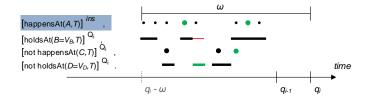



Problem Statement RTEC










$$\begin{split} & \text{initiatedAt}(F=V,\,T) \leftarrow & \text{initiatedAt}(F=V,\,T) \leftarrow \\ & \left[\text{happensAt}(A,\,T) \right]^{ins}, & \left[\text{happensAt}(A,\,T) \right]^{Q_{\text{l}} \setminus ins}, \\ & \left[\text{holdsAt}(B=V_B,\,T) \right]^{Q_{\text{l}}}, & \text{(a)} & \left[\text{holdsAt}(B=V_B,\,T) \right]^{ins}, & \text{(b)} \\ & \text{not} \left[\text{happensAt}(C,\,T) \right]^{Q_{\text{l}}}, & \text{not} \left[\text{happensAt}(C,\,T) \right]^{Q_{\text{l}}}, \\ & \text{not} \left[\text{holdsAt}(D=V_D,\,T) \right]^{Q_{\text{l}}}, & \text{not} \left[\text{holdsAt}(D=V_D,\,T) \right]^{Q_{\text{l}}}. \\ & \text{initiatedAt}(F=V,\,T) \leftarrow & \text{initiatedAt}(F=V,\,T) \leftarrow \\ & \left[\text{happensAt}(A,\,T) \right]^{Q_{\text{l}} \setminus ins}, & \left[\text{happensAt}(A,\,T) \right]^{Q_{\text{l}} \setminus ins}, \\ & \left[\text{holdsAt}(B=V_B,\,T) \right]^{Q_{\text{l}} \setminus ins}, & \left[\text{holdsAt}(B=V_B,\,T) \right]^{Q_{\text{l}} \setminus ins}, \\ & \text{not} \left[\text{holdsAt}(B=V_B,\,T) \right]^{Q_{\text{l}} \setminus ins}, & \text{not} \left[\text{happensAt}(C,\,T) \right]^{Q_{\text{l}} \cup del}. \\ \end{split}$$

$RTEC_{inc}$: Formal properties

Correctness

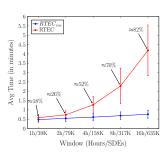
 $RTEC_{inc}$ computes exactly the same intervals of the fluents of an event description as RTEC, and no other interval.

$RTEC_{inc}$: Formal properties

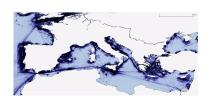
Correctness

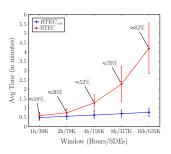
 $RTEC_{inc}$ computes exactly the same intervals of the fluents of an event description as RTEC, and no other interval.

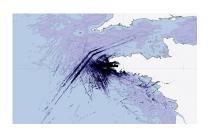
Complexity

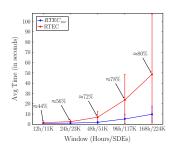

The most important factor for performance improvement is the ratio of delayed insertions/retractions to the degree of overlap:

$$\frac{n \times e}{m_{ov}} < 1$$


RTEC_{inc}: Empirical Evaluation


$RTEC_{inc}$: Empirical Evaluation





$RTEC_{inc}$: Empirical Evaluation

Logical Inference in Tensor Spaces

Logical Inference in Tensor Spaces

Numerical computation has potential to cope with Web scale data.

Logical Inference in Tensor Spaces

- Numerical computation has potential to cope with Web scale data.
- Logical reasoning through algebraic operations is a step towards neuro-symbolic integration.

