Making Sense of Streaming Data

Alexander Artikis^{1,2} Periklis Mantenoglou³ Manos Pitsikalis¹

¹NCSR Demokritos, Athens, Greece ²University of Piraeus, Greece ³Örebro University, Sweden

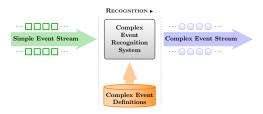
Slides, Papers, Code & Data

Making Sense of Streaming Data

Complex Event Recognition lab

Complex Event Recognition

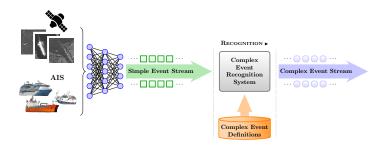
Complex Event Recognition (CER)*,†



^{*}Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

[†]Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

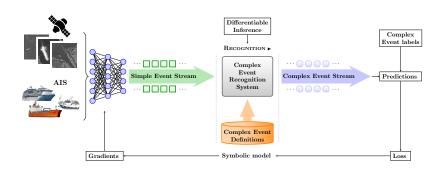
Complex Event Recognition (CER)*,†



^{*}Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

[†]Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

Complex Event Recognition (CER)*,†



^{*}Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

^TAlevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

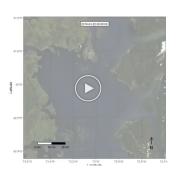
CER for Maritime Situational Awareness*

https://cer.iit.demokritos.gr (fishing vessel)

^{*}Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.

CER for Maritime Situational Awareness*

https://cer.iit.demokritos.gr (fishing vessel)



https://rdcu.be/cNkQE

^{*}Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.

CER for Maritime Situational Awareness*

https://cer.iit.demokritos.gr (tugging)

https://cer.iit.demokritos.gr (pilot boarding)

https://www.skylight.global (rendez-vous)

https://www.skylight.global (enter area)

^{*}Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.

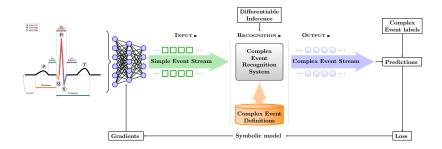
► Velocity, Volume: Millions of position signals/day at European scale.

- Velocity, Volume: Millions of position signals/day at European scale.
- Variety: Position signals need to be combined with other data streams
 - ▶ Weather forecasts, sea currents, etc.
- ... and static information
 - ► NATURA areas, shallow waters areas, coastlines, etc.

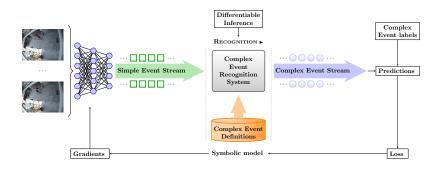
- Velocity, Volume: Millions of position signals/day at European scale.
- Variety: Position signals need to be combined with other data streams
 - Weather forecasts, sea currents, etc.
- ... and static information
 - ► NATURA areas, shallow waters areas, coastlines, etc.
- ► Lack of Veracity: GPS manipulation, vessels reporting false identity, communication gaps.

- Velocity, Volume: Millions of position signals/day at European scale.
- Variety: Position signals need to be combined with other data streams
 - Weather forecasts, sea currents, etc.
- ... and static information
 - ► NATURA areas, shallow waters areas, coastlines, etc.
- ► Lack of Veracity: GPS manipulation, vessels reporting false identity, communication gaps.
- ▶ Distribution: Vessels operating across the globe.

Patient Monitoring



Activity Recognition



- ► Expressive representation
 - ▶ to capture complex relationships between the events that stream into the system.

- Expressive representation
 - ▶ to capture complex relationships between the events that stream into the system.
- Efficient reasoning
 - to support real-time decision-making in large-scale, (geographically) distributed applications.

- Expressive representation
 - ▶ to capture complex relationships between the events that stream into the system.
- Efficient reasoning
 - to support real-time decision-making in large-scale, (geographically) distributed applications.
- Automated knowledge construction
 - to avoid the time-consuming, error-prone manual CE definition development.

- Expressive representation
 - ▶ to capture complex relationships between the events that stream into the system.
- Efficient reasoning
 - to support real-time decision-making in large-scale, (geographically) distributed applications.
- Automated knowledge construction
 - to avoid the time-consuming, error-prone manual CE definition development.
- Reasoning under uncertainty
 - to deal with various types of noise.

- Expressive representation
 - ▶ to capture complex relationships between the events that stream into the system.
- Efficient reasoning
 - to support real-time decision-making in large-scale, (geographically) distributed applications.
- Automated knowledge construction
 - to avoid the time-consuming, error-prone manual CE definition development.
- Reasoning under uncertainty
 - to deal with various types of noise.
- Complex event forecasting
 - to support proactive decision-making.

- ▶ Introduction to Complex Event Recognition (CER).
 - ► We have Deep Learning and Large Language Models can we go home now?

- Introduction to Complex Event Recognition (CER).
 - ► We have Deep Learning and Large Language Models can we go home now?
- Formal Models for CER.
 - Expressive representation and efficient reasoning.

