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Complex Event Forecasting
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Vessel1 ,Lat1 ,Lon1 , 10 .2 Knots, 32 ◦, t1
Vessel2 ,Lat2 ,Lon2 , 4 .1 Knots, 130 ◦, t2
Vessel1 ,Lat3 ,Lon3 , 10 .1 Knots, 36 ◦, t3
Vessel2 ,Lat4 ,Lon4 , 4 .2 Knots, 131 ◦, t4
. . .

Complex Events

Completion Forecasts
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Rfish := (¬InArea(Fishing))∗ · (¬InArea(Fishing)) ·
(¬InArea(Fishing)) ·
(InArea(Fishing) ∧ ¬SpeedRange(Fishing))∗ ·
(InArea(Fishing) ∧ SpeedRange(Fishing))
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Wayeb

Wayeb1 is our CEF/R engine.

• CE patterns are defined as regular expressions

• they are compiled into automata

• we can use the automata to perform CER

CE Forecasting: forecast when a CE pattern is expected to be fully
matched.

• Wayeb employs prediction suffix trees (PST) for computing
the probability of an event appearing in the input.

• Automata runs + PSTs → CEF

1Alevizos E., et al., Complex Event Forecasting with Prediction Suffix Trees.
VLDBJ, 2022.
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Problem statement

Wayeb’s forecasting accuracy is influenced by the hyper-parameters
used during PST training.

• Solution: Hyper-parameter optimisation2

What about input data evolutions that invalidate the deployed
model?
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Stationarity assumption: offline optimisation
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Offline optimisation

Recall...
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→ offCEF is not suitable for CEF over event streams where
input-data evolutions are present.
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Run-Time Adaptation of CEF

We developed RTCEF, a framework for run-time adaptation of
CEF that offers:

• a distributed architecture,

• retrain vs re-optimize selection policies,

• little to no interruption in forecasting,
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Metrics monitoring

CEF scores degradation → deployed CEF model no longer suitable

What should we do?

• Retrain (same hyper-parameters)

• Hyper-parameter optimisation (new hyper-parameters)

Hyper-parameter optimisation in general yields “better” models
than retraining, however it is much more expensive.

Retrain vs optimise: trend inspired policy
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Retraining and Hyper-parameter Optimisation

Retraining: Use the last hyper-parameters and train a new PST.

Hyper-parameter optimisation: similar to offCEF...
but RTCEF does not start each optimisation procedure from
scratch. Instead:

• We keep keep percentage points from the previous run,

• and, sample remaining points as usual.

Retraining/Hyperparameter Optimisation happen in parallel to
CEF. CEF (Wayeb) stops only for model replacement.
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Model replacement

Simply replacing a deployed model with a revised version leads to:

• a loss of ongoing automata runs,

• and therefore, ongoing forecasts.

Solution: We theoretically proved that under certain conditions
model transition is lossless and possible in linear time.

Conditions:

• the CEF models must have an order ∈ [ml ,mu], and

• the last mu symbols of the input stream are available.

RTCEF performs lossless model replacement (proof in the paper).
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Experimental setup

We evaluate RTCEF on maritime situational awareness...

Rport := (¬InsidePort(Brest)) ∗ · (¬InsidePort(Brest)) ·
(¬InsidePort(Brest)) · (InsidePort(Brest))

...and in credit card fraud management.

Rcards := (amDiff > 0) · (amDiff > 0) · (amDiff > 0)·
(amDiff > 0) · (amDiff > 0) · (amDiff > 0)·
(amDiff > 0)
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Experimental setup (cont’d)

Maritime: Our dataset3 contains 18M AIS messages transmitted
between October 1st 2015 and 31st March 2016 (6 months)

Credit card fraud: We use a sythetic dataset4 containing 1M
transactions over a period of 21 months.

To validate our results, we create 6 and 21 versions of the datasets:

{MD,FD}i =
∥∥∥j={5,20}

j=0
Month(j+i) mod {6,21}

...and we compare the performance of RTCEF against offCEF.

3https://zenodo.org/records/1167595
4https://feedzai.com/
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Experimental results: maritime
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Experimental results: credit card fraud
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Outro

We presented RTCEF:

• a novel framework for run-time adaptation of CEF,

• involving services running synergistically for undisrupted CEF,

• with clear benefits over the offline approach.

Future work:

• Investigate additional collection and retrain vs optimise policies.

• Distribute further the most “expensive” services of the framework.

• Application of RTCEF on other tasks such as run-time CER query
optimisation.
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Thank you!

https://github.com/manospits/rtcef
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