Logical Inference in Tensor Spaces

- Numerical computation has potential to cope with Web scale data.
- Logical reasoning through algebraic operations is a step towards neuro-symbolic integration.
- Use of efficient (parallel) algorithms and great computing resources (GPUs).

ightharpoonup Domain entities: N

ightharpoonup Window time-points: Ω

- ightharpoonup Domain entities: N
- ightharpoonup Window time-points: Ω

 $\mathsf{happensAt}(e(X,Y),\ T)$

- ▶ Domain entities: *N*
- ightharpoonup Window time-points: Ω

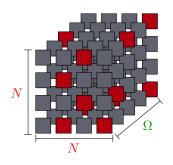
 $\mathsf{happensAt}(e(\textcolor{red}{X},\textcolor{red}{Y}),\ T)$

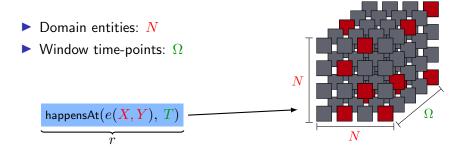
- ▶ Domain entities: *N*
- ightharpoonup Window time-points: Ω

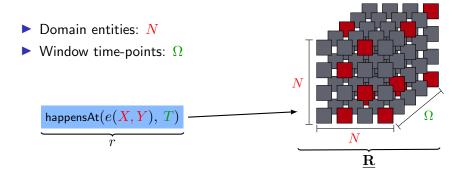
 $\mathsf{happensAt}(e(\textcolor{red}{X},\textcolor{red}{Y}),\ T)$

- ▶ Domain entities: *N*
- ightharpoonup Window time-points: Ω

 $\mathsf{happensAt}(e(\pmb{X},\pmb{Y}),\ T)$


- ▶ Domain entities: *N*
- ightharpoonup Window time-points: Ω


$$\underbrace{\frac{\mathsf{happensAt}(e(\pmb{X},\pmb{Y}),\,T)}{r}}$$


ightharpoonup Domain entities: N

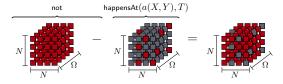
ightharpoonup Window time-points: Ω

 $\underbrace{\frac{\mathsf{happensAt}(e(X\!\!\!X,Y),\ T)}{r}}$

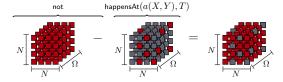
 $\begin{array}{c} {\color{red} \triangleright} \ \, \text{Domain entities: } \, N \\ {\color{red} \triangleright} \ \, \text{Window time-points: } \, \Omega \\ \\ {\color{red} \underline{\hspace{0.5cm}}} \\ {\color{red} happensAt}(e(X,Y),T) \\ \\ {\color{red} r} \end{array}$

$$\underline{\mathbf{R}}_{i,j,k} = \begin{cases} 1, & \text{if } \mathbf{M}_P \models r, \text{ for } c_i, c_j, t_k \\ \\ 0, & \text{o.w} \end{cases}$$

$$\forall \ 1 \leq i, j \leq N, 1 \leq k \leq \Omega \ .$$

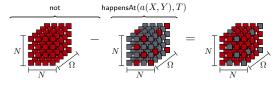

Tensor-EC: Reasoning

Tensor-EC: Reasoning

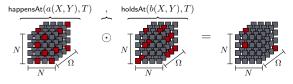

Negation:

Tensor-EC: Reasoning

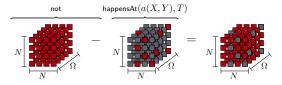
Negation:

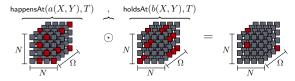


Negation:

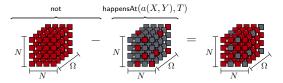


${\bf Conjunction:}$

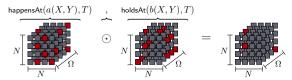

Negation:


Conjunction:

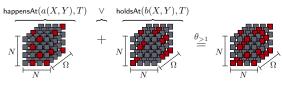
Negation:

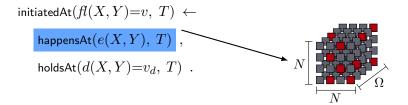


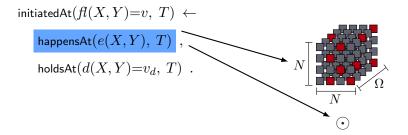
Conjunction:

