Skip to content Skip to navigation

Projects

Current Projects

datACRON (Big Data Analytics for Time Critical Mobility Forecasting) is a new European project starting January 2016. It targets at introducing novel methods to detect threats and abnormal activity of very large numbers of moving entities in large geographic areas. The datACRON vision is to advance the management and integrated exploitation of voluminous and heterogeneous data-at-rest (archival data) and data-in-motion (streaming data) sources, so as to significantly advance the capacities of systems to promote safety and effectiveness of critical operations for large numbers of moving entities in large geographical areas. The main objectives of datACRON are the development of highly scalable methods for advancing: (a) Real-time detection and forecasting accuracy of moving entities’ trajectories; (b) real-time recognition and prediction of important events concerning these entities, together with (c) a general visual analytics infrastructure supporting all steps of the analysis through appropriate interactive visualizations; (d) advanced processing of data close to the data sources -following the in-situ data processing paradigm, producing streaming data synopses at a high-rate of compression; (e) advanced spatio-temporal data integration and management solutions. The CER team will be responsible for the complex event recognition and forecasting technology that will be developed in dataCRON.

Past projects

SPEEDD (Scalable ProactivE Event-Driven Decision-making) was a European project that ended on 1-2-2017. SPEEDD developed a prototype for proactive event-driven decision-making: decisions triggered by forecasting events-whether they correspond to problems or opportunities-instead of reacting to them once they happen. Decision-making in SPEEDD was real-time, in the sense that it takes place under tight time constraints, and require on-the-fly processing of Big Data, that is, extremely large amounts of noisy data flooding in from different geographical locations, as well as historical data. The SPEEDD methodology for proactive event-based decision-making comprises the following steps. First, Big Data is continuously acquired from various types of sensor and fused in order to recognise, in real-time, events of special significance. To allow for sub-second recognition, SPEEDD minimizes communication volume by moving as little data as possible from one place to another. Second, the events recognised are correlated with historical information to forecast problems and opportunities that may take place in the near future. Third, the forecast events along with the recognised events are leveraged for real-time operational decision-making. Fourth, visual analytics tools prioritise and explain possible proactive actions, enabling human operators to reach and execute the correct decision. The SPEEDD technology will be tested in proactive traffic management and proactive credit card fraud management. The CER team coordinated the project and contributed to the development of novel techniques for real-time event recognition and forecasting under uncertainty.

REVEAL (REVEALing hidden concepts in social media) was EU FP project, that ended on 1/11/2016. The world of media and communication is currently experiencing enormous disruptions: from one-way communication and word of mouth exchanges, we have moved to bi- or multi directional communication patterns. No longer can selected few (e.g. media organizations and controllers of communication channels) act as gatekeepers, deciding what is communicated to whom and what not. Individuals now have the opportunity to access information directly from primary sources, through a channel we label e'-word of mouth', or what we commonly call 'Social Media'. A key problem: it takes a lot of effort to distinguish useful information from the 'noise' (e.g. useless or misleading information). Finding relevant information is often tedious. REVEAL aimed at discovering higher level concepts hidden within information. In Social Media we do not only have bare content; we also have interconnected sources. We have to deal with interactions between them, and we have many indicators about the context within which content is used, and interactions taking place. A core challenge was to decipher interactions of individuals in permanently changing constellations, and do so in real time. Further to discovering what is being said, REVEAL aimed at determining how trustworthy that information is, based on predicting contributor impact and how much or to what extent all this affects reputation or influence. This allowed to automatically judge the quality and accuracy of content, and predicting future trends with greater accuracy. The core of our work was to reveal hidden social media modalities for the benefit of a better understanding and utilization of the Social Media world. The CER team was responsible for social modality recognition using heterogeneous data streams coming from various types of social media.

AMINESS (Analysis of Marine Information for Environmental Safe Shipping) . An GSRT/ Ministry of Development-funded project ending June 2015. The CER team was responsible for the probabilistic event recognition technology used for the detection of potential hazards related to marine traffic in the Aegean sea, towards reducing the possibility of ship accidents.

USEFIL (Unobstrusive Smart Environments For Independent Living). EU FP7 project ending on November 2014. The CER team was responsible for the probabilistic event recognition technology that was used for the unobtrusive monitoring of elderly people in their smart homes.

PRONTO (Event Recognition for Intelligent Resource Managament). EU FP7 project ended on March 2012. The CER team was responsible for the event recognition technology that was used for city transport management and emergency rescue operation management.