- ▶ Introduction to Complex Event Recognition (CER).
 - ► We have Deep Learning and Large Language Models can we go home now?
- Formal Models for CER.
 - Expressive representation and efficient reasoning.
- Probabilistic CER
 - ... to handle uncertainty.

- Introduction to Complex Event Recognition (CER).
 - ▶ We have Deep Learning and Large Language Models can we go home now?
- Formal Models for CER.
 - Expressive representation and efficient reasoning.
- Probabilistic CER
 - ... to handle uncertainty.
- ► Tensor-based reasoning
 - ... for neuro-symbolic CER.

- Introduction to Complex Event Recognition (CER).
 - ▶ We have Deep Learning and Large Language Models can we go home now?
- Formal Models for CER.
 - Expressive representation and efficient reasoning.
- Probabilistic CER
 - ... to handle uncertainty.
- Tensor-based reasoning
 - ... for neuro-symbolic CER.
- ► Topics not covered.

Related Research

Complex Event_Recognition &

Complex event recognition (CER) systems:

Process data without storing them.

^{*}Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

- Process data without storing them.
- Data are continuously updated.
 - Data stream into the system in high velocity.
 - Data streams are large (usually unbounded).

^{*}Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

- Process data without storing them.
- Data are continuously updated.
 - Data stream into the system in high velocity.
 - Data streams are large (usually unbounded).
- No assumption can be made on data arrival order.

^{*}Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

- Process data without storing them.
- Data are continuously updated.
 - Data stream into the system in high velocity.
 - Data streams are large (usually unbounded).
- No assumption can be made on data arrival order.
- Users install standing/continuous queries:
 - Queries deployed once and executed continuously until removed.
 - Online reasoning.

^{*}Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

- Process data without storing them.
- Data are continuously updated.
 - Data stream into the system in high velocity.
 - Data streams are large (usually unbounded).
- No assumption can be made on data arrival order.
- Users install standing/continuous queries:
 - Queries deployed once and executed continuously until removed.
 - Online reasoning.
- Latency requirements are very strict.

^{*}Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

We have Deep Learning and it seems to work. Can we go home?

We have Deep Learning and it seems to work. Can we go home?

CER:

► Formal semantics* for trustworthy models.

^{*}Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems,

We have Deep Learning and it seems to work. Can we go home?

CER:

- Formal semantics* for trustworthy models.
- Explanation why did we detect a complex event?

^{*}Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.

We have Deep Learning and it seems to work. Can we go home?

CER:

- Formal semantics* for trustworthy models.
- Explanation why did we detect a complex event?
- ► Machine Learning is necessary. But:
 - Complex events are rare.
 - Supervision is scarce.

^{*}Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.

We have Deep Learning and it seems to work. Can we go home?

CER:

- Formal semantics* for trustworthy models.
- Explanation why did we detect a complex event?
- ► Machine Learning is necessary. But:
 - Complex events are rare.
 - Supervision is scarce.
- More often than not, background knowledge is available let's use it!

^{*}Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.

Large Language Models (LLM)s:

- Deep learning trained on large-scale corpora.
- Based on transformer architectures.
- Predict the next token in context.

Large Language Models (LLM)s:

- Deep learning trained on large-scale corpora.
- Based on transformer architectures.
- Predict the next token in context.

Large Reasoning Models (LRM)s:

- Designed to think step-by-step.
- ▶ Plan sequences, handle scheduling, solve puzzles.

Large Language Models (LLM)s:

- Deep learning trained on large-scale corpora.
- Based on transformer architectures.
- Predict the next token in context.

Large Reasoning Models (LRM)s:

- Designed to think step-by-step.
- ▶ Plan sequences, handle scheduling, solve puzzles.

Challenges:

Sensitive to prompt phrasing.

Large Language Models (LLM)s:

- Deep learning trained on large-scale corpora.
- Based on transformer architectures.
- Predict the next token in context.

Large Reasoning Models (LRM)s:

- Designed to think step-by-step.
- ▶ Plan sequences, handle scheduling, solve puzzles.

Challenges:

- Sensitive to prompt phrasing.
- Prone to hallucinations.

Large Language Models (LLM)s:

- Deep learning trained on large-scale corpora.
- Based on transformer architectures.
- Predict the next token in context.

Large Reasoning Models (LRM)s:

- Designed to think step-by-step.
- Plan sequences, handle scheduling, solve puzzles.

Challenges:

- Sensitive to prompt phrasing.
- Prone to hallucinations.
- Limited reasoning capabilities*.

^{*}Ishay and Lee, LLM+AL: Bridging Large Language Models and Action Languages for Complex Reasoning About Actions. AAAI 2025.