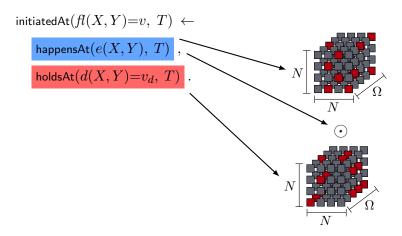


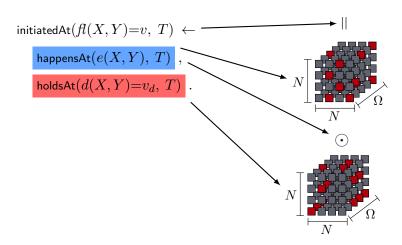
${\bf Disjunction:}$

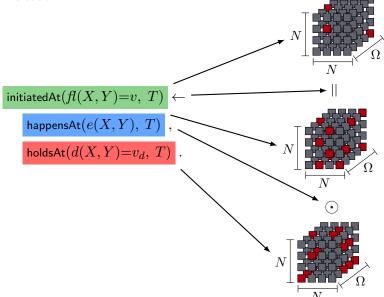

Negation:


Conjunction:




Disjunction:

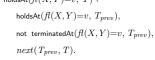


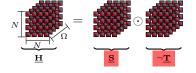

```
\begin{split} & \mathsf{initiatedAt}(f\!l(X,Y) {=} v,\ T) \ \leftarrow \\ & \mathsf{happensAt}(e(X,Y),\ T)\ , \\ & \mathsf{holdsAt}(d(X,Y) {=} v_d,\ T)\ . \end{split}
```



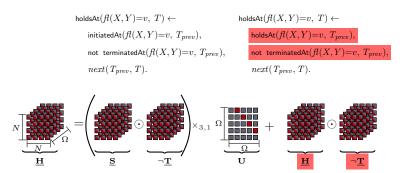
```
\begin{split} & \operatorname{holdsAt}(f\!l(X,Y)\!=\!v,\;T) \leftarrow & \operatorname{holdsAt}(f\!l(X,Y)\!=\!v,\;T) \leftarrow \\ & \operatorname{initiatedAt}(f\!l(X,Y)\!=\!v,\;T_{prev}), & \operatorname{holdsAt}(f\!l(X,Y)\!=\!v,\;T_{prev}), \\ & \operatorname{not\; terminatedAt}(f\!l(X,Y)\!=\!v,\;T_{prev}), & \operatorname{not\; terminatedAt}(f\!l(X,Y)\!=\!v,\;T_{prev}), \\ & \operatorname{next}(T_{prev},T). & \operatorname{next}(T_{prev},T). \end{split}
```

$\mathsf{holdsAt}(fl(X,Y){=}v,\ T) \leftarrow$

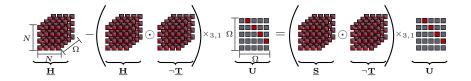

```
\begin{split} & \text{initiatedAt}(f\!l(X,Y){=}v,\ T_{prev}), \\ & \text{not terminatedAt}(f\!l(X,Y){=}v,\ T_{prev}), \\ & next(T_{prev},T). \end{split}
```

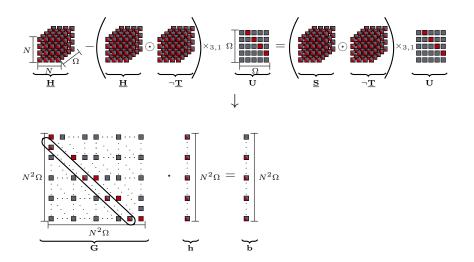

$\mathsf{holdsAt}(fl(X,Y){=}v,\ T) \leftarrow$

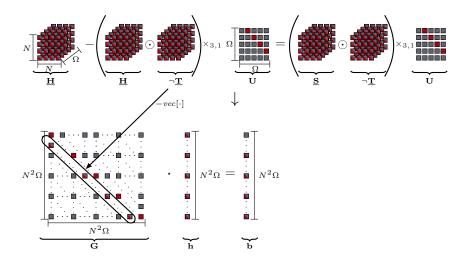
```
\begin{aligned} & \operatorname{holdsAt}(f\!l(X,Y) {=} v, \ T_{prev}), \\ & \operatorname{not \ terminatedAt}(f\!l(X,Y) {=} v, \ T_{prev}), \\ & next(T_{prev}, T). \end{aligned}
```

