RUN-TIME ADAPTATION OF COMPLEX EVENT FORECASTING

<u>Manolis Pitsikalis</u>¹, Elias Alevizos^{1,2}, Nikos Giatrakos³ and Alexander Artikis^{1,4}

¹NCSR Demokritos, ²The American College of Greece, ³Technical University of Crete, ⁴ University of Piraeus

{manospits, alevizos.elias, a.artikis}@iit.demokritos.gr, ngiatrakos@tuc.gr

DEBS 2025

Complex Event Forecasting

Wayeb

Wayeb¹ is our CEF/R engine.

- CE patterns are defined as regular expressions
- they are compiled into automata
- we can use the automata to perform CER

CE Forecasting: forecast when a CE pattern is expected to be fully matched.

- Wayeb employs prediction suffix trees (PST) for computing the probability of an event appearing in the input.
- $\bullet \ \, \mathsf{Automata} \ \mathsf{runs} + \mathsf{PSTs} \to \mathsf{CEF} \\$

3

¹Alevizos E., et al., Complex Event Forecasting with Prediction Suffix Trees. VLDBJ, 2022.

Problem statement

Wayeb's forecasting accuracy is influenced by the hyper-parameters used during PST training.

• Solution: Hyper-parameter optimisation²

What about **input data evolutions** that invalidate the deployed model?

4

²Stavropoulos V. et al. Optimizing Complex Event Forecasting. DEBS 2022.

Problem statement

Wayeb's forecasting accuracy is influenced by the hyper-parameters used during PST training.

• Solution: Hyper-parameter optimisation²

What about **input data evolutions** that invalidate the deployed model?

1

²Stavropoulos V. et al. Optimizing Complex Event Forecasting. DEBS 2022.

Stationarity assumption: offline optimisation

offCEF

Offline optimisation

Recall...

 \rightarrow offCEF $% \left(1\right) =0$ is not suitable for CEF over event streams where input-data evolutions are present.

Run-Time Adaptation of CEF

We developed RTCEF, a framework for **run-time** adaptation of CEF that offers:

- a distributed architecture,
- retrain vs re-optimize selection policies,
- little to no interruption in forecasting,

Architecture of RTCEF

Architecture of RTCEF

Metrics monitoring

CEF scores degradation \rightarrow deployed CEF model no longer suitable

What should we do?

- Retrain (same hyper-parameters)
- Hyper-parameter optimisation (new hyper-parameters)

Metrics monitoring

CEF scores degradation \rightarrow deployed CEF model no longer suitable

What should we do?

- Retrain (same hyper-parameters)
- Hyper-parameter optimisation (new hyper-parameters)

Hyper-parameter optimisation in general yields "better" models than retraining, however it is **much more** expensive.

Metrics monitoring

CEF scores degradation \rightarrow deployed CEF model no longer suitable

What should we do?

- Retrain (same hyper-parameters)
- Hyper-parameter optimisation (new hyper-parameters)

Hyper-parameter optimisation in general yields "better" models than retraining, however it is **much more** expensive.

Retrain vs optimise: trend inspired policy

Architecture of RTCEF

Retraining and Hyper-parameter Optimisation

Retraining: Use the last hyper-parameters and train a new PST.

Hyper-parameter optimisation: similar to offCEF... but RTCEF **does not** start each optimisation procedure from scratch. Instead:

- We keep *keep_percentage* points from the previous run,
- and, sample remaining points as usual.

Retraining and Hyper-parameter Optimisation

Retraining: Use the last hyper-parameters and train a new PST.

Hyper-parameter optimisation: similar to offCEF... but RTCEF **does not** start each optimisation procedure from scratch. Instead:

- We keep *keep_percentage* points from the previous run,
- and, sample remaining points as usual.

Retraining/Hyperparameter Optimisation happen in parallel to CEF. CEF (Wayeb) stops only for model replacement.

Model replacement

Simply replacing a deployed model with a revised version leads to:

- a loss of ongoing automata runs,
- and therefore, **ongoing forecasts**.

Solution: We theoretically proved that *under certain conditions* model transition is **lossless** and possible in linear time.

Model replacement

Simply replacing a deployed model with a revised version leads to:

- a loss of ongoing automata runs,
- and therefore, **ongoing forecasts**.

Solution: We theoretically proved that *under certain conditions* model transition is **lossless** and possible in linear time.

Conditions:

- the CEF models must have an order $\in [m_I, m_u]$, and
- the last m_u symbols of the input stream are available.

RTCEF performs lossless model replacement (proof in the paper).

Architecture of RTCEF

Experimental setup

We evaluate RTCEF on maritime situational awareness...

$$R_{port} := (\neg InsidePort(Brest)) * \cdot (\neg InsidePort(Brest)) \cdot (\neg InsidePort(Brest)) \cdot (InsidePort(Brest))$$

...and in credit card fraud management.

$$\begin{array}{ll} \textit{R}_{\textit{cards}} := & (\textit{amDiff} > 0) \cdot (\textit{amDiff} > 0) \cdot (\textit{amDiff} > 0) \cdot \\ & (\textit{amDiff} > 0) \cdot (\textit{amDiff} > 0) \cdot (\textit{amDiff} > 0) \cdot \\ & (\textit{amDiff} > 0) \end{array}$$

Experimental setup (cont'd)

Maritime: Our dataset³ contains 18M AIS messages transmitted between October 1st 2015 and 31st March 2016 (6 months)

Credit card fraud: We use a sythetic dataset⁴ containing 1M transactions over a period of 21 months.

To validate our results, we create 6 and 21 versions of the datasets:

$$\{MD, FD\}_i = \Big\|_{j=0}^{j=\{5,20\}} Month_{(j+i) \mod \{6,21\}}$$

...and we compare the performance of RTCEF against offCEF.

³https://zenodo.org/records/1167595

⁴https://feedzai.com/

Experimental results: maritime

Experimental results: maritime

** $MCC \in [-1, 1]$

Experimental results: credit card fraud

Outro

We presented RTCEF:

- a novel framework for run-time adaptation of CEF,
- involving services running synergistically for **undisrupted** CEF,
- with **clear benefits** over the offline approach.

Future work:

- Investigate additional collection and retrain vs optimise policies.
- Distribute further the most "expensive" services of the framework.
- Application of RTCEF on other tasks such as run-time CER query optimisation.

Thank you!

https://github.com/manospits/rtcef