Models of Complex Event Recognition

```
ce ::= se
ce_1 ; ce_2 | Sequence
ce_1 \lor ce_2 | Disjunction
ce^* | Iteration
\neg ce | Negation
\sigma_{\theta}(ce) | Selection
\pi_m(ce) | Projection
[ce]_{T_1}^{T_2} Windowing (from <math>T_1 to T_2)
```

Sequence: Two events following each other in time.

```
ce ::= se
ce_1 ; ce_2 | Sequence
ce_1 \lor ce_2 | Disjunction
ce^* | Iteration
\neg ce | Negation
\sigma_{\theta}(ce) | Selection
\pi_m(ce) | Projection
[ce]_{T_1}^{T_2} Windowing (from <math>T_1 to T_2)
```

- ► Sequence: Two events following each other in time.
- Disjunction: Either of two events occurring, regardless of temporal relations.

```
ce := se  | ce_1 ; ce_2 | Sequence ce_1 \lor ce_2 | Disjunction ce^* | Iteration \neg ce | Negation \sigma_{\theta}(ce) | Selection \pi_m(ce) | Projection [ce]_{T_1}^{T_2}  Windowing (from T_1 to T_2)
```

- Sequence: Two events following each other in time.
- Disjunction: Either of two events occurring, regardless of temporal relations.
- ► The combination of *Sequence* and *Disjunction* expresses Conjunction (both events occurring).

```
ce ::= se | ce_1 ; ce_2 | | Sequence | ce_1 \lor ce_2 | | Disjunction | ce^* | | Iteration | rac{d}{d} rac{d} rac{d}
```

► *Iteration*: An event occurring *N* times in sequence, where $N \ge 0$.

```
ce ::= se
ce_1 ; ce_2 | Sequence
ce_1 \lor ce_2 | Disjunction
ce^* | Iteration
ce | Negation
\sigma_{\theta}(ce) | Selection
\pi_m(ce) | Projection
[ce]_{T_1}^{T_2} Windowing (from <math>T_1 to T_2)
```

► *Negation*: Absence of event occurrence.

```
ce ::= se
ce_1 ; ce_2 | Sequence
ce_1 \lor ce_2 | Disjunction
ce^* | Iteration
\neg ce | Negation
\sigma_{\theta}(ce) | Selection
\pi_m(ce) | Projection
[ce]_{T_1}^{T_2} Windowing (from <math>T_1 to T_2)
```

- ▶ *Negation*: Absence of event occurrence.
- Selection: Select those events whose attributes satisfy a set of predicates/relations θ , temporal or otherwise.

```
ce ::= se
ce_1 ; ce_2 | Sequence
ce_1 \lor ce_2 | Disjunction
ce^* | Iteration
\neg ce | Negation
\sigma_{\theta}(ce) | Selection
\pi_m(ce) | Projection
[ce]_{T_1}^{T_2} Windowing (from <math>T_1 to T_2)
```

Projection: Return an event whose attribute values are a possibly transformed subset of the attribute values of its sub-events.

```
ce ::= se  | ce_1 ; ce_2 | Sequence ce_1 \lor ce_2 | Disjunction ce^* | Iteration \neg ce | Negation \sigma_{\theta}(ce) | Selection \pi_m(ce) | Projection [ce]_{T_1}^{T_2}  Windowing (from T_1 to T_2)
```

- Projection: Return an event whose attribute values are a possibly transformed subset of the attribute values of its sub-events.
- Windowing: Evaluate the conditions of an event pattern within a specified time window.

Processing Model

Selection strategies filter the set of matched patterns.

Assume the pattern α ; β and the stream $(\alpha, 1)$, $(\alpha, 2)$, $(\beta, 3)$.

Processing Model

Selection strategies filter the set of matched patterns.

- Assume the pattern α ; β and the stream $(\alpha, 1)$, $(\alpha, 2)$, $(\beta, 3)$.
- ▶ The multiple selection strategy produces $(\alpha, 1)$, $(\beta, 3)$ and $(\alpha, 2)$, $(\beta, 3)$.

Processing Model

Selection strategies filter the set of matched patterns.

- Assume the pattern α ; β and the stream $(\alpha, 1)$, $(\alpha, 2)$, $(\beta, 3)$.
- The multiple selection strategy produces $(\alpha, 1)$, $(\beta, 3)$ and $(\alpha, 2)$, $(\beta, 3)$.
- ▶ The single selection strategy produces either $(\alpha, 1)$, $(\beta, 3)$ or $(\alpha, 2)$, $(\beta, 3)$.
- ► The single selection strategy represents a family of strategies, depending on the matches actually chosen among all possible ones.

Instantaneous vs Interval-based Reasoning*,†

Consider:

- \blacktriangleright the pattern β ; $(\alpha; \gamma)$
- ▶ and the stream $(\alpha, 1), (\beta, 2), (\gamma, 3)$.

Does the stream match the pattern?

^{*}Paschke, ECA-LP / ECA-RuleML: A Homogeneous Event-Condition-Action Logic Programming Language. RuleML. 2006.

White et al, What is "Next" in Event Processing?, PODS, 2007.

Course Structure

► Introduction to Complex Event Recognition (CER).

Course Structure

- ► Introduction to Complex Event Recognition (CER).
- Formal Models for CER
 - ... including interval-based reasoning.
- ► Probabilistic CER.
- ► Tensor-based CER.
- ► Topics not covered.