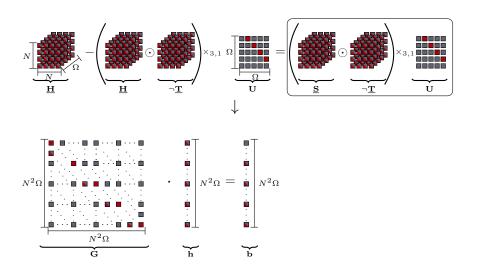


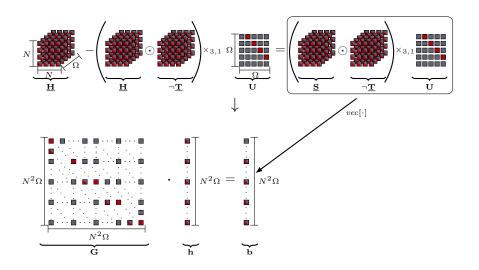
$$\begin{split} & \mathsf{holdsAt}(f\!l(X,Y)\!=\!v,\ T) \leftarrow & & \mathsf{holdsAt}(f\!l(X,Y)\!=\!v,\ T) \leftarrow \\ & & \mathsf{initiatedAt}(f\!l(X,Y)\!=\!v,\ T_{prev}), & & \mathsf{holdsAt}(f\!l(X,Y)\!=\!v,\ T_{pr}), \\ & & \mathsf{not\ terminatedAt}(f\!l(X,Y)\!=\!v,\ T_{prev}), & & \mathsf{not\ terminatedAt}(f\!l(X,Y)\!=\!v,\ T_{prev}), \\ & & & & \mathsf{next}(T_{prev},\ T). & & & & \mathsf{next}(T_{prev},\ T). \end{split}$$

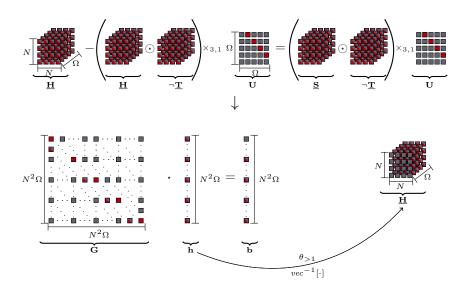

$$\begin{aligned} & \operatorname{holdsAt}(f\!l(X,Y)\!=\!v,\ T) \leftarrow & \operatorname{holdsAt}(f\!l(X,Y)\!=\!v,\ T) \leftarrow \\ & \operatorname{initiatedAt}(f\!l(X,Y)\!=\!v,\ T_{prev}), & \operatorname{holdsAt}(f\!l(X,Y)\!=\!v,\ T_{prev}), \\ & \operatorname{not\ terminatedAt}(f\!l(X,Y)\!=\!v,\ T_{prev}), & \operatorname{not\ terminatedAt}(f\!l(X,Y)\!=\!v,\ T_{prev}), \\ & \underbrace{\operatorname{next}(T_{prev},T).} & \operatorname{next}(T_{prev},T). \end{aligned}$$


$$\begin{aligned} & \operatorname{holdsAt}(fl(X,Y) = v, \ T) \leftarrow & \operatorname{holdsAt}(fl(X,Y) = v, \ T) \leftarrow \\ & \operatorname{initiatedAt}(fl(X,Y) = v, \ T_{prev}), & \operatorname{holdsAt}(fl(X,Y) = v, \ T_{prev}), \\ & \operatorname{not \ terminatedAt}(fl(X,Y) = v, \ T_{prev}), & \operatorname{not \ terminatedAt}(fl(X,Y) = v, \ T_{prev}), \\ & \operatorname{next}(T_{prev}, T). & & \operatorname{next}(T_{prev}, T). \end{aligned}$$


