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Motivation

Logic-based approaches:

▶ Formal, declarative semantics.

▶ Hierarchical definitions.

▶ Relational patterns.

▶ Background Knowledge.

▶ Efficient reasoning.

Temporal frameworks:

▶ The what (pattern) is to be computed.

▶ Not necessarily the how it is to be computed.

Motivation: Modify the what and how to achieve scalability.
Contributions:

▶ RTECinc : Incremental RTEC (the what).

▶ tensor-EC: Tensor-based formalization of EC (the how).
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Background
Event Calculus

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.

▶ Built-in representation of inertia:
▶ F = V holds at a particular time-point if F = V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.
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Background
Run-Time Event Calculus (RTEC)

Input ▶ Recognition ▶ Output ■
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Complex

Event

Definitions

Simple Events

. . .. . .

. . .. . .

happensAt(gap start(v1 ), t1 )
happensAt(change in heading(v2 ), t1 )
happensAt(gap end(v1 ), t10 )
happensAt(gap end(v2 ), t12 )
...

Complex Events

. . . . . .

. . . . . .

holdsFor(gap(v1 ) = nearPorts, [t2 , t11 ))
holdsFor(rendezVous(v1 ,v2)=true, [t3, t8))
...

Simple Fluents Statically Determined Fluents

holdsFor(rendezVous(Vessel1 ,Vessel2)=true, I)←
holdsFor(proximity(Vessel1 ,Vessel2)=true, Ip),

initiatedAt(gap(Vessel) = nearPorts, T )← holdsFor(lowSpeed(Vessel1)=true, Il1),

happensAt(gap start(Vessel), T ), holdsFor(lowSpeed(Vessel2)=true, Il2),

holdsAt(withinArea(Vessel ,nearPorts) = true, T ). holdsFor(stopped(Vessel1)=farFromPorts, Is1),

holdsFor(stopped(Vessel2)=farFromPorts, Is2),

terminatedAt(gap(Vessel) = Value, T )← union all([Il1, Is1], I1),

happensAt(gap end(Vessel), T ). union all([Il2, Is2], I2),

intersect all([I1, I2, Ip], I).
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Simple Fluent: Communication Gap Far From Ports

initiatedAt(gap(Vessel)=farFromPorts, T )←
happensAt(gap start(Vessel), T ),

not holdsAt(withinArea(Vessel ,nearPorts)=true, T ).

terminatedAt(gap(Vessel)=farFromPorts, T )←
happensAt(gap end(Vessel), T ).

Reasoning: holdsFor(gap(Vessel)=farFromPorts, I)

gap start

withinArea

gap end

time

farFromPorts
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Hierarchical Event Descriptions

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling

lowSpeed

tugging

Semantics

An event description is a locally stratified logic program, i.e., it has
a unique perfect model.
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Part 1: Modify the what
Incremental CER

▶ Delayed events (e.g., satellite GPS messages)

▶ Overlapping temporal windows
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Problem Statement
RTEC
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RTECinc: Deletion Phase

time

ω

time

ω

qiqi-1

qi-1 - ω

qi  - ω

 

 

 

 

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

qi-1

 

 

initiatedAt(F=V,T) ← 
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RTECinc: Addition Phase

initiatedAt(F=V, T )←[
happensAt(A, T )

]ins
,[

holdsAt(B=VB, T )
]Qi

,

not

[
happensAt(C, T )

]Qi

,

not

[
holdsAt(D=VD, T )

]Qi

.

(a)

initiatedAt(F=V, T )←[
happensAt(A, T )

]Qi\ins
,[

holdsAt(B=VB, T )
]ins

,

not

[
happensAt(C, T )

]Qi

,

not

[
holdsAt(D=VD, T )

]Qi

.

(b)

initiatedAt(F=V, T )←[
happensAt(C, T )

]del
,[

happensAt(A, T )
]Qi\ins

,[
holdsAt(B=VB, T )

]Qi\ins
,

not

[
holdsAt(D=VD, T )

]Qi

.

(c)

initiatedAt(F=V, T )←[
happensAt(A, T )

]Qi\ins
,[

holdsAt(D=VD, T )
]del

,[
holdsAt(B=VB, T )

]Qi\ins
,

not

[
happensAt(C, T )

]Qi ∪ del
.