$$\text{holdsAt}(fl(X,Y) = v, \ T) \leftarrow \\ \text{initiatedAt}(fl(X,Y) = v, \ T_{prev}), \\ \text{not terminatedAt}(fl(X,Y) = v, \ T_{prev}), \\ \text{next}(T_{prev}, T). \\$$


$$\begin{array}{c} \operatorname{holdsAt}(fl(X,Y) = v, \ T) \leftarrow \\ \operatorname{initiatedAt}(fl(X,Y) = v, \ T_{prev}), \\ \operatorname{not \ terminatedAt}(fl(X,Y) = v, \ T_{prev}), \\ \operatorname{not \ terminatedAt}(fl(X,Y) = v, \ T_{prev}), \\ \operatorname{next}(T_{prev}, T). \end{array} \\ \begin{array}{c} \operatorname{not \ terminatedAt}(fl(X,Y) = v, \ T_{prev}), \\ \operatorname{next}(T_{prev}, T). \end{array} \\ \\ N \\ \begin{array}{c} \underline{\underline{\mathbf{H}}} \\ \underline{\underline{\mathbf{N}}} \\ \underline{$$





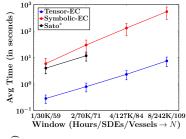
Tensor-EC: Formal Properties

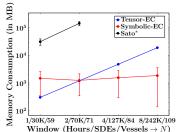
Correctness

The **unique solution** of the equation coincides with the time-points at which a fluent-value pair holds, as expressed by the **perfect model** of the corresponding logic program.

Tensor-EC: Formal Properties

Correctness

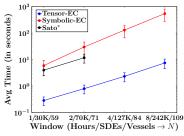

The unique solution of the equation coincides with the time-points at which a fluent-value pair holds, as expressed by the perfect model of the corresponding logic program.

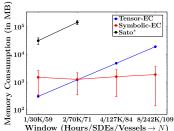

Complexity

The time complexity of solving the equation is $\mathcal{O}(N^{p-1}\Omega)$ for order-p tensors.

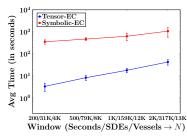
Tensor-EC: Experimental Evaluation

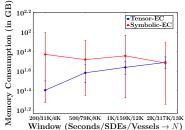
Brest





^{*}Sato, T. A linear algebraic approach to datalog evaluation. Theory and Practice of Logic Programming, 17(3):244–265, 2017. 22/24


Tensor-EC: Experimental Evaluation


Brest

European seas

^{*}Sato, T. A linear algebraic approach to datalog evaluation. Theory and Practice of Logic Programming, 17(3):244-265, 2017. 22/24

Scalable Complex Event Recognition

▶ Modify the *what* is to be computed — $RTEC_{inc}^{\dagger}$:

[†]https://github.com/eftsilio/Incremental_RTEC

- ▶ Modify the *what* is to be computed $RTEC_{inc}^{\dagger}$:
 - ► Handles delays/revisions in the input.

[†]https://github.com/eftsilio/Incremental_RTEC

- ▶ Modify the *what* is to be computed $RTEC_{inc}^{\dagger}$:
 - ► Handles delays/revisions in the input.
 - Optimal rule rewriting and evaluation of small sets early.

- ▶ Modify the *what* is to be computed $RTEC_{inc}^{\dagger}$:
 - ► Handles delays/revisions in the input.
 - ▶ Optimal rule rewriting and evaluation of small sets early.
 - ► Formal Properties.

- ▶ Modify the *what* is to be computed $RTEC_{inc}^{\dagger}$:
 - ► Handles delays/revisions in the input.
 - ▶ Optimal rule rewriting and evaluation of small sets early.
 - Formal Properties.
 - Significant performance gains compared to re-computation from scratch.

- ▶ Modify the *what* is to be computed $RTEC_{inc}^{\dagger}$:
 - ► Handles delays/revisions in the input.
 - ▶ Optimal rule rewriting and evaluation of small sets early.
 - Formal Properties.
 - Significant performance gains compared to re-computation from scratch.
- ▶ Modify the how tensor-EC[‡]:

 $^{^\}dagger$ https://github.com/eftsilio/Incremental_RTEC

[‡]https://github.com/eftsilio/Tensor-EC

- ▶ Modify the *what* is to be computed $RTEC_{inc}^{\dagger}$:
 - ► Handles delays/revisions in the input.
 - ▶ Optimal rule rewriting and evaluation of small sets early.
 - Formal Properties.
 - Significant performance gains compared to re-computation from scratch.
- ▶ Modify the how tensor-EC[‡]:
 - ► Transforms symbolic representations into vector spaces.

[†]https://github.com/eftsilio/Incremental_RTEC

[‡]https://github.com/eftsilio/Tensor-EC

- ▶ Modify the *what* is to be computed $RTEC_{inc}^{\dagger}$:
 - ► Handles delays/revisions in the input.
 - ▶ Optimal rule rewriting and evaluation of small sets early.
 - Formal Properties.
 - Significant performance gains compared to re-computation from scratch.
- ▶ Modify the how tensor-EC[‡]:
 - ► Transforms symbolic representations into vector spaces.
 - ► Reasoning through algebraic computation.

[†]https://github.com/eftsilio/Incremental_RTEC

[†]https://github.com/eftsilio/Tensor-EC

- ▶ Modify the *what* is to be computed $RTEC_{inc}^{\dagger}$:
 - ► Handles delays/revisions in the input.
 - ▶ Optimal rule rewriting and evaluation of small sets early.
 - Formal Properties.
 - Significant performance gains compared to re-computation from scratch.
- ▶ Modify the how tensor-EC[‡]:
 - ► Transforms symbolic representations into vector spaces.
 - Reasoning through algebraic computation.
 - Formal Properties.

[†]https://github.com/eftsilio/Incremental_RTEC

[†]https://github.com/eftsilio/Tensor-EC

- ▶ Modify the *what* is to be computed $RTEC_{inc}^{\dagger}$:
 - ► Handles delays/revisions in the input.
 - ▶ Optimal rule rewriting and evaluation of small sets early.
 - Formal Properties.
 - Significant performance gains compared to re-computation from scratch.
- ▶ Modify the how tensor-EC[‡]:
 - ► Transforms symbolic representations into vector spaces.
 - Reasoning through algebraic computation.
 - Formal Properties.
 - Performance improvement wrt state-of-the-art.

[†]https://github.com/eftsilio/Incremental_RTEC

[†]https://github.com/eftsilio/Tensor-EC

▶ Decide on the fly which execution strategy to adopt.

- ▶ Decide on the fly which execution strategy to adopt.
- ► Comparison with automata-based methods.

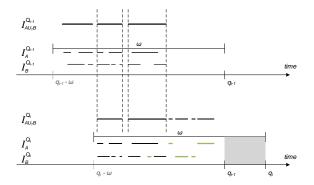
- ▶ Decide on the fly which execution strategy to adopt.
- ► Comparison with automata-based methods.
- ► Apply distribution and parallelization techniques.

- ▶ Decide on the fly which execution strategy to adopt.
- Comparison with automata-based methods.
- Apply distribution and parallelization techniques.
- ► Handle more expressive temporal specifications.

- ▶ Decide on the fly which execution strategy to adopt.
- Comparison with automata-based methods.
- Apply distribution and parallelization techniques.
- Handle more expressive temporal specifications.
- ▶ Formalize in tensor spaces $RTEC_{inc}$.

- ▶ Decide on the fly which execution strategy to adopt.
- ► Comparison with automata-based methods.
- Apply distribution and parallelization techniques.
- Handle more expressive temporal specifications.
- ▶ Formalize in tensor spaces $RTEC_{inc}$.
- Encode in tensors the time-intervals of fluents.