(d)
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RTECinc: Addition Phase
Delta rule (a)

time
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Qi
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RTECinc: Addition Phase
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time

ω
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RTECinc: Formal properties

Correctness

RTECinc computes exactly the same intervals of the fluents of an
event description as RTEC, and no other interval.

Complexity

The most important factor for performance improvement is the
ratio of delayed insertions/retractions to the degree of overlap:

n× e

mOV

< 1
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RTECinc: Empirical Evaluation
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Part 2: Modify the how
Logical Inference in Tensor Spaces

▶ Numerical computation has potential to cope with Web scale
data.

▶ Logical reasoning through algebraic operations is a step
towards neuro-symbolic integration.

▶ Use of efficient (parallel) algorithms and great computing
resources (GPUs).
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▶ Domain entities: N

▶ Window time-points: Ω
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Tensor-EC: Reasoning

Negation:

N

N
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=
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Tensor-EC: Reasoning
Rule Evaluation

initiatedAt(fl(X,Y )=v, T ) ←
happensAt(e(X,Y ), T ) ,

holdsAt(d(X,Y )=vd, T ) .
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Tensor-EC: Computing a Model

holdsAt(fl(X,Y )=v, T )←
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Tensor-EC: Formal Properties

Correctness

The unique solution of the equation coincides with the
time-points at which a fluent-value pair holds, as expressed by the
perfect model of the corresponding logic program.

Complexity

The time complexity of solving the equation is O(Np−1Ω) for
order-p tensors.
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▶ Modify the what is to be computed — RTECinchttps:
//github.com/eftsilio/Incremental_RTEC:
▶ Handles delays/revisions in the input.
▶ Optimal rule rewriting and evaluation of small sets early.
▶ Formal Properties.
▶ Significant performance gains compared to re-computation

from scratch.

▶ Modify the how —
tensor-EChttps://github.com/eftsilio/Tensor-EC:
▶ Transforms symbolic representations into vector spaces.
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▶ Formalize in tensor spaces RTECinc .

▶ Encode in tensors the time-intervals of fluents.

▶ Probabilistic CER in tensor spaces.

▶ Neuro-symbolic CER.
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RTECinc: Statically Determined Fluents
Union

IQi
F =

[
(I

Qi−1

A∪TB) \T
[[

(IdelA ∪T IdelB ) \T (I
Qi−1

A∩TB)
]
∪T (IdelA ∩T IdelB )

]]
∪T (IinsA ∪T IinsB )

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi  - ω

IAUTB

Qi-1

IA

Qi-1

IB

Qi-1

IAUTB

Qi

IA

Qi

IB

Qi



2/7

RTECinc: Evaluation (Natural Delays)
European seas

▶ Delays up to 16 hours

▶ 17M position signals, 34K vessels

▶ January 2016
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RTECinc: Evaluation (Synthetic Delays)
Brest

▶ 5M position signals, 5K vessels
▶ October 2015 — March 2016
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RTECinc: Evaluation (Synthetic Delays)
Brest

▶ 5M position signals, 5K vessels
▶ October 2015 — March 2016
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RTECinc: Evaluation (Synthetic Delays)
Brest

▶ 5M position signals, 5K vessels
▶ October 2015 — March 2016
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RTECinc: Evaluation (Synthetic Delays)
Fleet Management

▶ 70M position signals, 6K vessels
▶ June 2018 — August 2018
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Tensor-EC: Evaluation
Simple Event Description

▶ One fluent and three input events.

▶ The fluent is defined by one initiatedAt and one terminatedAt

rule, plus the inertia axiom.

▶ Temporal window of 20 time-points.

Method Reasoning time (msec) Memory (MB)

tensor-EC 1 0.01

symbolic-EC 0 5

Sato§ 1 0.01

Sakama et al.¶ 9205 475.3

§
Sato, T. A linear algebraic approach to datalog evaluation. Theory and Practice of Logic Programming, 17(3):244–265, 2017.

¶
Sakama et al. Logic programming in tensor spaces. Annals of Mathematics and Artificial Intelligence, 89, 12 2021.
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