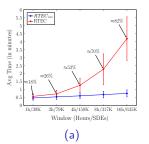
- ▶ Decide on the fly which execution strategy to adopt.
- ► Comparison with automata-based methods.
- Apply distribution and parallelization techniques.
- Handle more expressive temporal specifications.
- Formalize in tensor spaces $RTEC_{inc}$.
- Encode in tensors the time-intervals of fluents.
- Probabilistic CER in tensor spaces.

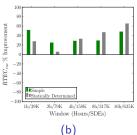

- ▶ Decide on the fly which execution strategy to adopt.
- ► Comparison with automata-based methods.
- Apply distribution and parallelization techniques.
- Handle more expressive temporal specifications.
- Formalize in tensor spaces $RTEC_{inc}$.
- ► Encode in tensors the time-intervals of fluents.
- Probabilistic CER in tensor spaces.
- ► Neuro-symbolic CER.

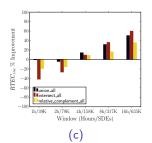
Appendix

$RTEC_{inc}$: Statically Determined Fluents

Union

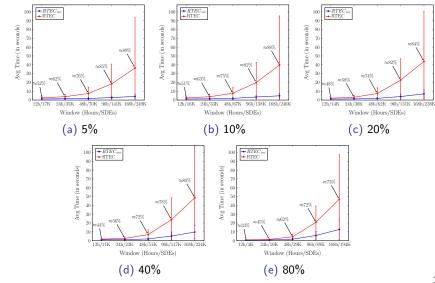

$$I_F^{\mathsf{Q}_i} = \left[(I_{A \cup_T B}^{\mathsf{Q}_{i-1}}) \setminus_T \left[\left[(I_A^{del} \cup_T I_B^{del}) \setminus_T (I_{A \cap_T B}^{\mathsf{Q}_{i-1}}) \right] \cup_T (I_A^{del} \cap_T I_B^{del}) \right] \right] \cup_T (I_A^{ins} \cup_T I_B^{ins})$$



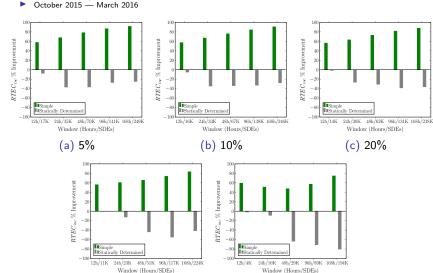

$RTEC_{inc}$: Evaluation (Natural Delays)

European seas

- Delays up to 16 hours
- ▶ 17M position signals, 34K vessels
- ▶ January 2016



Brest


- 5M position signals, 5K vessels
- October 2015 March 2016

(d) 40%

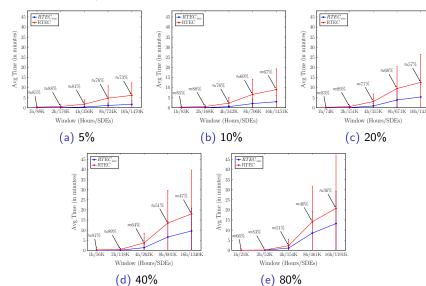
Brest

5M position signals, 5K vessels

(e) 80%

4/7

Brest


ightharpoonup 5M position signals, 5K vessels

5/7

Fleet Management

- ▶ 70M position signals, 6K vessels
- ▶ June 2018 August 2018

Tensor-EC: Evaluation

Simple Event Description

- One fluent and three input events.
- ► The fluent is defined by one initiatedAt and one terminatedAt rule, plus the *inertia* axiom.
- ► Temporal window of 20 time-points.

Method	Reasoning time (msec)	Memory (MB)
tensor-EC	1	0.01
symbolic-EC	0	5
Sato§	1	0.01
Sakama et al.¶	9205	475.3

Sato, T. A linear algebraic approach to datalog evaluation. Theory and Practice of Logic Programming, 17(3):244–265, 2017.

Sakama et al. Logic programming in tensor spaces. Annals of Mathematics and Artificial Intelligence, 89, 12 2021.